第三章生物质直接燃烧技术
- 格式:pptx
- 大小:20.65 MB
- 文档页数:93
1 生物质、生物质能的概念生物质:自然界中有生命的,可以生长的各种有机物质,包括动物、植物和微生物。
生物质能:由太阳能转化而来的以化学能形式储存在生物质中的能量。
2 生物质的种类和资源种类1)农业生物质资源:农作物(包括能源植物)、农业生产废弃物、农业加工业废弃物等2)林业生物质资源:森林生长和林业生产过程中所提供的生物质资源3)畜禽粪便:畜禽排泄物的统称4)生活污水和工业有机废水:农村和城镇居民生活、商业和服务业的各种排水组成5)城市固体有机废弃物:主要由城镇居民生活垃圾,商业、服务业垃圾等固体有机废弃物组成,成份复杂。
资源特点1)资源分布十分广泛,远比石油丰富,可以不断再生。
2)城市内燃机车辆使用从生物质资源提取或生产出的乙醇、液态氢时,有利于保护环境。
3)开发生物质能源,可以促进经济发展,提高就业机会,具有经济与社会的双重效益。
4)在贫瘠的或者被侵蚀的土地上种植能源作物或者植被,可以改善土壤、生态环境,提高土壤利用度。
3 生物质能转换技术有哪些类型?1)直接燃烧技术:最普通的生物质能转化技术,即燃料中可燃成份和氧化剂(一般是空气中的氧气)发生氧化反应的化学反应过程,在反应过程中强烈析出热量,并使燃烧产物的温度升高。
2)生物转换技术:用微生物发酵方法将生物质能转化为燃料物质的技术,通常生产的液体燃料为乙醇,气体燃料为沼气,并伴有二氧化碳产生。
3)热化学转换技术:在加热条件下,用热化学手段将生物质能转换成燃料物质的技术。
常用的方法有气化法、热裂解法和高压液化法。
4)其他转换技术:生物质压缩成型技术,生物柴油,生物质制氢。
第二章生物质能资源与能源植物1 生物质能资源有何特点(1)可再生(2)普遍、易取(3)可储存和运输(4)挥发组分高,炭活性高,易燃(5)环保(6)是能量密度较低的低品位能源.2 生物质化学组成的主要成分有哪些?(1)纤维素(2)半纤维素(3)木质素(4)淀粉(5)蛋白质(6)其他有机成分(有机物)(7)其他无机成分(无机物)3 生物质的元素分析成分有哪些?C H O N S P K 灰分等4 生物质组成成分的工业分析成分有那些?水分挥发分灰分固定碳5 生物质的物理特性和热性质主要包括:1、粒度,形状和粒度分布2、密度和堆积密度3、摩擦和流动特性角4、比热容5、导热性6 能源植物:能源植物通常包括速生薪炭林,含糖或淀粉植物,能榨油或产油的植物,可供厌氧发酵用的藻类和其他植物等。
生物质燃烧技术及其在能源领域中的应用随着全球经济和人口的迅速增长,能源需求的增加已成为世界各国共同面临的问题。
作为人类社会的基本需求之一,能源的统筹管理和合理利用已成为国际社会的共识。
在此背景下,绿色能源作为一种能够有效降低燃烧排放物、减少对环境的不良影响和增加能源利用效率的新型能源逐渐得到了广泛关注和认可。
而生物质燃烧技术,正是其中一项被广泛应用的绿色能源利用技术。
一、生物质燃烧技术概述生物质燃烧技术是指利用生物质作为燃料,通过燃烧产生能量的一种技术。
生物质燃烧技术主要包括直接燃烧、气化燃烧和热化学转化等多种方法。
其中,直接燃烧是指将生物质原料直接燃烧,其产生的热能可以被用来加热水或蒸汽,进而发电或供暖等。
气化燃烧则是将生物质原料通过气化反应产生可燃气体,并将气体热解来产生电能。
热化学转化则是指利用化学反应将生物质原料转化为液体或气体燃料,再利用这些燃料来发电。
与传统燃烧技术相比,生物质燃烧技术具有许多优点。
首先,生物质燃烧过程中几乎不排放硫、氮和二氧化碳等有害气体,是一种非常环保的能源。
其次,生物质资源广泛,来源丰富,可以有效减少对化石燃料的依赖。
此外,采用生物质燃烧技术可以有效地解决农作物和园林废弃物等有机废弃物的处理和利用问题,减少二次污染。
二、生物质燃烧技术在能源领域中的应用生物质燃烧技术以其环保、可持续等特点被广泛应用于能源领域。
以下列举部分应用场景。
1. 生物质燃烧发电生物质燃烧发电是目前生物质燃烧技术应用最广泛的领域之一。
生物质燃烧发电一般以木质废弃物、农作物秸秆等为原料,通过燃烧产生蒸汽驱动汽轮机发电。
该技术具有废弃物资源化利用、能源利用效率高等优点。
2. 生物质燃气锅炉生物质燃气锅炉是将生物质包括木屑、秸秆、油棕壳等转化为气体燃料后进行燃烧,用于取暖或加热水。
该技术具有环保、能源利用效率高等优点。
3. 生物质热风炉生物质热风炉利用生物质原料进行直接燃烧,产生高温热风,用于工业生产中的热处理、干燥等工序。
生物质能技术的开发和利用近年来,在能源日益紧张的形势下,人们开始寻找更为环保、可持续的能源替代品,其中生物质能成为了备受关注的一种。
生物质能是指以生物质为原料进行转化而得到的能源,包括生物质直接燃烧、生物质气化、生物质液化等几种转化方式。
这些技术的开发和利用有着重要的意义。
一、生物质直接燃烧技术生物质直接燃烧技术是将生物质原料直接进行燃烧或者在燃烧器中进行燃烧,从而使产生的热能可以用于加热、发电等领域。
该技术较为成熟,具有简便、效率高、安全等特点,大量应用于生活、工业和农业领域。
例如,我国在农村地区广泛采用生物质热水器,将秸秆、木屑等生物质燃烧产生的热能进行利用,为农村居民提供温水;工业领域则采用生物质锅炉,将棉秸、麦秸、锯末、废弃木材等作为燃料供暖或发电。
但生物质直接燃烧技术也存在诸多问题,如热效率不高、排放物对环境污染严重等。
二、生物质气化技术生物质气化技术是将生物质作为原料,在氧化剂的作用下进行气化反应,将原料转化为高热值的气体,再对气体进行洁净化和利用。
生物质气化技术具有很高的能量利用效率,且产生的气体中不含硫化物和氮化物等污染物质,极大地降低了环境污染。
此外,通过气化技术还可以将生物质燃料转换成可变质燃料,可以广泛应用于工业领域和供热领域,成为了生物质能技术中的重要发展方向。
三、生物质液化技术生物质液化技术是将生物质原料加入催化剂中,在高温高压的条件下进行反应,将生物质转化为油气和炭质等产品,进而进行化学加工和利用。
生物质液化技术可制备出各类液态燃料、化工原料及有机肥料等重要产品。
其中,生物质液体燃料因其清洁、可再生、低污染等特点越来越受到人们的重视,该技术正成为供汽油、柴油等传统燃料的新兴替代品。
技术优劣比较生物质气化技术较为复杂,但产气效果显著,操作选择范围更广,精确度较高;生物质直接燃烧技术操作简单,效率高,但排放污染物质较多;生物质液化技术液体燃料的产出比较大,但该技术由于催化剂成本等因素,较为昂贵。
生物质直接燃烧技术一、引言目前,生物质直接燃烧技术是最简便、最具潜力的生物质资源有效利用方式之一。
但由于生物质燃料与化石燃料相比,在物理、化学性质等方面存在着较大的差异,因此对燃烧设备的设计要求和燃烧方式的选择也不同于化石燃料。
二、生物质燃烧的特性了解生物质燃料的组成成分,有助于对其燃烧特性的研究,从而进一步科学、合理地开发利用生物质能。
由上表可以看出,生物质燃料组成成分的特点是:(1)生物质含水分多,含硫量低;(2)生物质含碳量少,固定碳含量更少,热值普遍偏低;(3)生物质含氧量高,挥发份明显较多;(4)生物质灰份少、密度小,尤其是农作物秸秆。
因此,生物质燃料的燃烧过程是强烈的化学反应过程,又是燃料和空气间的传热、传质的过程,主要分为挥发份的析出、燃烧和残余焦炭的燃烧、燃尽两个独立的阶段。
三、生物质燃料直接燃烧技术直接燃烧是目前最简便的生物质能源转化技术,即将生物质直接作为燃料燃烧,燃烧过程所产生的能量主要用于发电或集中供热。
作为燃料的生物质包括各种农林业废弃物、城市生活垃圾等。
目前,生物质直接燃烧技术主要有以下几种:3.1生物质直接燃烧流化床技术采用流化床技术开发生物质能是考虑到流化燃烧效率高,有害气体排放少,热容量大等一系列优点,适合燃用水分大、热值低的生物质燃料。
生物质直接燃烧流化床技术是采用细砂等颗粒作为媒体床料,以保证形成稳定的密相区料层,为生物质燃料提供充分的预热和干燥热源;采用风力给料装置,使生物质燃料均匀散布在床层表面,有助于燃料的及时着火和稳定燃烧;采用稀相区强旋转切向二次风形成强烈旋转上升气流,可以使高温烟气、空气和生物质物料颗粒混合强烈,并延长物料颗粒在炉内的停留时间;采用稀相区后设置卧式旋风燃烬室,使可燃气体和固体颗粒进一步燃尽,同时可以将烟气中所携带的飞灰、床料分离下来,减轻尾部受热面和除尘设备的磨损。
现在我国部分锅炉厂家与高等院校合作,已开发出甘蔗渣、稻壳、果穗、木屑等生物废料的流化床锅炉,并取得成功运行。
生物质直燃技术开发与设备制造方案一、实施背景随着全球能源需求的不断增长和环境问题的日益严重,生物质能作为一种可再生、清洁的能源形式受到了广泛关注。
生物质直燃技术作为生物质能利用的一种重要方式,在实现能源可持续发展和减少碳排放方面具有重要意义。
为了推动生物质直燃技术的开发与设备制造,需要进行产业结构改革,提高技术水平和设备制造能力。
二、工作原理生物质直燃技术是利用生物质作为燃料直接进行燃烧,通过控制燃烧过程中的氧气供应和温度等参数,实现高效能量转化和减少污染物排放。
生物质燃烧过程中产生的热能可以用于供热、发电等领域,同时还能够减少对化石能源的依赖,降低温室气体排放。
三、实施计划步骤1. 技术研发:通过对生物质燃烧机理、燃烧参数和设备结构等方面的研究,开发出适用于不同生物质种类和含水率的直燃技术。
2. 设备制造:根据研发成果,设计制造高效、稳定的生物质直燃设备,包括燃烧器、锅炉和发电机组等。
3. 实施示范项目:选择适宜的地区进行生物质直燃技术示范项目,验证技术可行性和经济效益。
4. 推广应用:在示范项目成功后,将生物质直燃技术推广到更广泛的范围,包括农村能源供应、工业热能利用和城市发电等领域。
四、适用范围生物质直燃技术适用于各种生物质资源的利用,包括农作物秸秆、林木废弃物、农畜禽粪便等。
同时,该技术还可以与其他能源利用技术相结合,如生物质气化、生物质液化等。
五、创新要点1. 燃烧控制技术:通过优化燃烧参数和氧气供应方式,实现生物质燃烧过程的高效能量转化和低污染排放。
2. 设备制造技术:设计制造高效、稳定的生物质直燃设备,提高能源利用效率和设备运行稳定性。
3. 综合利用技术:将生物质直燃技术与其他能源利用技术相结合,实现多能源互补和综合利用。
六、预期效果1. 能源可持续发展:生物质直燃技术可以有效利用生物质资源,减少对化石能源的依赖,实现能源的可持续发展。
2. 环境保护:生物质直燃技术可以减少污染物排放,降低对环境的影响,改善空气质量。
生物质燃料直接燃烧过程特性的分析生物质能专题2008-03-14 22:31:54 阅读22 评论0 字号:大中小1、生物质燃料和固体矿物质燃料(煤)的主要差别表1列出了典型生物质燃料和典型的烟某和无烟煤的元素组成和工业分析成分组成〔1〕。
从表1中看出,生物质燃料和煤碳相比有以下一些主要差别(见表2):1)含碳量较少,含固定碳少。
生物质燃料中含碳量最高的也仅50%左右,相当于生成年代较少的褐煤的含碳量。
特别是固定碳的含量明显地比煤炭少。
因此,生物质燃料不抗烧,热值较低(见表1)。
2)含氢量稍多,挥发分明显较多。
生物质燃料中的碳多数和氢结合成低分子的碳氢化合物,遇一定的温度后热分解而折出挥发物。
所以,生物质燃料易被引燃,燃烧初期,析出量较大,在空气和温度不足的情况下易产生镶黑边的火焰。
在使用生物质为燃料的设备设计中必须注意到这一点。
3)含氧量多。
从表2所列数字看出,生物质燃料含氧量明显地多于煤炭,它使得生物质燃料热值低,但易于引燃。
在燃烧时可相对地减少供给空气量。
4)密度小。
生物质燃料的密度明显地较煤炭低(见表2),质地比较疏松,特别是农作物秸杆和粪类。
这样使得这类燃料易于燃烧和燃尽,灰烬中残留的碳量较燃用煤炭者少。
5)含硫量低。
生物质燃料含硫量大多少于0.20%,燃烧时不必设置气体脱硫装置降低了成本,又有利于环境的保护。
2生物质燃料的燃烧过程生物质燃料的燃烧过程是强烈的化学反应过程,又是燃料和空气间的传热、传质过程。
燃烧除去燃料存在外,必须有足够温度的热量供给和适当的空气供应。
图1为燃料燃烧过程的图示。
它可分作:预热、干燥(水分蒸发)、挥发分析出和焦碳(固定碳)燃烧等过程。
燃料送入燃烧室后,在高温热量(由前期燃烧形成)作用下,燃料被加热和析出水分。
随后,然料由于温度的继续增高,约250℃左右,热分解开始,析出挥发分,并形成焦碳。
气态的挥发分和周围高温空气掺混首先被引燃而燃烧。
一般情况下,焦碳被挥发分包围着,燃烧室中氧气不易渗透到焦碳表面,只有当挥发分的燃烧快要终了时,焦碳及其周围温度已很高,空气中的氧气也有可能接触到焦碳表面,焦碳开始燃烧,并不断产生灰烬。
英文回答:The direct combustion process of biomass involves several key steps. Firstly, the biomass material is prepared and loaded into the combustion chamber. This material can range from various forms of biomass particles, pellets, or even larger pieces like logs or branches. Secondly, the material is ignited using a suitable ignition source, such as a starter flame or a hot air blower. As the material begins to burn, the water content within the biomass evaporates, releasing water vapor. The combustion process continues, with the release of gases and energy. The gases produced are released through the chimney or flue, while the energy is harnessed for various applications, such as heating or power generation. Finally, the remaining ash and residue from the combustion process are removed for disposal.中文回答:生物质直接燃烧流程主要包括以下几个步骤:首先,准备生物质材料并将其加载到燃烧室中。
生物质能转化的技术路线分析生物质能作为一种可再生能源,具有巨大的潜力和广阔的应用前景。
生物质能转化技术的发展对于实现能源可持续发展、减少对传统化石能源的依赖以及降低温室气体排放具有重要意义。
本文将对生物质能转化的主要技术路线进行详细分析。
一、生物质直接燃烧技术生物质直接燃烧是最古老也是最常见的利用方式。
通过将生物质直接投入燃烧设备,如锅炉、炉灶等,产生热能用于供暖、发电或工业生产。
这种技术简单直接,但效率相对较低,且燃烧过程中可能会产生一定的污染物。
为了提高燃烧效率和减少污染,通常需要对生物质进行预处理,如干燥、粉碎等,并采用先进的燃烧控制技术和尾气处理设备。
二、生物质气化技术生物质气化是将生物质在缺氧或有限氧气的条件下加热,转化为可燃气体的过程。
产生的气体主要成分包括一氧化碳、氢气、甲烷等,称为生物质气。
生物质气可以用于发电、供热、生产化学品等。
生物质气化技术具有较高的能源转化效率,且产生的气体相对清洁。
然而,该技术对原料的要求较高,需要保证生物质的干燥度和均匀性,同时气化设备的投资和运行成本也较高。
三、生物质热解技术生物质热解是在无氧或低氧环境下,将生物质加热到一定温度,使其分解为生物油、生物炭和可燃性气体的过程。
生物油可以进一步提炼为燃料油或化学品,生物炭可以用于土壤改良和碳封存,可燃性气体可用于能源利用。
生物质热解技术的优点是可以实现生物质的多联产利用,但目前仍存在一些技术难题,如生物油的稳定性差、热解过程中的结焦等问题。
四、生物质发酵技术生物质发酵主要包括乙醇发酵和沼气发酵。
乙醇发酵通常以富含淀粉或糖类的生物质为原料,如玉米、甘蔗等,通过微生物发酵生产乙醇。
乙醇可以作为燃料与汽油混合使用,或直接用于燃料电池。
然而,乙醇发酵面临着原料供应紧张、生产成本较高等挑战。
沼气发酵则是利用有机废弃物,如畜禽粪便、农作物秸秆等,在厌氧条件下通过微生物发酵产生沼气。
沼气主要成分是甲烷和二氧化碳,可用于发电、供热和炊事等。
生物质直接燃烧发电技术生物质直接燃烧发电技术是一种利用生物质能源进行发电的方法。
生物质能源是指通过植物、动物的有机物质转化而来的能源,如农作物秸秆、木材、废弃物等。
生物质直接燃烧发电技术既可以有效利用可再生资源,又可以减少对化石能源的依赖,具有环保和可持续发展的优势。
生物质直接燃烧发电技术的原理是将生物质燃烧产生的热能转化为电能。
首先,将生物质物料送入生物质锅炉,通过燃烧产生高温高压的蒸汽。
然后,将蒸汽驱动汽轮机旋转,使发电机发电。
最后,通过变压器将发电机产生的电能升压输送到电网中,供人们使用。
生物质直接燃烧发电技术具有以下优势。
首先,生物质直接燃烧发电过程中产生的二氧化碳排放量与生物质生长过程中吸收的二氧化碳量相当,是一种几乎零排放的能源。
其次,生物质资源丰富,可再生性强,不会造成能源短缺问题。
再次,生物质直接燃烧发电技术可以有效处理农作物秸秆、木材、废弃物等有机废弃物,减少环境污染。
此外,生物质直接燃烧发电技术可以实现分散供热和供电,提高能源利用效率。
然而,生物质直接燃烧发电技术也存在一些挑战和问题。
首先,生物质物料的供应和运输存在一定的成本和技术难题,需要建立完善的生物质供应链和运输系统。
其次,生物质直接燃烧过程中会产生大量的灰渣和烟尘,需要采取合适的控制措施减少对环境的影响。
再次,生物质直接燃烧发电技术的设备投资较大,需要解决经济成本和技术可行性的问题。
为了推广和应用生物质直接燃烧发电技术,需要采取一系列的措施。
首先,政府应该加大对生物质能源的支持力度,提供财政和政策上的扶持,鼓励企业和个人投资生物质直接燃烧发电项目。
其次,需要加强相关技术的研发和创新,提高生物质直接燃烧发电技术的效率和可靠性。
再次,应该建立健全的法律法规和标准体系,规范生物质直接燃烧发电的生产和运营行为,保障环境和公共安全。
此外,还需要加强宣传和推广,提高公众对生物质直接燃烧发电技术的认知和接受度。
生物质直接燃烧发电技术是一种利用生物质能源进行发电的环保和可持续发展的方法。
生物质直接燃烧技术的发展研究摘要:随着能源危机和环境问题的日益严重,人们不断致力于开发研究低污染、可再生的新能源。
在众多的可再生能源中,生物质能是一种储量丰富、清洁方便的绿色可再生能源,具有极大的开发潜力。
为了大力开发利用生物质资源,分析比较了国内外生物质直接燃烧技术发展现状,提出应根据生物质燃料的燃烧特性,开发相应的燃烧技术和燃烧设备,以实现生物质资源的大规模集中高效利用。
关键词:生物质;燃烧;锅炉众所周知,人类的生存和发展离不开能源。
随着世界能源需求量的迅猛增长,以煤、石油、天然气为代表的常规能源将最终被开采殆尽,同时大量使用这些化石燃料会导致一系列严重的环境污染问题。
因此,大力提高能源的利用效率,以高新技术开发低污染、可再生的新能源,逐步取代石油、煤、天然气等不可再生能源,是解决能源危机和环境问题的重要途径。
在众多的可再生能源中,生物质能以其资源储量丰富、清洁方便和可再生的特点,具有极大的开发潜力。
生物质能是指绿色植物通过叶绿素将太阳能转化为化学能而储存在生物质内部的能量,其主要来源是:农林废弃物、工业废水和废渣、城市生活垃圾以及人畜粪便等。
目前,生物质的开发利用技术主要包括生物质的固化、气化、液化,以及生物质直接燃烧。
国外许多国家都相继制定了各自的生物质能源研究开发计划,如美国的能源农场、日本的阳光计划、巴西的酒精能源计划以及印度的绿色能源工程等。
就我国的基本国情和生物质利用开发水平而言,生物质直接燃烧技术无疑是最简便可行的高效利用生物质资源的方式之一。
1生物质燃料的燃烧特性研究生物质燃料的组成成分,掌握其燃烧特性,有利于进一步科学、合理地开发利用生物质能。
从对生物质燃料特性的研究中可以发现,生物质燃料与化石燃料相比存在明显的差异,如表1所示。
由于生物质燃料特性与化石燃料不同,从而导致了生物质燃料在燃烧过程中的燃烧机理、反应速度以及燃烧产物的成分与化石燃料相比也都存在较大差别,表现出不同于化石燃料的燃烧特性。