高中数学-函数单调性(苏教版)
- 格式:ppt
- 大小:681.50 KB
- 文档页数:26
《函数的单调性》说课稿各位评委老师,上午好,我是号考生叶新颖。
今天我的说课题目是函数的单调性。
首先我们来进行教材分析。
一、教材分析本课是苏教版新课标普通高中数学必修一第二章第1节《函数的简单性质》的内容,该节中内容包括:函数的单调性、函数的最值、函数的奇偶性。
函数的单调性是函数众多性质中的重要性质之一,函数的单调性一节中的知识是今后研究具体函数的单调性理论基础;在解决函数值域、定义域、不等式、比较两数大小等具体问题中均有着广泛的应用;在历年的高考中对函数的单调性考查每年都有涉及;同时在这一节中利用函数图象来研究函数性质的数形结合思想将贯穿于我们整个高中数学教学。
利用函数的单调性的定义证明具体函数的单调性一个难点,也是对函数单调性概念的深层理解,且在“作差、变形、定号”过程学生不易掌握。
学生刚刚接触这种证明方法,给出一定的步骤是必要的,有利于学生理解概念,也可以对学生掌握证明方法、形成证明思路有所帮助。
另外,这也是以后要学习的不等式证明的比较法的基本思路,现在提出来对今后的教学也有了一定的铺垫。
二、教学目标:根据新课标的要求,以及对教材结构与内容分析,考虑到学生已有的认知结构及心理特征,制定如下教学目标:1、知识目标:(1)使学生理解函数单调性的概念,能判断并证明一些简单函数在给定区间上的单调性。
(2)通过函数单调性的教学,逐步培养学生观察、分析、概括与合作能力;2、能力目标:(1)通过本节课的学习,通过“数与形”之间的转换,渗透数形结合的数学思想。
(2)通过探究活动,明白考虑问题要细致、缜密,说理要严密、明确。
3、情感目标:在平等的教学氛围中,通过学生之间、师生之间的交流、合作与评价,拉近学生之间、师生之间的情感距离,培养学生对数学的兴趣。
三、教学重点、难点1、重点:函数单调性的概念:为了突出重点,使学生理解该概念,整个过程分为:每个步骤都是在教师的参与下与引导下,通过学生与学生之间,师生之间的合作交流,不断反省,探索,直到完善结论,最终达到一个严密,简洁的定义。
函数的单调性(一)教学目标:使学生理解增函数、减函数的概念,掌握判断某些函数增减性的方法,培养学生利用数学概念进行判断推理的能力和数形结合,辩证思维的能力;通过本节课的教学,启示学生养成细心观察,认真分析,严谨论证的良好思维习惯.教学重点:函数单调性的概念教学难点:函数单调性的判断和证明.教学过程:Ⅰ.复习回顾[师]前面我们学习了函数的概念、表示方法以及区间的概念,讨论了函数的定义域、值域的求法.今天我们再进一步来研究一下函数的性质(板书课题).Ⅱ.讲授新课[师]在初中我们已经学习了函数图象的画法,为了研究函数的性质,按照取值、列表、描点、作图等步骤分别画出y=x2和y=x3的图象如图.我们先着重来观察一下y=x2的图象,图象在y轴右侧的部分是上升的,也就是说在y 轴右侧越往右,图象上的点越高,这说明什么问题呢?[生]随着x的增加,y的值在增加[师]怎样用数学语言来表示呢?[生]设x1、x2∈[0,+∞)得y1=f(x1),y2=f(x2)当x1<x2时,f(x1)<f(x2)(学生经过预习可能答得很准确,但为什么也许还囫囵吞枣;或许答得不一定完整,或许怎样用数学语言来表示还感到困惑,教师应抓住时机予以启发)[师]好,××同学的回答很好,设x1、x2∈[0,+∞),体现了在y轴右侧,按照函数关系式得到了y1=f(x1),y2=f(x2),即有了两个点(x1,y1)、(x2,y2)而当x1<x2时,f(x1)<f(x2),则体现了越往右图象上的点越高,即体现了图象是上升的,这时我们说y =x2在[0,+∞)上是增函数.下面大家来看图象在y轴左侧的部分情形是怎样的?[生甲]图象在y轴的左侧也是上升的(或许生甲是别出心裁).[师]何以见得?[生甲]越往左,图象上的点越高.[师]生甲所谈对不对呢?[生]对(部分同学这样说,还有部分同学不吭气,感到和预习时的情况不一样,但又不清楚究竟该怎样,有无所适从之感).[师]生甲同学所述是完全有道理的!不过请同学们注意:他观察的视线是从右向左看的,为了与在y轴右侧部分观察的视线方向一致.我们对y轴的左侧部分也从左向右看,图象的情形是怎样的呢?[生甲]从左向右看,图象是下降的,也就是在y轴的左侧,越往右,图象上的点越低.[师]我们研究任何问题都要遵循一定的程序,都要在一定的条件下,否则将一塌糊涂,搞不出任何名堂.(或者在研究y轴右侧部分、研究y轴左侧部分图象的变化趋势时,就直载了当地指出随着x的增加,图象的变化趋势是怎样的,这样给学生指定观察方向,会减少不应有的麻烦)那么同学们考虑一下,在y 轴的左侧,越往右,图象上的点越低,说明什么问题呢?怎样用数学语言表示呢?[生]在y 轴右侧,越往右图象上的点越低,说明随着x 的增加,y 的值在减小,用数学语言表示是:设x 1、x 2∈(-∞,0)得y 1=f (x 1),y 2=f (x 2)当x 1<x 2时,f (x 1)>f (x 2)[师]好,这时我们说y =x 2在(-∞,0)上是减函数.一般地,设函数f (x )的定义域为Ⅰ:如果对于属于Ⅰ内某个区间上的任意两个自变量的值x 1、x 2当x 1<x 2时,都有f (x 1)<f (x 2),那么就说f (x )在这个区间上是增函数.(打出幻灯片§2.3.1 C)如果对于属于Ⅰ内某个区间上的任意两个自变量的值x 1、x 2,当x 1<x 2时,都有f (x 1)>f (x 2),那么就说f (x )在这个区间上是减函数.如果函数y =f (x )在某个区间是增函数或减函数,那么就说函数y =f (x )在这一区间具有严格的单调性,这一区间叫做y =f (x )的单调区间,在单调区间上,增函数的图象是上升的,减函数的图象是下降的.注意:①函数的单调性也叫函数的增减性.②函数的单调性是对某个区间而言的,它是一个局部概念.③判定函数在某个区间上的单调性的方法步骤:a .设x 1、x 2∈给定区间,且x 1<x 2b .计算f (x 1)-f (x 2)至最简b .判断上述差的符号d .下结论(若差<0,则为增函数;若差>0,则为减函数)Ⅲ.例题分析[例1](课本P 34例1,与学生一块看,一起分析作答)[师]要了解函数在某一区间上是否具有单调性,从图象上进行观察是一种常用而又粗略的方法,严格地说,它需要根据单调函数的定义进行证明.下面举例说明[例2]证明函数f (x )=3x +2在R 上是增函数.证明:设任意x 1、x 2∈R ,且x 1<x 2则f (x 1)-f (x 2)=(3x 1+2)-(3x 2+2)=3(x 1-x 2)由x 1<x 2得x 1-x 2<0∴f (x 1)-f (x 2)<0 即f (x 1)<f (x 2)∴f (x )=3x +2在R 上是增函数[例3]证明函数f (x )=1x在(0,+∞)上是减函数. 证明:设任意x 1、x 2∈(0,+∞)且x 1<x 2则f (x 1)-f (x 2)=1x 1 -1x 2 =x 2-x 1x 1 x 2由x 1,x 2∈(0,+∞)得x 1x 2>0又x 1<x 2 得x 2-x 1>0∴f (x 1)-f (x 2)>0 即f (x 1)>f (x 2)∴f (x )=1x在(0,+∞)上是减函数 注意:通过观察图象、对函数是否具有某种性质作出一种猜想,然后通过推理的办法.证明这种猜想的正确性,是发现和解决问题的一种常用数学方法.Ⅳ.课堂练习课本P 37练习1,2,5,6,7Ⅴ.课时小结本节课我们学习了函数单调性的知识,同学们要切记:单调性是对某个区间而言的,同时在理解定义的基础上,要掌握证明函数单调性的方法步骤,正确进行判断和证明. Ⅵ.课后作业课本P 43习题 1~4函数的单调性(二)教学目标:使学生理解增函数、减函数的概念,掌握判断某些函数增减性的方法,培养学生利用数学概念进行判断推理的能力和数形结合,辩证思维的能力;通过本节课的教学,启示学生养成细心观察,认真分析,严谨论证的良好思维习惯.教学重点:函数单调性的判断和证明.教学难点:函数单调性的判断和证明.教学过程:[例1]已知函数f (x )在其定义域M 内为减函数,且f (x )>0,则g (x )=1+2f (x )在M 内为增函数。
第二讲 函数的单调性一.课标要求1.结合具体函数,了解单调性的含义;三.要点精讲2.单调性(1)定义:一般地,设函数y =f (x )的定义域为I , 如果对于定义域I 内的某个区间D 内的任意两个自变量x 1,x 2,当x 1<x 2时,都有f (x 1)<f (x 2)(f (x 1)>f (x 2)),那么就说f (x )在区间D 上是增函数(减函数);注意:○1 函数的单调性是在定义域内的某个区间上的性质,是函数的局部性质; ○2 必须是对于区间D 内的任意两个自变量x 1,x 2;当x 1<x 2时,总有f (x 1)<f (x 2) (2)如果函数y =f (x )在某个区间上是增函数或是减函数,那么就说函数y =f (x )在这一区间具有(严格的)单调性,区间D 叫做y =f (x )的单调区间。
(3)设复合函数y = f [g(x )],其中u =g(x ) , A 是y = f [g(x )]定义域的某个区间,B 是映射g : x →u =g(x ) 的象集:①若u =g(x ) 在 A 上是增(或减)函数,y = f (u )在B 上也是增(或减)函数,则函数y = f [g(x )]在A 上是增函数;②若u =g(x )在A 上是增(或减)函数,而y = f (u )在B 上是减(或增)函数,则函数y = f [g(x )]在A 上是减函数。
(4)判断函数单调性的方法步骤利用定义证明函数f (x )在给定的区间D 上的单调性的一般步骤:○1 任取x 1,x 2∈D ,且x 1<x 2; ○2 作差f (x 1)-f (x 2); ○3 变形(通常是因式分解和配方); ○4 定号(即判断差f (x 1)-f (x 2)的正负);○5 下结论(即指出函数f (x )在给定的区间D 上的单调性)。
(5)简单性质①奇函数在其对称区间上的单调性相同; ②偶函数在其对称区间上的单调性相反; ③在公共定义域内:增函数+)(x f 增函数)(x g 是增函数; 减函数+)(x f 减函数)(x g 是减函数; 增函数-)(x f 减函数)(x g 是增函数; 减函数-)(x f 增函数)(x g 是减函数。
高中数学《函数的单调性》说课稿尊敬的各位考官大家好,我是今天的X号考生,今天我说课的题目是《函数的单调性》。
新课标指出:数学课程要面向全体学生,适应学生个性发展的需要,使得人人都能获得良好的数学教育,不同的人在数学上都能得到不同的发展。
今天我将贯彻这一理念从教材分析、学情分析、教学过程等几个方面展开我的说课。
一、说教材本节课选自苏教版高中数学必修一2.2.1的内容,主要讲解的内容是函数的单调性。
学生在初中阶段,通过一次函数、二次函数、反比例函数的学习已经对函数的增减性有了初步的感性认识。
在高中阶段,用符号语言刻画图形语言,用定量分析解释定性结果,有利于培养学生的理性思维,为后续函数的学习作准备,也为利用导数研究单调性的相关知识奠定了基础。
二、说学情接下来谈谈学生的实际情况。
新课标指出学生是教学的主体,所以要成为符合新课标要求的教师,深入了解所面对的学生可以说是必修课。
本阶段的学生已经具备了一定的抽象逻辑思维能力,能在教师的引导下独立地解决问题。
因此教师在教学过程中要给学生留置充分的思考时间和空间。
此外教师要注重在学生的已有认知基础上,建构知识。
三、说教学目标根据以上对教材的分析以及对学情的把握,我制定了如下三维教学目标:(一)知识与技能理解函数的单调性和单调函数的意义,会判断和证明简单函数的单调性。
(二)过程与方法在探究学习的过程中,体会感悟数形结合、分类讨论的数学思想。
(三)情感、态度与价值观激发探求数学知识的欲望,凸显主观能动性,提高学习兴趣。
四、说教学重难点我认为一节好的数学课,从教学内容上说一定要突出重点、突破难点。
而教学重点的确立与我本节课的内容肯定是密不可分的。
那么根据授课内容可以确定本节课的教学重点是:函数单调性的概念,判断和证明简单函数的单调性。
教学难点是:函数单调性概念(数学符号语言)的认知,应用定义证明单调性的代数推理论证。
五、说教法和学法现代教学理论认为,在教学过程中,学生是学习的主体,教师是学习的组织者、引导者,教学的一切活动都必须以强调学生的主动性、积极性为出发点。