第3章物体系统的平衡问题
- 格式:pptx
- 大小:1.25 MB
- 文档页数:47
第三章平衡问题:矢量方法习题解答3-1讨论图示各平衡问题是静定的还是静不定的,若是静不定的试确定其静不定的次数。
题3.1图解:(1)以AB杆为对象,A为固定端约束,约束力有3个。
如果DC杆是二力杆,则铰C处有1个约束力,这4个力组成平面一般力系,独立平衡方程有3个,所以是1次静不定;如果DC杆不是二力杆,则铰C和D处各有2个约束力,系统共有7个约束力,AB 杆和DC杆上的约束力各组成平面一般力系,独立平衡方程共有6个,所以,是1次静不定。
(2)AD梁上,固定铰链A处有2个约束力,辊轴铰链B、C和D各有1个约束力,共有5个约束力,这5个约束力组成平面一般力系,可以列出3个独立的平衡方程。
所以,AD梁是2次静不定。
(3)曲梁AB两端都是固定端约束,各有3个共6个约束力组成平面一般力系,而独立的平衡方程只有3个。
所以是3次静不定。
(4)刚架在A、B和C处都是固定端约束,各有3个共9个约束力组成平面一般力系,而独立的平衡方程只有3个。
所以是6次静不定。
(5)平面桁架在A处为固定铰链,B处为辊轴铰链,共有3约束力组成平面一般力系,而独立的平衡方程也有3个,因此,该平面桁架的外力是静定的。
平面桁架由21根杆组成,所以有21个未知轴力,加上3个支座反力,共有24个未知量。
21根杆由10个铰链连接,每个铰链受到平面汇交力系作用。
若以铰链为研究对象,可以列出2×10=20个平衡方程。
所以,此平面桁架的内力是24-20=4次静不定。
(6)整体在A处为固定铰链,B处为辊轴铰链,共有3约束力组成平面一般力系,而独立的平衡方程也有3个,因此,该系统的外力是静定的。
除了3个约束外力外,3根杆的轴力也是未知的,共有6个未知量。
AB梁可以列出3个平衡方程,连接3根杆的铰链可以列出2个平衡方程,共有5个方程,所以,该系统的内力是1次静不定。
3-2炼钢炉的送料机由跑车A与可移动的桥B组成,如图示。
跑车可沿桥上的轨道运动,两轮间距离为2米,跑车与操作架、手臂OC以及料斗相连,料斗每次装载物料重W=15kN,平臂长OC=5m。
共点力平衡问题归纳一 知识要点:1、平衡状态:静止或匀速直线运动,“缓慢”意味着每个过程可以看作平衡状态。
2、规律:0=合F 。
3、推论:①两个力处于平衡状态则这两个力等大反向。
②三个力处于平衡状态则其中任意两个力的合力与第三个力等大反向。
③N 个力处于平衡状态则其中任意一个力与剩余)(1-N 个力的合力等大反向。
4、解法:①力的合成法②力的正交分解法③正弦定理(拉米定理)法④相似三角形法⑤矢量三角形图解法二 三力静态平衡题型分类1、三个力中,有两个力互相垂直,第三个力角度(方向)已知。
方法:力的合成与分解。
【例题】如图所示,光滑半球形容器固定在水平面上,O 为球心,一质量为m 的小滑块,在水平力F 的作用下静止P 点。
设滑块所受支持力为N F 。
OF 与水平方向的夹角为θ。
下列关系正确的是A .θtan mg F =B .θtan mg F =C . θtan mg F N =D .θtan mg F N =2、三个力互相不垂直,但夹角(方向)已知 方法:正交分解法或正弦定理【例题】如图所示,一个半球形的碗放在桌面上,碗口水平,O 点为其球心,碗的内表面及碗口是光滑的.一根细线跨在碗口上,线的两端分别系有质量为m 1和m 2的小球.当它们处于平衡状态时,质量为m 1的小球与O 点的连线与水平线的夹角为α=60°两小球的质量比为2m :1m 为( )A .33B .32C .23D .223、三个力互相不垂直,且夹角(方向)未知但存在几何边长的变化关系。
方法:相似三角形法【例题】如图所示,表面光滑为R 的半球固定在水平地面上,球心O 的正上方O ˊ处有一个无摩擦定滑轮,轻质细绳两端各系一个小球挂在定滑轮上,两小球平衡时,若滑轮两侧细绳的长度分别为R l 4.22=,R l 5.21=.则这两个小球的质量之比1m ∶2m 为(不计小球大小)A .24∶1B .25∶1C .24∶25D .25∶24三 三力动态平衡题型分类题型一 特点: 1、三个力中,有一个力为恒力(大小方向均不变)2、另一个力方向不变,大小可变,3、第三个力大小方向均可变,方法:矢量三角形法分析第三个力的方向变化引起的物体受力的动态变化情况。
第2课时多力平衡问题轻绳、轻杆模型[学习目标] 1.熟练运用合成法、效果分解法、正交分解法处理平衡问题(重点)。
2.知道轻绳、轻杆上弹力的区别,并能分析简单的平衡问题(重难点)。
一、多力平衡问题1.当物体受到不在同一条直线上的多个共点力时,一般要采用正交分解法。
2.用正交分解法解决平衡问题的一般步骤:(1)明确研究对象,对物体受力分析。
(2)建立坐标系:使尽可能多的力落在x、y轴上,这样需要分解的力比较少,计算方便。
(3)根据共点力平衡的条件列方程:F x=0,F y=0。
例1小王同学在家卫生大扫除时用拖把拖地,依靠拖把对地面的摩擦力来清扫污渍。
如图所示,他沿推杆方向对拖把施加40 N的推力,且推杆与水平方向的夹角θ=37°时,刚好可以匀速推动拖把。
已知拖把质量为1 kg,g取10 m/s2,sin 37°=0.6,cos 37°=0.8,求:(1)拖地时地面对拖把的支持力;(2)拖把与地面间的动摩擦因数μ。
________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________例2如图所示,物体的质量m=4.4 kg,用与竖直方向成θ=37°的斜向右上方的推力把该物体压在竖直墙壁上,并使它沿墙壁在竖直方向做匀速直线运动。
高中物理平衡问题教案
学科:物理
年级:高中
课题:平衡问题
时间:80分钟
教学目标:
1.了解平衡的概念和条件
2.掌握平衡问题的解题方法
3.应用平衡原理解决实际问题
教学重点:
1.平衡的概念和条件
2.平衡问题的解题方法
教学难点:
1.应用平衡原理解决实际问题
教学准备:
1.教案、课件
2.平衡问题的练习题
3.实验器材:不同重量的物体、吊钩、弹簧测力计等
教学过程:
一、导入(5分钟)
介绍平衡的概念,引导学生思考平衡问题在生活中的应用。
二、讲解(20分钟)
1.讲解平衡的条件:合力为零,合力矩为零
2.介绍平衡问题的解题方法:分解力,建立坐标系等
三、实验操作(20分钟)
1.教师展示实验:使用吊钩和弹簧测力计测量物体的重量
2.学生分组进行实验操作:测量不同重量的物体的重量并记录数据
四、练习(20分钟)
1.布置平衡问题的练习题,让学生尝试解答
2.学生互相讨论和解答问题,教师在一旁指导和解释
五、总结(10分钟)
1.回顾本节课的内容,强化学生对平衡问题的掌握
2.展示一些实际问题让学生应用平衡原理解决
六、作业(5分钟)
布置作业:完成平衡问题的习题,加深对本节课内容的理解和掌握。
教学反思:
通过本节课的教学,学生应该对平衡问题有了更深入的认识,掌握了解决平衡问题的方法。
同时,也希望学生能够应用所学知识解决实际问题,加深对物理学概念的理解。