第3章物体系统的平衡问题
- 格式:pptx
- 大小:1.25 MB
- 文档页数:47
第三章平衡问题:矢量方法习题解答3-1讨论图示各平衡问题是静定的还是静不定的,若是静不定的试确定其静不定的次数。
题3.1图解:(1)以AB杆为对象,A为固定端约束,约束力有3个。
如果DC杆是二力杆,则铰C处有1个约束力,这4个力组成平面一般力系,独立平衡方程有3个,所以是1次静不定;如果DC杆不是二力杆,则铰C和D处各有2个约束力,系统共有7个约束力,AB 杆和DC杆上的约束力各组成平面一般力系,独立平衡方程共有6个,所以,是1次静不定。
(2)AD梁上,固定铰链A处有2个约束力,辊轴铰链B、C和D各有1个约束力,共有5个约束力,这5个约束力组成平面一般力系,可以列出3个独立的平衡方程。
所以,AD梁是2次静不定。
(3)曲梁AB两端都是固定端约束,各有3个共6个约束力组成平面一般力系,而独立的平衡方程只有3个。
所以是3次静不定。
(4)刚架在A、B和C处都是固定端约束,各有3个共9个约束力组成平面一般力系,而独立的平衡方程只有3个。
所以是6次静不定。
(5)平面桁架在A处为固定铰链,B处为辊轴铰链,共有3约束力组成平面一般力系,而独立的平衡方程也有3个,因此,该平面桁架的外力是静定的。
平面桁架由21根杆组成,所以有21个未知轴力,加上3个支座反力,共有24个未知量。
21根杆由10个铰链连接,每个铰链受到平面汇交力系作用。
若以铰链为研究对象,可以列出2×10=20个平衡方程。
所以,此平面桁架的内力是24-20=4次静不定。
(6)整体在A处为固定铰链,B处为辊轴铰链,共有3约束力组成平面一般力系,而独立的平衡方程也有3个,因此,该系统的外力是静定的。
除了3个约束外力外,3根杆的轴力也是未知的,共有6个未知量。
AB梁可以列出3个平衡方程,连接3根杆的铰链可以列出2个平衡方程,共有5个方程,所以,该系统的内力是1次静不定。
3-2炼钢炉的送料机由跑车A与可移动的桥B组成,如图示。
跑车可沿桥上的轨道运动,两轮间距离为2米,跑车与操作架、手臂OC以及料斗相连,料斗每次装载物料重W=15kN,平臂长OC=5m。
共点力平衡问题归纳一 知识要点:1、平衡状态:静止或匀速直线运动,“缓慢”意味着每个过程可以看作平衡状态。
2、规律:0=合F 。
3、推论:①两个力处于平衡状态则这两个力等大反向。
②三个力处于平衡状态则其中任意两个力的合力与第三个力等大反向。
③N 个力处于平衡状态则其中任意一个力与剩余)(1-N 个力的合力等大反向。
4、解法:①力的合成法②力的正交分解法③正弦定理(拉米定理)法④相似三角形法⑤矢量三角形图解法二 三力静态平衡题型分类1、三个力中,有两个力互相垂直,第三个力角度(方向)已知。
方法:力的合成与分解。
【例题】如图所示,光滑半球形容器固定在水平面上,O 为球心,一质量为m 的小滑块,在水平力F 的作用下静止P 点。
设滑块所受支持力为N F 。
OF 与水平方向的夹角为θ。
下列关系正确的是A .θtan mg F =B .θtan mg F =C . θtan mg F N =D .θtan mg F N =2、三个力互相不垂直,但夹角(方向)已知 方法:正交分解法或正弦定理【例题】如图所示,一个半球形的碗放在桌面上,碗口水平,O 点为其球心,碗的内表面及碗口是光滑的.一根细线跨在碗口上,线的两端分别系有质量为m 1和m 2的小球.当它们处于平衡状态时,质量为m 1的小球与O 点的连线与水平线的夹角为α=60°两小球的质量比为2m :1m 为( )A .33B .32C .23D .223、三个力互相不垂直,且夹角(方向)未知但存在几何边长的变化关系。
方法:相似三角形法【例题】如图所示,表面光滑为R 的半球固定在水平地面上,球心O 的正上方O ˊ处有一个无摩擦定滑轮,轻质细绳两端各系一个小球挂在定滑轮上,两小球平衡时,若滑轮两侧细绳的长度分别为R l 4.22=,R l 5.21=.则这两个小球的质量之比1m ∶2m 为(不计小球大小)A .24∶1B .25∶1C .24∶25D .25∶24三 三力动态平衡题型分类题型一 特点: 1、三个力中,有一个力为恒力(大小方向均不变)2、另一个力方向不变,大小可变,3、第三个力大小方向均可变,方法:矢量三角形法分析第三个力的方向变化引起的物体受力的动态变化情况。
第2课时多力平衡问题轻绳、轻杆模型[学习目标] 1.熟练运用合成法、效果分解法、正交分解法处理平衡问题(重点)。
2.知道轻绳、轻杆上弹力的区别,并能分析简单的平衡问题(重难点)。
一、多力平衡问题1.当物体受到不在同一条直线上的多个共点力时,一般要采用正交分解法。
2.用正交分解法解决平衡问题的一般步骤:(1)明确研究对象,对物体受力分析。
(2)建立坐标系:使尽可能多的力落在x、y轴上,这样需要分解的力比较少,计算方便。
(3)根据共点力平衡的条件列方程:F x=0,F y=0。
例1小王同学在家卫生大扫除时用拖把拖地,依靠拖把对地面的摩擦力来清扫污渍。
如图所示,他沿推杆方向对拖把施加40 N的推力,且推杆与水平方向的夹角θ=37°时,刚好可以匀速推动拖把。
已知拖把质量为1 kg,g取10 m/s2,sin 37°=0.6,cos 37°=0.8,求:(1)拖地时地面对拖把的支持力;(2)拖把与地面间的动摩擦因数μ。
________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________例2如图所示,物体的质量m=4.4 kg,用与竖直方向成θ=37°的斜向右上方的推力把该物体压在竖直墙壁上,并使它沿墙壁在竖直方向做匀速直线运动。
高中物理平衡问题教案
学科:物理
年级:高中
课题:平衡问题
时间:80分钟
教学目标:
1.了解平衡的概念和条件
2.掌握平衡问题的解题方法
3.应用平衡原理解决实际问题
教学重点:
1.平衡的概念和条件
2.平衡问题的解题方法
教学难点:
1.应用平衡原理解决实际问题
教学准备:
1.教案、课件
2.平衡问题的练习题
3.实验器材:不同重量的物体、吊钩、弹簧测力计等
教学过程:
一、导入(5分钟)
介绍平衡的概念,引导学生思考平衡问题在生活中的应用。
二、讲解(20分钟)
1.讲解平衡的条件:合力为零,合力矩为零
2.介绍平衡问题的解题方法:分解力,建立坐标系等
三、实验操作(20分钟)
1.教师展示实验:使用吊钩和弹簧测力计测量物体的重量
2.学生分组进行实验操作:测量不同重量的物体的重量并记录数据
四、练习(20分钟)
1.布置平衡问题的练习题,让学生尝试解答
2.学生互相讨论和解答问题,教师在一旁指导和解释
五、总结(10分钟)
1.回顾本节课的内容,强化学生对平衡问题的掌握
2.展示一些实际问题让学生应用平衡原理解决
六、作业(5分钟)
布置作业:完成平衡问题的习题,加深对本节课内容的理解和掌握。
教学反思:
通过本节课的教学,学生应该对平衡问题有了更深入的认识,掌握了解决平衡问题的方法。
同时,也希望学生能够应用所学知识解决实际问题,加深对物理学概念的理解。
专题强化整体法和隔离法在受力分析及平衡中的应用[学习目标] 1.知道整体法和隔离法,能灵活运用整体法和隔离法处理问题。
2.能够用整体法和隔离法处理共点力作用下多个物体的平衡问题(重难点)。
一、整体法和隔离法在受力分析中的应用1.整体法就是把几个物体视为一个整体,受力分析时,只分析这一整体之外的物体对整体的作用力(外力),不考虑整体内部物体之间的相互作用力(内力)。
2.隔离法就是把要分析的物体从相关的物体系统中隔离出来,只分析该物体以外的物体对该物体的作用力,不考虑该物体对其他物体的作用力。
3.(1)当只涉及系统而不涉及系统内部某些物体的力和运动时,一般可采用整体法。
(2)为了弄清系统内某个物体的受力和运动情况,一般可采用隔离法。
(3)对于连接体问题,多数情况既要分析外力,又要分析内力,这时我们可以采取先整体(解决外力)后隔离(解决内力)的交叉运用方法,当然个别情况也可采用先隔离(由已知内力解决未知外力)再整体相反的运用顺序。
例1如图所示,直角三棱柱A放在水平地面上,光滑球B放在三棱柱和竖直墙壁之间,A 和B都处于静止状态。
(1)试分别画出A、B及A、B作为一个整体的受力示意图;(2)求A对地面的压力的大小与A、B重力大小之间的关系。
答案见解析解析(1)隔离A为研究对象,它受到重力G A、B对它的压力F BA、地面支持力和地面对它的摩擦力,如图甲所示。
隔离B为研究对象,它受到重力G B、三棱柱对它的支持力F AB、墙壁对它的弹力F N1,如图乙所示。
以A、B整体作为研究对象,整体受到重力G A+G B、墙壁对其弹力F N1、地面支持力和地面对其摩擦力,如图丙所示。
(2)以A、B整体为研究对象,F N=G A+G B由牛顿第三定律,A对地面的压力F N′等于F N,则F N′=G A+G B故A对地面的压力的大小等于A、B重力大小之和。
例2(2023·濮阳一高高一期中)如图所示,物块A、B处于静止状态,已知竖直墙壁粗糙,水平地面光滑,则物块A和B的受力个数分别为()A.3和3 B.3和4C.4和4 D.4和5答案 B解析由整体分析可知,A、B整体受到地面向上的支持力、重力,墙壁对A、B无弹力;分别隔离A、B分析:A受重力、B对A的支持力和B对A的摩擦力共3个力;B受重力、A对B的压力、A对B的摩擦力、地面对B的支持力共4个力,故B正确,A、C、D错误。
物体的平衡和不平衡物体的平衡是指物体受力平衡的状态,不平衡则是指物体受力不平衡的状态。
在日常生活中,我们经常遇到物体的平衡和不平衡情况,例如平衡的书架、倾斜的塔楼等。
本文将以物体的平衡和不平衡为主题,探讨物体平衡的条件以及不平衡造成的原因和后果。
一、物体平衡的条件要使一个物体平衡,必须满足以下条件:1. 力的平衡:物体上的合力为零。
根据牛顿第一定律,当合力为零时,物体将保持静止或匀速直线运动。
2. 力的角平衡:物体上的合力矩为零。
合力矩是指物体上所有作用力的乘积与它们到一个固定点的距离的乘积之和。
当合力矩为零时,物体将保持平衡。
例如,考虑一个平衡的书架,书架上有几本书。
当书架平衡时,书架上作用的合力为零,即重力与支持力相等。
此外,合力矩也必须为零,即重力矩与支持力矩相等。
二、物体不平衡的原因和后果物体出现不平衡的情况主要归结为以下几个原因:1. 力的不平衡:物体上的合力不为零。
当物体受到不平衡的合力作用时,将引起加速度,物体将发生运动或改变现有的运动状态。
2. 力的角不平衡:物体上的合力矩不为零。
当物体上的合力矩不为零时,将引起物体的旋转运动或改变现有的旋转运动状态。
例如,考虑一个倾斜的塔楼。
当塔楼倾斜时,塔楼上作用的合力矩不为零。
这将导致塔楼旋转或倒塌的风险。
物体不平衡造成的后果包括以下几个方面:1. 运动状态的改变:不平衡力会改变物体的运动状态,使物体产生加速度,并可能导致物体运动或改变现有的运动方向。
2. 旋转状态的改变:不平衡力矩会改变物体的旋转状态,使物体发生旋转运动或改变现有的旋转方向。
3. 破坏和伤害:物体失去平衡后可能引发破坏和伤害。
例如,当一个不平衡的悬挂物摆动时,它可能撞击周围的物体,导致物体损坏或人员受伤。
三、保持物体平衡的方法为了保持物体的平衡,可以采取以下几种方法:1. 调整物体的重心:通过调整物体的重心位置,使其与支撑物的垂直线重合,以保持物体的平衡。
2. 增加支点:在物体的底部添加支点,以提供附加的支持和稳定性,来保持物体的平衡。
第3章 静力学平衡问题 §3.1 平衡与平衡条件一、平衡的概念物体的平衡,在工程上是指物体相对于地面保持静止或作匀速直线运动的状态。
平衡是相对于确定的参考系而言的。
静力学所讨论的平衡问题可以是单个刚体,也可以是由若干个刚体组成的刚体系统。
刚体或刚体系统是否平衡取决于作用在其上的力系。
二、平衡条件要使物体保持平衡状态,作用在其上的力必须满足一定的条件,这种条件我们称为力的平衡条件。
从效应上看,物体保持平衡应是既不移动,又不转动。
因此,力系的平衡条件是,力系的主矢和力系对任一点的主矩等于零。
其解析表达式称为平衡方程。
§3.2 平面力系的平衡方程一、平面力系的平衡方程1)基本形式⎪⎩⎪⎨⎧=∑=∑=∑0)(000F M Y X2)二矩式⎪⎩⎪⎨⎧=∑=∑=∑0)(0)(0F F B A M M X 附加条件为:A 、B 两点连线不垂直于x 轴3)三矩式⎪⎩⎪⎨⎧=∑=∑=∑0)(0)(0)(F F F C B A M M M 附加条件为:A 、B 、C 三点不共线特殊力系的平衡方程 1)共线力系:=∑i F2)平面汇交力系:⎩⎨⎧=∑=∑00Y X3)平面力偶系: 0i m =∑4)平面平行力系: )//( 0)(0轴y M Y i o F F ⎩⎨⎧=∑=∑§3.3 空间力系的平衡方程一、空间力系的平衡方程其基本形式的平衡方程为:ΣX=0 ΣM x(F)=0ΣY=0 ΣM y(F)=0ΣZ=0 ΣM z(F)=0必须指出,空间一般力系有六个独立的平衡方程可以求解六个未知量。
具体应用时,不一定使3个投影轴或矩轴互相垂直,也没有必要使矩轴和投影轴重合,而可以选取适宜轴线为投影轴或矩轴,使每一个平衡方程中所含未知量最少,以简化计算。
此外,还可以将投影方程用适当的力矩方程取代,得到四矩式、五矩式以至六矩式的平衡方程。
使计算更为简便。
几种特殊力系的平衡方程1)空间汇交力系ΣX=0ΣY=0ΣZ=02)空间力偶系ΣM x(F)=0ΣM y(F)=0ΣM z(F)=03)空间平行力系(若各力//z轴)ΣZ=0ΣM x(F)=0ΣM y(F)=04)平面任意力系(若力系在Oxy平面内)∑X==∑YM(=∑F)z§3.4 平衡方程的应用一、一般应用举例例3-1,例3-3,例3-4,例3-5(改求起重机不翻平衡块的重量就应是多少?),例3-6,例3-7 补充:已知:带轮D :D1=400 mm ,FT=2000 N ,Ft=1000 N ;齿轮C :D2=200 mm ,a=20° 求:齿轮C 的啮合力Fn ,轴承A 、B 的约束力FA 、FB轴承A 、B 的约束力FA 、FB 就是圆轴受支座中圆孔的约束力,圆孔销钉就是固定铰链两个分力 为说明两分力方向,建立空间直角坐标系Oxyz ?y 轮轴线,z 轴铅直,Oxy 是水平面,三轴垂直 轴承支座表示方法(下图),其约束两分力为xz 方向,用F Ax 、F Az 和F Bx 、F Bz ,或X A 、Z A 和X B 、Z B 侧视图(将轮轴及其受力投影到Oxz 平面上)受力图,没有画轴承A 、B 的约束力,因为没有解除这两个轴承约束=B M ∑02cos 2221t 1T =⨯⨯⨯D F D F D F n a --2000×200-1000×200-Fncos20°×100=0 Fn=2130 N主视图(将轮轴及其受力投影到Oyz 平面上)受力图,其中Fnz=Fncos20°=2130×0.9396=2000 N因主动力Fnz=2000 N 作用点到A 、B 两个支座距离相同,方向向上显然,与之平衡的两支座约束力大小相等,实际方向向下,和受力图所画的方向相反,所以N10002N 20002-====--nzB A F Z Z俯视图(将轮轴及其受力投影到Oxy 平面上) 受力图,其中Fnx=Fnsin20°=2130×0.3420=729 NΣMA=0 -(FT+Ft)×0.15+Fnx ×0.25-XB ×0.5=0 -(2000+1000)×0.15+729×0.25-XB ×0.5=0 XB=-536 NΣFx=0 -FT-Ft+XA-Fnx+XB=0 -2000-1000+XA-729+(-536)=0 XA=4265 N 结论:Fn=2130 NXA=4265 N ; XB=-536 N ZA=-1000 N ; ZB=-1000 N 小结:①轮轴类部件平面解法:1.侧视图求未知主动力 2.主视图求铅直向约束力 3.俯视图求水平向约束力在每一视图上,使用平面力系力的投影方程和力矩平衡方程求解未知力 ②皮带拉力,无论倾斜与否,总是和轮缘相切,对轮轴的力矩等于拉力乘以半径齿轮啮合力一定和其分度圆不相切,对轮轴的力矩=啮合力×cosa ×半径(啮合力×cosa=圆周方向分力)③侧视图上没有画轴承A 、B 的约束力,因为没有解除两个轴承约束(若画有XA 、ZA 和XB 、ZB 四力) 不能用ΣFx=0,-FT-Ft-Fnsina=0求Fn ,因为在x 方向,实际上还有XA 、XB 两力的投影 二、重心1、物体的重心物体的重量(力):物体每一微小部分地球引力的合力。
1第3章 力系的平衡条件与平衡方程平面力系的平衡条件与平衡方程3.1.1 平面一般力系的平衡条件与平衡方程若是一个平面一般力系的主矢和力系对任一点的主矩同时都等于零,物体将不会移动也不会转动,则该物体处于平衡状态。
力系平衡的充分必要条件:力系的主矢和力系对任一点的主矩都别离等于零,即 110()0i nR i nO O ii F F M M F ==⎫==⎪⎪⎬⎪==⎪⎭∑∑平衡条件的解析式: 11100()0nix i niy i n O i i F F M F ===⎫=⎪⎪⎪=⎬⎪⎪=⎪⎭∑∑∑ 或00()0x y OF F M F ⎫=⎪⎪=⎬⎪=⎪⎭∑∑∑ 平面一般力系的平衡方程该式表明,平面一般力系的平衡条件也可叙述为:力系中各力在任选的坐标轴上的投影的代数和别离等于零,和各力对任一点的矩的代数和也等于零。
平面汇交力系:2平面汇交力系对平面内任意一点的主矩都等于零,即恒知足()0OMF ≡∑物体在平面汇交力系作用下平衡方程:00x yF F ⎫=⎪⎬=⎪⎭∑∑例题3-1 图所示为悬臂式吊车结构图。
其中AB 为吊车大梁,BC 为钢索,A 处为固定铰支座,B 处为铰链约束。
已知起重电动机E 与重物的总重量为PF (因为两滑轮之间的距离很小,PF 可视为集中力作用在大梁上)梁的重力为QF 已知角度30θ=。
求:一、电动机处于任意位置时,钢索BC 所受的力和支座A 处的约束力;二、分析电动机处于什么位置时。
钢索受力最大,并肯定其数值。
3解:一、选择研究对象以大梁为研究对象,对其作受力分析,并成立图示坐标系。
成立平衡方程取A 为矩心。
按照 ()0A M F =∑sin 02Q P TB lF F x F l θ-⨯-⨯+⨯=222sin 2sin 30P Q P Q P TB QlF x F F x F l F x F F l l l θ⨯+⨯+===+ 由xF =∑cos 0Ax TB F F θ-=2()cos303()2QP P Ax Q F F x F x F F l l =+=+由yF =∑sin 0Ay Q P TB F F F F θ---+=4122[()]2Q P Ay Q P TB Q P Q P F F x F F F F F F l F l xF l =--+=--++-=-+由 2P TB QF x F F l =+ 可知当x l =时钢索受力最大, 其最大值为 22P TB Q P QF lF F F F l =+=+在平面力系的情形下,力矩中心应尽可能选在两个或多个未知力的交点上,这样成立的力矩平衡方程中将不包括这些未知力;坐标系中坐标轴取向应尽可能与多数未知力相垂直,从而这些未知力在这一坐标轴上的投影等于零,这样可减少力的平衡方程中未知力的数量。