水热合成PZT
- 格式:ppt
- 大小:1.83 MB
- 文档页数:18
水热合成摘要:水热合成已成为无机合成化学的一个重要分支。
水热反应主要以液相反应机理为其特点,水热与溶剂热条件下反应物反应性能的改变、活性的提高,水热与溶剂热合成方法可代替固相反应以及难于进行的合成反应,并产生一系列新的合成方法。
关键词:水热合成高温高压水热合成水热合成概述水热合成已成为无机合成化学的一个重要分支。
水热合成化学是研究物质在高温和密闭或高压条件下溶液中的化学行为与规律的化学分支。
水热合成是指在一定温度(100—1000℃)和压强(1—100MPa)条件下利用溶液中物质化学反应所进行的合成。
水热合成化学侧重于研究水热条件下物质的反应性、合成规律及产物的结构与性质。
反应需耐高温高压与化学腐蚀的设备。
体系处于非平衡状态,需用非平衡热力学理论研究合成化学问题。
水热化学也侧重于水热条件下特殊化合物与材料的制备、合成和组装,及固相反应无法制得的物相或物种,或使反应在相对温和的水热条件下进行。
水热反应主要以液相反应机理为其特点,而固相反应主要以界面扩散为特点。
机理上的不同可导致不同结构的材料生成,如液相条件能生成完美晶体、固相合成能获得非整比化合物等,即材料的微结构、性能等与材料的来源密切相关。
水热合成化学的特点①水热与溶剂热条件下反应物反应性能的改变、活性的提高,水热与溶剂热合成方法有可能代替固相反应以及难于进行的合成反应,并产生一系列新的合成方法。
②水热与溶剂热条件下中间态、介稳态及特殊物相易于生成,因此能合成与开发一系列特种介稳结构、特种凝聚态的新合成产物。
③能够使低熔点化合物、高蒸气压且不能在融体中生成的物质、高温分解相在水热与溶剂热低温条件下晶化生成。
④水热与溶剂热的低温、等压、溶液条件,有利于生长极少缺陷、取向好、完美的晶体,且合成产物结晶度高以及易于控制产物晶体的粒度。
⑤由于易于调节水热与溶剂热条件下的环境气氛,因而有利于低价态、中间价态与特殊价态化合物的生成,并能均匀地进行掺杂。
水热合成的分类(按温度分类)①亚临界合成多数沸石分子筛晶体的水热即为典型的亚临界合成反应。
水热合成技术水热合成技术是一种利用高温高压水环境下进行化学合成的方法。
它是一种重要的合成技术,可以用于制备各种无机材料、有机化合物和纳米材料等。
本文将介绍水热合成技术的原理、应用以及未来的发展方向。
水热合成技术的原理是利用高温高压水环境下的化学反应。
在水热合成中,水起到了溶剂和反应介质的作用。
通过调节反应条件,可以控制反应的速率、产物的形貌和结构等。
水热合成具有温度和压力可控、反应物溶解性高、反应速率快等优点,因此被广泛应用于材料合成领域。
水热合成技术在无机材料的合成中有着广泛的应用。
例如,通过水热合成可以制备金属氧化物、金属硫化物和金属氢氧化物等无机材料。
这些材料在电子器件、能源储存和催化剂等领域具有重要的应用价值。
此外,水热合成还可以制备一些特殊结构的材料,如纳米材料和多孔材料。
这些材料具有较大的比表面积和特殊的物理、化学性质,因此在催化、吸附和传感等方面具有广泛的应用。
在有机化合物合成方面,水热合成技术也发挥着重要的作用。
水热合成可以用于有机反应的加速和改善产物的选择性。
通过调节反应条件,可以实现特定官能团的引入和化学键的形成。
此外,水热合成还可以应用于有机催化剂的合成和有机小分子的转化等方面。
这些研究有助于开发新的有机合成方法,并为有机合成化学提供了新的思路。
水热合成技术在纳米材料合成方面有着广泛的应用。
通过水热合成可以制备出各种形状和结构的纳米材料,如纳米颗粒、纳米线和纳米片等。
这些纳米材料具有较小的尺寸和特殊的物理、化学性质,因此在光学、电子和生物医学等领域具有重要的应用价值。
例如,通过水热合成可以制备出具有荧光性质的纳米材料,用于生物成像和荧光标记等方面。
此外,水热合成还可以制备出具有可控形貌和结构的纳米材料,用于催化和传感等领域。
水热合成技术在材料科学和化学工程领域具有广阔的发展前景。
未来,随着人们对新材料和新技术的需求不断增加,水热合成技术将得到更广泛的应用。
同时,人们还将进一步研究水热合成技术的原理和机制,以实现更精确的合成控制和产物设计。
PZT陶瓷制备一、PZT陶瓷制备的工艺流程压电陶瓷生产的工艺流程(以传统固相烧结为例)为:配料→球磨→过滤、干燥→预烧→二次球磨→过滤、干燥→过筛→成型→排塑→烧结→精修→上电极→烧银→极化→测试。
1、原料处理首先,根据化学反应式配料。
所用的原料大多数是金属氧化物,少数也可以是碳酸盐(预烧时可分解为氧化物)。
为使生成压电陶瓷的化学反应顺利进行,要求原料细度一般不超过2μm(平均直径)。
提高原料纯度有利于提高产品质量。
通常使用转动球磨机或震动球磨机进行原料混合及粉碎。
另外,在生产中往往还使用气流粉碎法,用高压气流的强力破碎作用,使粉料形成雾状,由于不用球石,可以避免杂质混入,且效率高。
2、预烧中的反应过程预烧过程一般需要经过四个阶段:线性膨胀(室温—400℃)固相反应(400—750℃)收缩(750—850℃)晶粒生长(800-900℃以上)在固相反应过程中,反应可分为四个区域,如图1[1]所示,分别对应于如下的化学过程:区域Ⅰ:未反应;区域Ⅱ:Pb+TiO2→PbTiO3;区域Ⅲ:PbTiO3+PbO+ZrO2→Pb(Zr1-x Ti x)O3;区域Ⅳ:Pb(Zr1-x Ti x)O3系统的反应区域+PbTiO3→Pb(Zr1-x’Ti x’)O3(x<x’)。
图1 2PbO-TiO2-ZrO2系统的反应区域●—X射线测得点;○化学分析测得点,旁边数字代表已反应的PbO的百分数,烧结时间为零指刚到炉温的时刻;P—正交PbO;Z—单斜ZrO2;T—四方TiO2;PT—四方PbTiO3;PZT—Pb(Zr1-x Ti x)O3固定保温时间2h,改变预烧温度,随着温度的升高,在540℃左右,进入区域Ⅱ,形成PbTiO3;在650℃左右,进入区域Ⅲ,TiO2消失,Pb(Zr,Ti)O3形成;在710℃左右,进入区域Ⅳ,PbO和ZrO2消失;到1200℃时,PbTiO3消失,成为单相的Pb(Zr,Ti)O3。
水热法一步合成磷酸铁锂及其性能研究本文主要研究了采用水热法一步合成磷酸铁锂(LiFePO4)及其电化学性能。
首先,介绍了水热法的原理以及制备LiFePO4步骤;其次,研究了水热法制备LiFePO4的影响因素。
最后,根据结果,探讨了制备LiFePO4的最佳参数及电化学性能。
水热法是一种常用的合成方法,用于制备纳米结构材料。
它可以有效地控制材料的结构、形貌和成分。
水热法的工艺过程如下:首先通过质量比来配制原料溶液,然后,采用水热方法将原料溶液加热,在较高的温度和水压下,原料溶液经反应合成凝胶样物质,最后将样品热处理,以便获得所需物质。
水热法制备LiFePO4是一个复杂的过程,其反应机理有待进一步研究。
基本工艺步骤如下:首先,混合 FeCl3、Li2HPO4 LiOH原料,然后在质量比为 1:2:3条件下,在超声波作用下混合均匀。
接着,将混合液加入碳热源中,进行水热反应,控制反应温度在 180-220℃之间反应 4-5h。
最终,经过热处理得到了 LiFePO4品。
制备 LiFePO4影响因素有温度、原料重量比、混合时间、水热反应时间等。
温度对 LiFePO4制备最为关键,一般情况下,温度越高,样品结构越紧凑,结晶度越高。
原料重量比的不同也影响了LiFePO4品的结构与性能,一般情况下,原料重量比越低,样品晶格变形越多,结晶度更低。
混合时间可以提高 LiFePO4品的稳定性,而水热反应时间过长,会导致过度反应,影响LiFePO4样品的性能。
根据以上分析,采用水热法制备LiFePO4的参数可以设定为:原料重量比为 1:2:3,反应温度在 200℃,混合时间 2h,水热反应时间 4h。
根据实验结果可以看出,采用此最佳参数制备的 LiFePO4品晶格结构较整齐,晶粒粒度小,表面粗糙度低,具有良好的电化学性能,其首次放电容量达到 130 mAh/g,在 5 C电速率和 2 C电速率下,容量分别高达 109 mAh/g 91 mAh/g,循环放电容量变化率低于 5%,说明 LiFePO4有良好的循环稳定性。
水热合成技术水热合成技术是一种利用高温高压水环境下进行物质合成的方法。
它在有机合成、材料科学、能源研究等领域具有广泛应用。
本文将从水热合成技术的原理、应用以及未来发展等方面进行阐述。
一、水热合成技术的原理水热合成技术是利用高温高压水作为反应介质,在适当的温度和压力下,将溶液中的反应物进行反应,从而合成目标产物。
水热合成的关键是水的特殊性质,高温高压的条件使得水的溶解能力、扩散速率和反应速率大大增加,从而加快了反应进程。
1. 有机合成:水热合成技术在有机合成中广泛应用于合成有机小分子化合物。
通过调节反应条件和反应物的选择,可以合成出具有特殊结构和性质的有机化合物,如药物、染料和光电材料等。
2. 纳米材料合成:水热合成技术可以用于制备各种纳米材料,如纳米颗粒、纳米线和纳米片等。
通过控制反应条件和溶液浓度,可以调控纳米材料的形貌、尺寸和结构,从而实现对其性能的调控。
3. 燃料电池:水热合成技术可以用于制备燃料电池的关键材料,如负载型催化剂和电解质材料等。
通过水热合成可以获得高纯度、均匀分散的纳米颗粒,提高催化剂的电化学活性和稳定性。
4. 高压合成:水热合成技术可以在高压条件下进行化学反应,实现高压下的物质合成。
这对于高压下的研究和材料合成具有重要意义,例如合成高压下的新材料和研究高压条件下的物理和化学行为等。
三、水热合成技术的发展趋势1. 反应条件的控制:随着对水热合成技术的深入研究,人们对反应条件的控制有了更深入的认识。
未来的研究将更加注重反应条件的精确控制,以实现对产物结构和性能的精确调控。
2. 新型反应器的设计:水热合成技术需要高温高压的环境,传统的反应器设计存在一定的局限性。
未来的研究将致力于开发新型反应器,以提高反应效率和控制性能。
3. 反应机理的解析:水热合成技术虽然已经得到广泛应用,但其反应机理仍然不完全清楚。
未来的研究将更加注重对水热合成反应机理的解析,以揭示反应过程中的关键步骤和机制。
水热合成技术
水热合成技术(Hydrothermal Synthesis)是一种基于高温高压水环境下进行物质合成的方法。
它利用水的特殊性质和热压力条件,使得晶体、纳米粒子、多孔材料等各种物质可以在相对较低的温度和压力下迅速合成。
水热合成技术主要通过以下几个步骤来进行:
1. 原料溶解:将所需的化学物质或溶液溶解在水中,形成反应溶液。
2. 反应容器封闭:将反应溶液装入高压容器中,并密封好。
3. 加热升温:将密封的反应容器加热至一定的温度,提高反应速率。
4. 反应析出:随着温度的升高,反应容器内的水压增大,使得溶质变得不溶于水,从而在高温高压下析出。
5. 冷却降温:待反应完成后,将反应容器冷却至室温,使得反应产物得以固化。
6. 反应产物处理:将固化的反应产物通过离心、过滤、洗涤等处理步骤进行分离和纯化。
水热合成技术在材料科学、化学合成和纳米科技等领域广泛应用。
由于水热合成条件温和、易于控制,且无需使用有机溶剂等有害物质,因此受到了研究者的广泛关注。
它可以制备出各种形态和结构的材料,如纳米晶体、纳米线、纳米球、多孔材料等,在能源储存、催化剂、生物医药等领域都具有重要应用价值。
·34·材料导报网刊 2006年8月第4期水热法合成PZT铁电微晶体*李 涛,彭同江(西南科技大学工程技术中心, 绵阳 621010)摘要以TiO2、Pb(NO3)2和ZrOCl2·8H2O为原材料,KO H为矿化剂,在较低温度(160)℃和较低碱度(5mol/L)的条件下水热合成了PZT微晶粉体,粉体颗粒较均匀,粒径为2.0µm左右。
研究了水热反应中温度、碱度、反应时间对PZT微晶生长的影响。
讨论了反应前驱物在反应溶液中的存在状态、转化过程及水热合成PZT微晶的反应机理。
关键词水热法PZT微晶反应机理中图分类号:TN304Synthesis of PZT Ferroelectric Crystallite by Hydrothermal MethodLI Tao,PENG Tongjiang(Engineering and Technology Center, Southwest University of Science and Technology, Mianyang 621010)Abstract PZT crystallite powder is synthesized by hydrothermal method,in the condition of lower temperature(160℃) and lower alkalinity(5mol/L), from the starting materials of TiO2 , Pb(NO3)2 ,ZrOCl2·8H2O,and the mineralizer KOH. The grain is well-proportioned, grain size is about 2.0µm. The effects of temperature, basicity and reaction time of the hydrothermal process on the growth of P b(Zr0.52T i0.48)O3crystallite are investigated. The existence states and transform process of reaction precursor in the solution and the reaction mechanism of hydrothermal synthesis Pb(Zr0.52T i0.48)O3crystallite are discussed.Key words hydrothermal method,PZT,crystallite,reaction mechanism0 前言锆钛酸铅(简称PZT)陶瓷或薄膜具有优异的压电、介电和光电等电学性能,在电子、超声、计算机等高新技术领域中广泛地用作滤波器、传感器、换能器、存储器等电子元器件[1]。
水热合成法是一种常用的无机材料的合成方法,在纳米材料、生物材料和地质材料中具有广泛的应用。
水热/溶剂热合成法的主要步骤是将反应原料配置成溶液在水热釜中封装并加热至一定的温度(数百摄氏度)。
水热釜使得该合成体系维持在一定的压力范围内,在这种非平衡态的合成体系内进行液相反应往往能够制备出具有特殊优良性质的材料。
水热合成是指温度为100~1000 ℃、压力为1MPa~1GPa 条件下利用水溶液中物质化学反应所进行的合成它的优点:所的产物纯度高,分散性好、粒度易控制。
水热合成法是一种常用的无机材料的合成方法,在纳米材料、生物材料和地质材料中具有广泛的应用。
水热/溶剂热合成法的主要步骤是将反应原料配置成溶液在水热釜中封装并加热至一定的温度(数百摄氏度)。
水热釜使得该合成体系维持在一定的压力范围内,在这种非平衡态的合成体系内进行液相反应往往能够制备出具有特殊优良性质的材料。
[编辑]水热合成法的分类根据加热温度,水热法可以被分为亚临界水热合成法和超临界水热合成法。
通常在实验室和工业应用中,水热合成的温度在100-240℃,水热釜内压力也控制在较低的范围内,这是亚临界水热合成法。
而为了制备某些特殊的晶体材料,如人造宝石、彩色石英等,水热釜被加热至1000℃,压力可达0.3 GPa,这是超临界水热合成法。
[编辑]水热合成法的应用∙制备单晶∙制备有机-无机杂化材料∙制备沸石∙制备纳米材料锂离子电池阴极材料Li1+x Mn2O4的水热合成及表征Hydrothermal Synthesis and Characterization of Cathode Materials Li1+x Mn2O4 forRechargeable Lithium ion Batteries∙推荐CAJ下载∙PDF下载∙不支持迅雷等下载工具。
合成化学, CHINESE JOURNAL OF SYNTHETIC CHEMISTRY,编辑部邮箱,1999年04期[给本刊投稿]【作者】刘兴泉;李庆;于作龙;【Author】Liu,Xing Quan Li,Qing Yu,Zuo Long (Research and Development Center for Functional Materials, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, 610041)【机构】中国科学院成都有机化学研究所!功能材料研究开发中心;成都;610041;【摘要】以化学MnO2(CMD)为Mn源,LiNO3和LiOH·H2O分别为Li源,采用无机水热合成法合成了锂离子二次电池的阴极材料Li1+xMn2O4(0≤x<1),并采用XRD,BET,TEM,TGA和电化学测试等手段对材料进行了表征。
水热法磷酸铁锂合成
摘要:分别在5l和100l规模的反应釜内研究了水热法磷酸铁锂的合成,得到了形貌可控的纳米尺度产物,并初步讨论了一些表观因素和微观因素对水热产物粒度和形貌的影响。
最后采用有机体系对水热产物进行了包碳,得到了一次颗粒团聚体积小放电比容量高的包碳磷酸铁锂。
关键词水热法表面活性剂并流乳化水热前驱体
正文部分
1 引言
近些年,锂电子电池在新能源领域的应用受到越来越多的关注。
随之,作为锂电子电池的核心部分之一,正极材料也成为研究的热点,而磷酸铁锂且具有安全性高,环境友好,寿命长。
原料基础储量大等优点,是目前最热门且可靠的候选正极材料之一,在电动车等应用功率场合,电池需要较好的低温和倍率性能,相应的要求磷酸铁锂材料纳米化。
水热法是合成磷酸铁锂方法之一,与传统的固相法,溶胶凝胶法相比,具有能耗低,工艺流程简单,产物颗粒小,分布均匀等优点,是目前制备纳米磷酸铁锂材料的优选方法之一。
2实验部分
2.1 七水合硫酸亚铁。