哈夫曼编码演示
- 格式:ppt
- 大小:686.00 KB
- 文档页数:13
哈夫曼编码的应用实例引言哈夫曼编码是一种常用的数据压缩算法,它通过将出现频率较高的字符用较短的编码表示,从而实现对数据的高效压缩。
本文将通过几个实际应用实例来介绍哈夫曼编码的工作原理和应用场景。
什么是哈夫曼编码哈夫曼编码是由David A. Huffman于1952年提出的一种数据压缩算法。
它通过统计字符的出现频率,然后构建一棵二叉树,将频率较高的字符放在树的较低层,频率较低的字符放在树的较高层,从而实现对数据的压缩。
哈夫曼编码的原理1.统计字符的出现频率:首先需要统计待压缩数据中每个字符的出现频率。
2.构建哈夫曼树:根据字符的出现频率构建一棵哈夫曼树。
构建树的过程中,频率较低的字符被放在树的较高层,频率较高的字符被放在树的较低层。
3.生成哈夫曼编码:从根节点开始,沿着左子树走为0,沿着右子树走为1,将每个字符对应的编码记录下来。
4.进行编码压缩:将待压缩数据中的每个字符用其对应的哈夫曼编码替代。
5.进行解码还原:通过哈夫曼树和编码,将压缩后的数据解码还原为原始数据。
哈夫曼编码的应用实例文本文件压缩文本文件通常包含大量的字符,而且某些字符的出现频率较高。
通过使用哈夫曼编码,可以将出现频率较高的字符用较短的编码表示,从而实现对文本文件的高效压缩。
1.统计字符的出现频率:首先需要对待压缩的文本文件进行字符频率统计,得到每个字符的出现频率。
2.构建哈夫曼树:根据字符的出现频率构建一棵哈夫曼树。
3.生成哈夫曼编码:根据哈夫曼树,为每个字符生成对应的哈夫曼编码。
4.进行编码压缩:将待压缩的文本文件中的每个字符用其对应的哈夫曼编码替代。
5.进行解码还原:通过哈夫曼树和编码,将压缩后的数据解码还原为原始文本文件。
图像压缩图像文件通常包含大量的像素点,每个像素点包含多个颜色信息。
通过使用哈夫曼编码,可以将出现频率较高的颜色用较短的编码表示,从而实现对图像文件的高效压缩。
1.统计颜色的出现频率:首先需要对待压缩的图像文件进行颜色频率统计,得到每个颜色的出现频率。
哈夫曼编码简单例题图一、什么是哈夫曼编码1.1 简介哈夫曼编码是一种用于数据压缩的编码方式,由大卫·哈夫曼于1952年发明。
它利用了数据的统计特性,根据出现频率对不同的字符进行编码,将出现频率高的字符用较短的编码表示,出现频率低的字符用较长的编码表示。
1.2 编码原理哈夫曼编码的原理是通过构建哈夫曼树来生成编码表,根据字符出现的频率构建一棵二叉树,出现频率越高的字符离根节点越近,而出现频率越低的字符离根节点越远。
通过遍历哈夫曼树,可生成每个字符对应的编码。
二、哈夫曼编码举例2.1 示例假设有一个包含5个字符的文本文件,字符及其出现频率如下:字符频率A 4B 3C 2D 1E 12.2 构建哈夫曼树1.首先,将字符节点按照出现频率从小到大排序,得到序列:[D, E, C, B,A]。
2.从序列中选取频率最小的两个字符节点(D和E),作为左右子节点构建一个新的节点,该新节点的频率为D和E节点频率之和(1+1=2)。
3.将该新节点插入到序列中,得到新的序列:[C, B, A, DE]。
4.重复第2和第3步,直到序列中只剩下一个节点,即哈夫曼树的根节点。
2.3 生成编码表1.从根节点出发,沿着左子树路径标记0,沿着右子树路径标记1。
2.当到达叶子节点时,记录路径上的编码。
字符频率编码A 4 0B 3 10C 2 110D 1 1110E 1 1111三、哈夫曼编码的应用3.1 数据压缩哈夫曼编码的主要应用是数据压缩。
通过使用哈夫曼编码,出现频率高的字符用较短的编码表示,可以大大减小数据的存储空间。
3.2 信息传输由于哈夫曼编码能够将出现频率高的字符用较短的编码表示,因此在信息传输中使用哈夫曼编码可以提高传输效率,减少传输时间。
3.3 文件加密哈夫曼编码可以用于文件加密。
通过对文件进行编码,可以实现对文件内容的加密和解密,并且只有知道特定的哈夫曼编码表才能正确解密文件。
四、总结哈夫曼编码是一种高效的数据压缩方式,通过构建哈夫曼树和生成编码表,可以将出现频率高的字符用较短的编码表示。
《算法设计与分析》上机报告姓名:学号:日期:上机题目:哈夫曼编码算法实验环境:CPU: ; 内存: 6G ; 操作系统:Win7 64位;软件平台:Visual Studio2008 ;一、算法设计与分析:题目:哈夫曼编码是广泛地用于数据文件压缩的十分有效的编码方法。
其压缩率通常在20%~90%之间。
哈夫曼编码算法用字符在文件中出现的频率表来建立一个用0,1串表示各字符的最优表示方式。
一个包含100,000个字符的文件,各字符出现频率不同,如下表所示。
有多种方式表示文件中的信息,若用0,1码表示字符的方法,即每个字符用唯一的一个0,1串表示。
若采用定长编码表示,则需要3位表示一个字符,整个文件编码需要300,000位;若采用变长编码表示,给频率高的字符较短的编码;频率低的字符较长的编码,达到整体编码减少的目的,则整个文件编码需要(45×1+13×3+12×3+16×3+9×4+5×4)×1000=224,000位,由此可见,变长码比定长码方案好,总码长减小约25%。
哈夫曼编码步骤:一、对给定的n个权值{W1,W2,W3,...,Wi,...,Wn}构成n棵二叉树的初始集合F={T1,T2,T3,...,Ti,...,Tn},其中每棵二叉树Ti中只有一个权值为Wi的根结点,它的左右子树均为空。
(为方便在计算机上实现算法,一般还要求以Ti的权值Wi的升序排列。
)二、在F中选取两棵根结点权值最小的树作为新构造的二叉树的左右子树,新二叉树的根结点的权值为其左右子树的根结点的权值之和。
三、从F中删除这两棵树,并把这棵新的二叉树同样以升序排列加入到集合F中。
四、重复二和三两步,直到集合F中只有一棵二叉树为止。
二、核心代码:node* huffman(node C[],int n){BuildMaxHeap(C,n);for(int i=1;i<n;i++){node* z = new node;z->left = extract_min(C,n-i+1);z->right = extract_min(C,n - i);z->freq = z->left->freq + z->right->freq;C[n - i] = *z;MaxHeapify(C,n - i,n - i);}return &C[1];}三、结果与分析:其中“?”表示该结点没有字符最优性:二叉树T表示字符集C的一个最优前缀码,x和y是树T中的两个叶子且为兄弟,z 是它们的父亲。