哈夫曼编码方法Huffman
- 格式:ppt
- 大小:1.27 MB
- 文档页数:71
哈夫曼编码(HuffmanCoding)-贪⼼策略 哈夫曼编码是⼀种编码⽅式,是可变字长编码(VLC)的⼀种。
其中变长编码表是通过⼀种评估来源符号出现机率的⽅法得到的,出现机率⾼的字母使⽤较短的编码,反之出现机率低的则使⽤较长的编码,这便使编码之后的字符串的平均长度、期望值降低,从⽽达到⽆损压缩数据的⽬的。
⾯试题常常会考的⼀种思想,笔试题就更不⽤说了,选择题直接让你构造哈夫曼树。
哈夫曼编码的图形构造是⼀棵树,每个节点具有权值,权值越⼤的节点越靠近树根,越⼩的节点就越远离树根,从它的定义来看,想到的就是贪⼼策略。
⾸先如何构造哈夫曼编码树:每次从树集合中找出权值最⼩的两棵树分别作为左、右⼦树,然后合并它们作为他们的⽗节点,其权值为两颗⼦树的权值和。
步骤: 1 :确定合适的数据结构(要知道他的左右⼦树,双亲,权值) 2:初始化,构造n颗节点为n的字符单节点树集合T={t1,t2,t3,t4···········tn},保证按权值排序,并且每棵树只有树根 3:如果集合中只剩下⼀棵树,那么哈夫曼树就构造成功,直接跳转到步骤6,否则就是从集合中继续拿出权值最⼩的⼦树x作为左⼦树,第⼆⼩的y作为右⼦树,并将它们合并到⼀颗z树中, z的权值为左右⼦树权值之和 4:从T集合中删除x,y 把新树z加⼊到集合T中 5:重复步骤3~4 6:约定左分⽀上的编码都是0,右分⽀上的编码都是1,从叶⼦节点开始逆序求出树的编码 对于编码字符出现的频率:1)将信源符号的概率按减⼩的顺序排队。
2)把两个最⼩的概率相加,并继续这⼀步骤,始终将较⾼的概率分⽀放在右边,直到最后变成概率1。
3)画出由概率1处到每个信源符号的路径,顺序记下沿路径的0和1,所得就是该符号的霍夫曼码字。
4)将每对组合的左边⼀个指定为0,右边⼀个指定为1(或相反)。
算法分析与设计实验报告第次实验附录:完整代码#include <iostream>#include <string>#include<stdio.h>#include <time.h>#include <iomanip>#include <vector>#include<algorithm>using namespace std;class Huffman{public:char elementChar;//节点元素int weight;//权重char s;//哈夫曼编码Huffman* parent;//父节点Huffman* leftChild;//左孩子Huffman* rightChild;//右孩子public:Huffman();Huffman(char a, int weight);bool operator < (const Huffman &m)const { return weight < m.weight;} };Huffman::Huffman(){this->s = ' ';this->elementChar = '*';//非叶子节点this->parent = this->leftChild = this->rightChild = NULL;}Huffman::Huffman(char a, int weight):elementChar(a),weight(weight) {this->s = ' ';this->elementChar = '*';//非叶子节点this->parent = this->leftChild = this->rightChild = NULL;}//递归输出哈夫曼值void huffmanCode(Huffman & h){if(h.leftChild == NULL && h.rightChild == NULL){//如果是叶子节点,输出器哈夫曼编码string s;Huffman temp = h;while(temp.parent != NULL){s = temp.s + s;temp = *temp.parent;}cout << h.elementChar << "的哈夫曼编码是:" << s << endl; return;}//左孩子huffmanCode(*h.leftChild);//右孩子huffmanCode(*h.rightChild);}int main(){int l,p=0;double q=0.0;clock_t start,end,over;start=clock();end=clock();over=end-start;start=clock();string huffmanStr;cout << "请输入一串字符序列:" << endl;cin >> huffmanStr;//得到字符串信息int i=0,j,n,m[100],h,k=0;char cha[100];n = huffmanStr.length();cout << "字符串总共有字符" << n << "个" << endl;for(int i = 0; i < n; i++){j = 0; h = 0;while(huffmanStr[i] != huffmanStr[j])j++;if(j == i){cha[k] = huffmanStr[i];cout << "字符" << cha[k] << "出现";}//如果j !=i 则略过此次循环elsecontinue;for(j = i; j < n; j++){if(huffmanStr[i] == huffmanStr[j])h++;}cout << h << "次" << endl;m[k] = h;k++;}//哈夫曼编码Huffman huffmanTemp;vector < Huffman > huffmanQueue;//初始化队列for(int i = 0; i < k; i++){huffmanTemp.elementChar = cha[i];huffmanTemp.weight = m[i];huffmanQueue.push_back(huffmanTemp);}//得到哈夫曼树所有节点int huffmanQueue_index = 0;sort(huffmanQueue.begin(), huffmanQueue.end());while(huffmanQueue.size() < 2 * k - 1){//合成最小两个节点的父节点huffmanTemp.weight = huffmanQueue[huffmanQueue_index].weight + huffmanQueue[huffmanQueue_index + 1].weight;huffmanQueue[huffmanQueue_index].s = '0';huffmanQueue[huffmanQueue_index + 1].s = '1';huffmanTemp.elementChar = '*';//将父节点加入队列huffmanQueue.push_back(huffmanTemp);sort(huffmanQueue.begin(), huffmanQueue.end());huffmanQueue_index += 2;}//把所有节点构造成哈夫曼树int step = 0;//步长while(step + 2 < 2 * k){for(int j = step + 1; j <= huffmanQueue.size(); j++){if(huffmanQueue[j].elementChar == '*' && huffmanQueue[j].leftChild == NULL && (huffmanQueue[j].weight == huffmanQueue[step].weight + huffmanQueue[step+1].weight)){huffmanQueue[j].leftChild = &huffmanQueue[step];huffmanQueue[j].rightChild = &huffmanQueue[step+1];huffmanQueue[step].parent = huffmanQueue[step+1].parent = &huffmanQueue[j]; break;}}step += 2;}//序列最后一个元素,即哈弗曼树最顶端的节点huffmanTemp = huffmanQueue.back();huffmanCode(huffmanTemp);for(l=0;l<1000000000;l++)p=p+l;end=clock();printf("The time is %6.3f",(double)(end-start-over)/CLK_TCK);return 0;}。
哈夫曼编码(Huffman Coding)From May10 AlgorithmJump to: navigation, searchTemplate:Translation哈夫曼编码(Huffman Coding)是一種編碼方式,以哈夫曼树─即最优二叉树,带权路径长度最小的二叉树,经常应用于数据压缩。
在计算机信息处理中,“哈夫曼编码”是一种一致性编码法(又称"熵编码法"),用于数据的无损耗压缩。
这一术语是指使用一张特殊的编码表将源字符(例如某文件中的一个符号)进行编码。
这张编码表的特殊之处在于,它是根据每一个源字符出现的估算概率而建立起来的(出现概率高的字符使用较短的编码,反之出现概率低的则使用较长的编码,这便使编码之后的字符串的平均期望长度降低,从而达到无损压缩数据的目的)。
这种方法是由David.A.Huffman发展起来的。
例如,在英文中,e的出现概率很高,而z的出现概率则最低。
当利用哈夫曼编码对一篇英文进行压缩时,e极有可能用一个位(bit)来表示,而z则可能花去25个位(不是26)。
用普通的表示方法时,每个英文字母均占用一个字节(byte),即8个位。
二者相比,e使用了一般编码的1/8的长度,z则使用了3倍多。
倘若我们能实现对于英文中各个字母出现概率的较准确的估算,就可以大幅度提高无损压缩的比例。
In computer science, Huffman coding is an entropy encoding algorithm used for lossless data compression. The term refers to the use of a variable-length code table for encoding a source symbol (such as a character in a file) where the variable-length code table has been derived in a particular way based on the estimated probability of occurrence for each possible value of the source symbol. It was developed by David A. Huffman as a Ph.D. student at MIT in 1952, and published in A Method for the Construction of Minimum-Redundancy Codes.哈夫曼树又称最优二叉树,是一种带权路径长度最短的二叉树。
哈夫曼编码(Huffman Coding)是一种常见的数据压缩算法,它通过构建哈夫曼树(Huffman Tree)来实现。
以下是一个简单的哈夫曼编码算法的实现示例,使用Python 语言:pythonCopy codeimport heapqfrom collections import defaultdictclass HuffmanNode:def __init__(self, char, frequency):self.char = charself.frequency = frequencyself.left = Noneself.right = Nonedef __lt__(self, other):return self.frequency < other.frequencydef build_huffman_tree(data):frequency = defaultdict(int)for char in data:frequency[char] += 1priority_queue = [HuffmanNode(char, freq) for char, freq in frequency.items()]heapq.heapify(priority_queue)while len(priority_queue) > 1:node1 = heapq.heappop(priority_queue)node2 = heapq.heappop(priority_queue)merged_node = HuffmanNode(None, node1.frequency + node2.frequency)merged_node.left = node1merged_node.right = node2heapq.heappush(priority_queue, merged_node)return priority_queue[0]def build_huffman_codes(root, current_code="", codes={}):if root:if root.char is not None:codes[root.char] = current_codebuild_huffman_codes(root.left, current_code + "0", codes)build_huffman_codes(root.right, current_code + "1", codes)return codesdef huffman_encoding(data):if not data:return None, Noneroot = build_huffman_tree(data)codes = build_huffman_codes(root)encoded_data = "".join([codes[char] for char in data])return encoded_data, rootdef huffman_decoding(encoded_data, root):if not encoded_data or not root:return Nonecurrent_node = rootdecoded_data = ""for bit in encoded_data:if bit == "0":current_node = current_node.leftelse:current_node = current_node.rightif current_node.char is not None:decoded_data += current_node.charcurrent_node = rootreturn decoded_data# 示例data = "abracadabra"encoded_data, tree_root = huffman_encoding(data) decoded_data = huffman_decoding(encoded_data, tree_root)print("Original data:", data)print("Encoded data:", encoded_data)print("Decoded data:", decoded_data)。
哈夫曼编码原理及方法哈夫曼编码(Huffman Coding)是一种变长编码(Variable Length Code)的压缩算法。
它的原理是将频率较高的字符用较短的编码,频率较低的字符用较长的编码,以此降低数据的传输成本。
下面将详细介绍哈夫曼编码的原理及方法。
一、哈夫曼编码的原理哈夫曼编码的原理基于贪心算法(Greedy Algorithm),即对每个要编码的字符进行评估,按照字符在文本中出现的频率多少,将频率高的字符赋予较短的编码,频率低的字符赋予较长的编码。
这样在实际使用中,字符出现频率越高的编码长度越短,从而达到压缩数据的目的。
二、哈夫曼编码的方法1. 构建哈夫曼树(Huffman Tree)构建哈夫曼树的过程首先要确定每个字符在文本中出现的频率,然后将每个字符看作一个节点,并按照其频率大小建立一个小根堆(Min Heap)。
接下来,选取频率最小的两个节点,将它们合并到一起作为一个新的节点,并更新频率值,然后继续重复以上步骤,直到堆中只剩下一个节点,即为哈夫曼树的根节点。
2. 生成哈夫曼编码生成哈夫曼编码可以采用递归的方式,从根节点开始向左遍历时,将标记为 0,向右遍历时,将标记为 1,直到叶节点为止,然后向上回溯,将遍历的结果保存下来,得到该叶节点的哈夫曼编码。
遍历完所有的叶子节点后,即可得到所有字符的哈夫曼编码。
3. 压缩数据在使用哈夫曼编码进行数据压缩时,将字符替换为其对应的哈夫曼编码,这样可以将原始数据压缩为更小的数据量,达到压缩数据的目的。
在解压数据时,需要根据已生成的哈夫曼树,将压缩后的数据转换为原始数据,即将哈夫曼编码转换为对应的字符。
三、哈夫曼编码的优缺点哈夫曼编码的优点是具有压缩比高、压缩速度快、压缩后的数据无损还原等特点,可以广泛用于图像、音频、视频等多种数据类型的压缩。
同时,由于哈夫曼编码采用变长编码方式,所以可以使用相对较短的编码表示经常出现的字符,从而达到更好的压缩效果。
哈夫曼(huffman)树和哈夫曼编码讨论QQ群:待定哈夫曼树哈夫曼树也叫最优二叉树(哈夫曼树)问题:什么是哈夫曼树?例:将学生的百分制成绩转换为五分制成绩:≥90 分: A,80~89分: B,70~79分: C,60~69分: D,<60分: E。
if (a < 60){b = 'E';}else if (a < 70) {b = ‘D’;}else if (a<80) {b = ‘C’;}else if (a<90){b = ‘B’;}else {b = ‘A’;}判别树:用于描述分类过程的二叉树。
如果每次输入量都很大,那么应该考虑程序运行的时间如果学生的总成绩数据有10000条,则5%的数据需1 次比较,15%的数据需 2 次比较,40%的数据需 3 次比较,40%的数据需 4 次比较,因此 10000 个数据比较的次数为: 10000 (5%+2×15%+3×40%+4×40%)=31500次此种形状的二叉树,需要的比较次数是:10000 (3×20%+2×80%)=22000次,显然:两种判别树的效率是不一样的。
问题:能不能找到一种效率最高的判别树呢?那就是哈夫曼树回忆树的基本概念和术语路径:若树中存在一个结点序列k1,k2,…,kj,使得ki是ki+1的双亲,则称该结点序列是从k1到kj的一条路径。
路径长度:等于路径上的结点数减1。
结点的权:在许多应用中,常常将树中的结点赋予一个有意义的数,称为该结点的权。
结点的带权路径长度:是指该结点到树根之间的路径长度与该结点上权的乘积。
树的带权路径长度:树中所有叶子结点的带权路径长度之和,通常记作:其中,n表示叶子结点的数目,wi和li分别表示叶子结点ki的权值和树根结点到叶子结点ki之间的路径长度。
赫夫曼树(哈夫曼树,huffman树)定义:在权为w1,w2,…,wn的n个叶子结点的所有二叉树中,带权路径长度WPL最小的二叉树称为赫夫曼树或最优二叉树。
第三章多媒体数据压缩3.1 数据压缩的基本原理和方法3.1 数据压缩的基本原理和方法•压缩的必要性音频、视频的数据量很大,如果不进行处理,计算机系统几乎无法对它进行存取和交换。
例如,一幅具有中等分辨率(640×480)的真彩色图像(24b/像素),它的数据量约为7.37Mb/帧,一个100MB(Byte)的硬盘只能存放约100帧图像。
若要达到每秒25帧的全动态显示要求,每秒所需的数据量为184Mb,而且要求系统的数据传输率必须达到184Mb/s。
对于声音也是如此,若采用16b样值的PCM编码,采样速率选为44.1kHZ ,则双声道立体声声音每秒将有176KB的数据量。
3.1 数据压缩的基本原理和方法•视频、图像、声音有很大的压缩潜力信息论认为:若信源编码的熵大于信源的实际熵,该信源中一定存在冗余度。
原始信源的数据存在着很多冗余度:空间冗余、时间冗余、视觉冗余、听觉冗余等。
3.1.1 数据冗余的类型•空间冗余:在同一幅图像中,规则物体和规则背景的表面物理特性具有相关性,这些相关性的光成像结果在数字化图像中就表现为数据冗余。
–一幅图象中同一种颜色不止一个象素点,若相邻的象素点的值相同,象素点间(水平、垂直)有冗余。
–当图象的一部分包含占主要地位的垂直的源对象时,相邻线间存在冗余。
3.1.1 数据冗余的类型•时间冗余:时间冗余反映在图像序列中就是相邻帧图像之间有较大的相关性,一帧图像中的某物体或场景可以由其它帧图像中的物体或场景重构出来。
–音频的前后样值之间也同样有时间冗余。
–若图象稳定或只有轻微的改变,运动序列帧间存在冗余。
3.1.1 数据冗余的类型•信息熵冗余:信源编码时,当分配给第i 个码元类的比特数b (y i )=-log p i ,才能使编码后单位数据量等于其信源熵,即达到其压缩极限。
但实际中各码元类的先验概率很难预知,比特分配不能达到最佳。
实际单位数据量d>H (S ),即存在信息冗余熵。
哈夫曼编码算法详解在计算机科学中,哈夫曼编码是一种压缩算法,也叫做霍夫曼编码,是由霍夫曼(Huffman)在1952年首创的。
霍夫曼编码是一种无损压缩算法,可以对文本文件、音频文件、图像文件等各种类型的文件进行压缩。
1. 哈夫曼编码的原理哈夫曼编码是基于频率统计的思想,通过统计每个字符在文件中出现的频率,选择出现频率最高的字符,将其映射为一组比特位,出现频率较低的字符则映射为比高的比特位,从而实现对文件的压缩。
通过哈夫曼编码,可以将文件压缩到原始大小的一半甚至更小。
2. 哈夫曼编码的实现哈夫曼编码的实现需要进行几个步骤:2.1 统计字符的出现频率从文件中读取字符,统计每个字符在文件中出现的次数,可以使用一个数组或字典来保存每个字符的出现次数。
对于英文文本来说,出现频率最高的字符是空格,其次是字母“e”。
2.2 构建哈夫曼树将所有的字符按照出现频率从小到大排序,选出出现频率最小的两个字符作为左右子节点,其父节点的出现频率为左右子节点出现频率之和。
重复这个过程,直到节点数为1,这样就得到了一棵哈夫曼树。
2.3 生成哈夫曼编码从哈夫曼树的根节点开始,遍历所有的节点,将左子节点标记为0,将右子节点标记为1,将所有的叶子节点的字符和对应的哈夫曼编码保存到一个字典中。
最终得到了每个字符对应的哈夫曼编码。
2.4 进行压缩将文件中每个字符替换为对应的哈夫曼编码,然后将所有的哈夫曼编码拼接成一个二进制数,在最后不足8位的位置补零,将其存储到文件中。
这样就完成了文件的压缩。
3. 哈夫曼编码的优点哈夫曼编码具有以下优点:3.1 压缩率高由于哈夫曼编码是根据不同字符的出现频率来进行编码的,出现频率高的字符用较短的编码表示,出现频率低的字符用较长的编码表示,能够最大限度地减少文件的大小,从而达到高的压缩率。
3.2 唯一解哈夫曼编码是通过构建哈夫曼树来得到每个字符对应的编码,哈夫曼树的构建是唯一的,因此哈夫曼编码也是唯一的。
哈夫曼二进制编码过程哈夫曼编码是一种二进制编码方式,广泛应用于数据压缩和通信领域。
它的构建过程具有一定的规律,通过这种编码方式,可以实现信息的高效传输和存储。
一、哈夫曼编码的简介哈夫曼编码(Huffman Coding)是一种可变长度编码方式,由美国计算机科学家David A.Huffman于1952年提出。
它是基于信息论原理,通过对字符出现的概率进行统计,构建出一种能够实现最高效率的编码方式。
二、哈夫曼编码的构建过程1.统计数据:首先对需要编码的字符出现的频率进行统计,将出现频率最高的字符赋予最小的编码长度,依次类推。
2.构建哈夫曼树:根据统计得到的字符频率,构建一棵哈夫曼树。
在树中,每个字符对应一个叶子节点,每个内部节点表示两个子节点的合并。
3.生成编码表:从哈夫曼树中得到每个字符对应的编码,形成编码表。
4.编码与解码:发送方根据编码表对字符进行编码,接收方根据编码表进行解码。
三、哈夫曼编码的实用性哈夫曼编码具有以下实用性:1.高效性:相较于固定长度编码,哈夫曼编码能够根据字符出现的概率自适应地分配编码长度,从而提高编码效率。
2.可靠性:哈夫曼编码具有唯一性,即相同的字符始终对应相同的编码,便于接收方解码。
3.通用性:哈夫曼编码可应用于各种数据压缩和通信场景,如文本、图像、音频等。
四、哈夫曼编码在现代通信中的应用现代通信技术中,哈夫曼编码得到了广泛应用,如:1.数据压缩:如zip、rar等压缩软件,采用哈夫曼编码对数据进行压缩,减少存储空间和传输时间。
2.通信协议:许多通信协议,如HTTP、FTP等,采用哈夫曼编码对传输数据进行编码,提高传输效率。
3.二维码:哈夫曼编码在二维码编码中也有应用,如QR码等。
五、哈夫曼编码的优点与局限性优点:1.高效:根据字符出现概率自适应分配编码长度,提高编码效率。
2.可靠性:唯一性编码,便于接收方解码。
3.通用:适用于多种数据类型和通信场景。
局限性:1.编码复杂度:构建哈夫曼树和生成编码表的过程较为复杂。