快速傅立叶变换(FFT)的实现
- 格式:doc
- 大小:438.50 KB
- 文档页数:19
从傅里叶变换到快速傅里叶变换的基本实现方法(原创实用版4篇)目录(篇1)I.傅里叶变换的概念和意义1.傅里叶变换是一种将时域信号转换为频域信号的数学变换方法2.在信号处理、图像处理、通信等领域有着广泛的应用II.快速傅里叶变换(FFT)的基本原理1.傅里叶变换的乘法运算导致计算效率低下2.快速傅里叶变换利用了周期函数的周期性性质,将乘法运算转化为加法运算3.FFT的基本算法思想:基于递归的方式,将大的傅里叶变换问题分解为更小的子问题III.FFT的具体实现方法1.迭代实现方法:主要用于离散傅里叶变换(DFT)的实现2.迭代实现方法的优化:使用蝶形图表示FFT的运算过程,便于理解和计算3.直接实现方法:对于特定的离散序列,可以直接计算其FFT结果,不需要进行迭代正文(篇1)一、傅里叶变换的概念和意义傅里叶变换是一种将时域信号转换为频域信号的数学变换方法。
它可以将一个时域信号表示为不同频率的正弦和余弦函数的线性组合,使得信号的频域分析变得更加方便。
傅里叶变换在信号处理、图像处理、通信等领域有着广泛的应用。
二、快速傅里叶变换(FFT)的基本原理傅里叶变换的乘法运算导致计算效率低下,快速傅里叶变换(FFT)利用了周期函数的周期性性质,将乘法运算转化为加法运算。
FFT的基本算法思想是:基于递归的方式,将大的傅里叶变换问题分解为更小的子问题。
FFT算法可以分为迭代实现方法和直接实现方法,其中迭代实现方法主要用于离散傅里叶变换(DFT)的实现。
三、FFT的具体实现方法1.迭代实现方法:迭代实现方法的主要思想是将大的傅里叶变换问题分解为更小的子问题,通过递归的方式逐步求解。
迭代实现方法可以使用蝶形图表示FFT的运算过程,便于理解和计算。
2.迭代实现方法的优化:迭代实现方法的优化主要是为了减少计算量,例如使用树形结构来存储中间结果,减少重复计算。
3.直接实现方法:对于特定的离散序列,可以直接计算其FFT结果,不需要进行迭代。
快速傅里叶变换fft的c程序代码实现标题:一种高效实现快速傅里叶变换(FFT)的C语言程序代码导言:快速傅里叶变换(Fast Fourier Transform,FFT)是一种在信号处理、图像处理、通信系统等领域广泛应用的重要算法。
它通过将输入信号从时域转换到频域,实现了对信号的频谱分析和频率成分提取。
在实际应用中,为了获得高效的FFT计算过程,我们需要使用合适的算法和优化技巧,并将其转化为高质量的C语言代码。
本文将介绍一种基于Cooley-Tukey算法的快速傅里叶变换的C语言程序代码实现。
我们将从原理开始详细讲解FFT算法,然后逐步引入代码实现的步骤,并进行相关优化。
我们将总结整个实现过程,并分享一些个人对FFT算法的理解和观点。
一、快速傅里叶变换(FFT)的原理(1)傅里叶级数与离散傅里叶变换傅里叶级数是将一个周期函数分解为一系列正弦和余弦函数的和的方法。
然而,实际数字信号往往是离散的。
我们需要离散傅里叶变换(Discrete Fourier Transform,DFT)来对离散信号进行频谱分析。
(2)DFT的定义及其计算复杂度离散傅里叶变换通过对离散信号的变换矩阵进行乘法运算,得到其频谱表示。
然而,直接使用定义式计算DFT的时间复杂度为O(N^2),其中N为信号长度,这对于大规模信号计算是不可接受的。
(3)引入快速傅里叶变换 (FFT)Cooley-Tukey算法是一种最常用的FFT算法,通过将DFT分解为多个较小规模的DFT计算来降低计算复杂度。
FFT的时间复杂度为O(NlogN),大大提高了计算效率。
二、快速傅里叶变换(FFT)的C语言实现(1)算法流程和数据结构设计以一维FFT为例,我们需要定义合适的数据结构来表示复数和存储输入输出信号,同时设计实现FFT的主要流程。
(2)递归实现方法递归实现是最直观的FFT实现方法,基于Cooley-Tukey算法的思想。
将输入信号分为偶数和奇数两部分,然后递归计算它们的FFT。
快速傅里叶变换FFT的C语言实现及应用快速傅里叶变换(Fast Fourier Transform, FFT)是一种快速计算离散傅里叶变换(Discrete Fourier Transform, DFT)的算法。
它能够在较短时间内计算出巨大数据集的傅里叶变换,广泛应用于信号处理、图像处理、通信等领域。
C语言是一种广泛应用于嵌入式系统和科学计算的编程语言,拥有高效、灵活和可移植等特点。
下面将介绍FFT的C语言实现及应用。
首先,我们需要了解离散傅里叶变换的定义。
离散傅里叶变换将一组离散的时域信号转换成一组对应的频域信号,可以表示为以下公式:X(k) = Σ[ x(n) * W^(kn) ]其中,X(k)是频域信号,x(n)是时域信号,W是单位复数旋转因子,其计算公式为W=e^(-j*2π/N),其中j是虚数单位,N是信号的长度。
实现FFT算法的关键在于计算旋转因子的值,一种常用的计算方法是采用蝶形算法(butterfly algorithm)。
蝶形算法将DFT分解成多个子问题的求解,通过递归调用可以快速计算出结果。
以下是一种基于蝶形算法的FFT实现的示例代码:```c#include <stdio.h>#include <math.h>typedef structfloat real;float imag;if (N <= 1)return;}for (int i = 0; i < N/2; i++)even[i] = signal[2*i];odd[i] = signal[2*i + 1];}fft(even, N/2);fft(odd, N/2);for (int k = 0; k < N/2; k++)signal[k].real = even[k].real + temp.real;signal[k].imag = even[k].imag + temp.imag;signal[k + N/2].real = even[k].real - temp.real; signal[k + N/2].imag = even[k].imag - temp.imag; }int maiint N = sizeof(signal) / sizeof(signal[0]);fft(signal, N);printf("频域信号:\n");for (int i = 0; i < N; i++)printf("%f + %fi\n", signal[i].real, signal[i].imag);}return 0;```以上代码实现了一个简单的4点FFT算法,输入时域信号为{1,0,1,0},输出为对应的频域信号。
快速傅立叶变换(FFT )的实现一、实验目的1.了解FFT 的原理及算法;2.了解DSP 中FFT 的设计及编程方法;3.熟悉FFT 的调试方法;二、实验原理FFT 是一种高效实现离散付立叶变换的算法,把信号从时域变换到频域,在频域分析处理信息。
对于长度为N 的有限长序列x (n ),它的离散傅里叶变换为:(2/)j N nk N W e π-=,称为旋转因子,或蝶形因子。
在x (n )为复数序列的情况下,计算X (k ):对某个k 值,需要N 次复数乘法、(N -1)次复数加法;对所有N 个k 值,需要2N 次复数乘法和N (N -1)次复数加法。
对于N 相当大时(如1024)来说,直接计算它的DFT 所作的计算量是很大的,FFT 的基本思想在于: 利用2()j nk N N W e π-=的周期性即:k N k N N W W +=对称性:/2k k N N N W W +=-将原有的N 点序列分成两个较短的序列,这些序列的DFT 可以很简单的组合起来得到原序列的DFT 。
按时间抽取的FFT ——DIT FFT 信号流图如图5.1所示:图5.1 时间抽取的FFT —DIT FFT 信号流图FFT 算法主要分为以下四步。
第一步 输入数据的组合和位倒序∑=-=10)()(N n nk N W n x k X把输入序列作位倒序是为了在整个运算最后的输出中得到的序列是自然顺序。
第二步 实现N 点复数FFT第一级蝶形运算;第二级蝶形运算;第三级至log2N 级蝶形运算;FFT 运算中的旋转因子N W 是一个复数,可表示:为了实现旋转因子N W 的运算,在存储空间分别建立正弦表和余弦表,每个表对应从0度到180度,采用循环寻址来对正弦表和余弦表进行寻址。
第三步 功率谱的计算X (k )是由实部()R X k 和虚部()I X k 组成的复数:()()()R I X k X k jX k =+;计算功率谱时只需将FFT 变换好的数据,按照实部()R X k 和虚部()I X k 求它们的平方和,然后对平方和进行开平方运算。
一、概述傅里叶变换是信号处理和数据压缩中常用的数学工具,它可以将时域信号转换为频域信号,从而便于分析和处理。
而快速傅里叶变换(FFT)则是一种高效的计算傅里叶变换的方法,可以大大提高计算效率,广泛应用于信号处理、图像处理、通信系统等领域。
二、傅里叶变换原理傅里叶变换的基本思想是将一个时域信号分解为不同频率的正弦和余弦函数的叠加,从而得到该信号的频谱图。
具体来说,对于一个连续信号x(t),它的傅里叶变换X(ω)定义为:X(ω) = ∫[0,∞]x(t)e^(-jωt)dt其中,ω为频率变量,X(ω)表示在频率ω处的信号能量。
而对于离散信号x[n],它的傅里叶变换X[k]则定义为:X[k] = ∑[n=0,N-1]x[n]e^(-j2πkn/N)其中,N为信号的采样点数,k为频率域的序号。
上述公式称为离散傅里叶变换(DFT),计算复杂度为O(N^2)。
而快速傅里叶变换则通过巧妙的算法设计,将计算复杂度降低到O(NlogN)。
三、快速傅里叶变换算法概述快速傅里叶变换的算法最早由Cooley和Tukey在1965年提出,它的基本思想是将一个长度为N的DFT分解为两个长度为N/2的DFT的组合,通过递归地分解和合并,最终实现对整个信号的快速计算。
下面我们来介绍一种常用的快速傅里叶变换算法:递归式分治法。
四、递归式分治法递归式分治法是一种高效的计算DFT的方法,它的基本思想是将长度为N的DFT分解为两个长度为N/2的DFT,并通过递归地调用自身,最终实现对整个信号的傅里叶变换。
具体来说,假设有一个长度为N的信号x[n],对其进行快速傅里叶变换的过程可以分为如下几个步骤:1. 将长度为N的信号x[n]分为长度为N/2的偶数序号和奇数序号的两个子信号x_even[n]和x_odd[n];2. 对子信号x_even[n]和x_odd[n]分别进行快速傅里叶变换,得到它们的频域表示X_even[k]和X_odd[k];3. 结合X_even[k]和X_odd[k],计算原信号的频域表示X[k]。
快速傅里叶变换FFT的FPGA设计与实现学生姓名郭衡班级电科1704学号17419002064指导教师谭会生成绩2020年5 月20 日快速傅里叶变换FFT 的设计与实现一、研究项目概述非周期性连续时间信号x(t)的傅里叶变换可以表示为:=)(ϖX dt tj et x ⎰∞∞--1)(ϖ,式中计算出来的是信号x(t)的连续频谱。
但是,在实际的控制系统中能够式中计算出来的是信号x(t)的连续频谱。
但是,在实际的控制系统中能够算信号x(t)的频谱。
有限长离散信号x(n),n=0,1,…,N-1的DFT 定义为:∑-=-=-==102,1.....10)()(N n Nj N knNeW N k W n x K X π、、。
可以看出,DFT 需要计算大约N2次乘法和N2次加法。
当N 较大时,这个计算量是很大的。
利用WN 的对称性和周期性,将N 点DFT 分解为两个N /2点的DFT ,这样两个N /2点DFT 总的计算量只是原来的一半,即(N /2)2+(N /2)2=N2/2,这样可以继续分解下去,将N /2再分解为N /4点DFT 等。
对于N=2m 点的DFT 都可以分解为2点的DFT ,这样其计算量可以减少为(N /2)log2N 次乘法和Nlog2N 次加法。
图1为FFT 与DFT-所需运算量与计算点数的关系曲线。
由图可以明显看出FFT 算法的优越性。
图1 FFT 与DFT 所需乘法次数比较X[1]将x(n)分解为偶数与奇数的两个序列之和,即x(n)=x1(n)+x2(n)。
x1(n)和x2(n)的长度都是N /2,x1(n)是偶数序列,x2(n)是奇数序列,则∑∑=--=-=+2)12(1202)1.....,0()(2)(1)(N n kn N N n km N N k W n x W n x K X所以)1...,0()(2)(1)(1222120-=+=∑∑-=-=N k W n x W W n x K X N n km N k N km N Nn由于kmN N jkm Njkm NW eeW2/2/2222===--ππ,则)1.....,0)((2)(1)(2)(1)(122/1202/-=+=+=∑∑-=-=N k k X W k X W n x W W n x K X kN N n km N k N Nn kn N其中X1(k)和X2(k)分别为x1(n)和x2(n)的N /2点DFT 。
快速傅里叶变换FFT算法源码经典以下是一个经典的快速傅里叶变换(FFT)算法的源码,包含详细的注释解释每个步骤的作用。
```pythonimport cmath#递归实现快速傅里叶变换def fft(x):N = len(x)#基本情况:如果输入向量只有一个元素,则直接返回该向量if N <= 1:return x#递归步骤:#将输入向量分成两半even = fft(x[0::2]) # 偶数索引的元素odd = fft(x[1::2]) # 奇数索引的元素T = [cmath.exp(-2j * cmath.pi * k / N) * odd[k] for k in range(N // 2)]#组合结果return [even[k] + T[k] for k in range(N // 2)] + \[even[k] - T[k] for k in range(N // 2)]#逆傅里叶变换def ifft(X):N = len(X)#将输入向量取共轭X_conj = [x.conjugate( for x in X]#应用快速傅里叶变换x_conj = fft(X_conj)#将结果取共轭并归一化return [(x.conjugate( / N).real for x in x_conj]#示例测试if __name__ == "__main__":x=[1,2,3,4]X = fft(x)print("快速傅里叶变换结果:", X)print("逆傅里叶变换恢复原始向量:", ifft(X))```这个源码实现了一个经典的快速傅里叶变换(FFT)算法。
首先,`fft`函数实现了递归的快速傅里叶变换,接收一个输入向量`x`作为参数,返回傅里叶变换后的结果`X`。
如果输入向量只有一个元素,则直接返回。
否则,将输入向量分成两半,分别对偶数索引和奇数索引的元素递归应用FFT。
[C++]频谱图中FFT快速傅⾥叶变换C++实现在项⽬中,需要画波形频谱图,因此进⾏查找,不是很懂相关知识,下列代码主要是针对这篇⽂章。
//快速傅⾥叶变换/*⼊⼝参数:inv: =1,傅⾥叶变换; =-1,逆傅⾥叶变换N:输⼊的点数,为偶数,⼀般为2的幂次级,2,4,8,16...k: 满⾜N=2^k(k>0),实质上k是N个采样数据可以分解为偶次幂和奇次幂的次数real[]: inv=1时,存放N个采样数据的实部,inv=-1时,存放傅⾥叶变换的N个实部imag[]: inv=1时,存放N个采样数据的虚部,inv=-1时,存放傅⾥叶变换的N个虚部出⼝参数:real[]: inv=1时,返回傅⾥叶变换的实部,inv=-1时,返回逆傅⾥叶变换的实部imag[]: inv=1时,返回傅⾥叶变换的虚部,inv=-1时,返回逆傅⾥叶变换的虚部*/void FFT::dealFFT(double real[], double imag[], double dSp[], int N, int k, int inv){int i, j, k1, k2, m, step, factor_step;double temp_real, temp_imag, factor_real, factor_imag;if (inv != 1 && inv != -1)return;//double *real = new double[N];//double *imag = new double[N];//倒序j = 0;for (i = 0; i < N; i++){if (j>i){temp_real = real[j];real[j] = real[i];real[i] = temp_real;temp_imag = imag[j];imag[j] = imag[i];imag[i] = temp_imag;}m = N / 2;while (j >= m&&m != 0){j -= m;m >>= 1;}j += m;}//蝶形运算for (i = 0; i < k; i++){step = 1 << (i + 1);factor_step = N >> (i + 1); //旋转因数变化速度//初始化旋转因⼦factor_real = 1.0;factor_imag = 0.0;for (j = 0; j < step / 2; j++){for (k1 = j; k1 < N; k1 += step){k2 = k1 + step / 2; //蝶形运算的两个输⼊/* temp_real = real[k1] + real[k2] * factor_real - imag[k2] * factor_imag;temp_imag = imag[k1] + real[k2] * factor_imag + imag[k2] * factor_real;real[k2] = real[k1] - (real[k2] * factor_real - imag[k2] * factor_imag);imag[k2] = imag[k1] - (real[k2] * factor_imag + imag[k2] * factor_real);real[k1] = temp_real;imag[k1] = temp_imag;*///上⾯⽅法虽然直⽩,但效率太低,稍微改变结构如下:temp_real = real[k2] * factor_real - imag[k2] * factor_imag;temp_imag = real[k2] * factor_imag + imag[k2] * factor_real;real[k2] = real[k1] - temp_real;imag[k2] = imag[k1] - temp_imag;real[k1] = real[k1] + temp_real;imag[k1] = imag[k1] + temp_imag;}factor_real = inv*cos(-2 * PI*(j + 1)*factor_step / N);factor_imag = inv*sin(-2 * PI*(j + 1)*factor_step / N);}}if (inv == -1){for (i = 0; i <= N - 1; i++){real[i] = real[i] / N;imag[i] = imag[i] / N;}}for (i = 0; i<N;i++){dSp[i] = sqrt(real[i] * real[i] + imag[i] * imag[i]);}}⼀般好像需要进⾏下转换,即后半部分和前半部分置换,即1234变成3412.void FFT::FFTShift(double dp[], int len){for (int i = 0; i < len / 2; i++){double tmp = dp[i];dp[i] = dp[i + len / 2];dp[i + len / 2] = tmp;}}此时得到的应该是实部和虚部解出来的频谱图的Y轴电压值,⼀般频谱图Y轴为dB,因此需要进⾏转换void FFT::getFFT(double dRe[], double dIm[], double dSp[], int len, int nBits, double dWorkingImpedance){dealFFT(dRe, dIm, dSp, len, nBits, 1);FFTShift(dSp,len); //此时得到的应该是实部和虚部解出来的频谱图的Y轴电压值,还需要转换////dBW = 10lg(电压^2/阻抗);dBm =dBW+30,注意电压单位是Vfor (int i = 0; i<len; i++){dSp[i] = 10 * log10(dSp[i] * dSp[i] / dWorkingImpedance)+30;}}getFFT()输出之后的dp才是要的频谱图Y轴值,频谱图X轴的坐标得到通过以下⽅式://X轴精确度,采样频率/数据个数 = 步长m_DeltaX_S = m_dataPara.nSampleFrequency / nDataNumOfPage_S;data_SX[i / 2] = m_dataPara.nCenterFrequency + count*m_DeltaX_S - m_dataPara.nWorkingBandWidth/2;//中⼼频率+当前点*步长-带宽/2在项⽬中,实际代码如下:int count = 0;for (int i = 0; i < nDataNumOfPage_S * 2; i++){if (i % 2 == 0)data_SQ[i / 2] = data_S[i] * m_DeltaY_S;elsedata_SI[i / 2] = data_S[i] * m_DeltaY_S;if (i % 2 == 0){count++;data_SX[i / 2] = m_dataPara.nCenterFrequency + count*m_DeltaX_S - m_dataPara.nWorkingBandWidth/2;}}m_dataPara.nWorkingImpedance = 50;FFT fft;int nBits = log10(nDataNumOfPage_S) / log10(2);//因为参数需要是2的N次⽅fft.getFFT(data_SQ, data_SI, data_SS, nDataNumOfPage_S, nBits, m_dataPara.nWorkingImpedance); LoadData_S(data_SX, data_SS, nDataNumOfPage_S);。
§2.4 快速傅里叶变换 (FFT) 实现一、实验目的 1. 掌握FFT 算法的基本原理;2. 掌握用C 语言编写DSP 程序的方法。
二、实验设备 1. 一台装有CCS3.3软件的计算机; 2. DSP 实验箱的TMS320F2812主控板;3. DSP 硬件仿真器。
三、实验原理傅里叶变换是一种将信号从时域变换到频域的变换形式,是信号处理的重要分析工具。
离散傅里叶变换(DFT )是傅里叶变换在离散系统中的表示形式。
但是DFT 的计算量非常大, FFT 就是DFT 的一种快速算法, FFT 将DFT 的N 2 步运算减少至 ( N/2 )log 2N 步。
离散信号x(n)的傅里叶变换可以表示为∑=-=10][)(N N nk N W n x k X , Nj N e W /2π-=式中的W N 称为蝶形因子,利用它的对称性和周期性可以减少运算量。
一般而言,FFT 算法分为时间抽取(DIT )和频率抽取(DIF )两大类。
两者的区别是蝶形因子出现的位置不同,前者中蝶形因子出现在输入端,后者中出现在输出端。
本实验以时间抽取方法为例。
时间抽取FFT 是将N 点输入序列x(n) 按照偶数项和奇数项分解为偶序列和奇序列。
偶序列为:x(0), x(2), x(4),…, x(N-2);奇序列为:x(1), x(3), x(5),…, x(N-1)。
这样x(n) 的N 点DFT 可写成:()()∑++∑=-=+-=12/0)12(12/02122)(N n kn NN n nkNW n x Wn x k X考虑到W N 的性质,即2/)2//(22/)2(2][N N j N j N W e e W ===--ππ因此有:()()∑++∑=-=-=12/02/12/02/122)(N n nkN kNN n nkN W n x W Wn x k X或者写成:()()k Z W k Y k X kN +=)(由于Y(k) 与Z(k) 的周期为N/2,并且利用W N 的对称性和周期性,即:k NN k N W W -=+2/可得:()()k Z W k Y N k X kN -=+)2/(对Y(k) 与Z(k) 继续以同样的方式分解下去,就可以使一个N 点的DFT 最终用一组2点的DFT 来计算。
fft算法的基本原理快速傅里叶变换(FastFourierTransform,FFT)算法是一种经典的基于信号处理的算法,其作用是将时域信号转换为频域信号。
它的算法可以用于前端的信号处理,以更有效的方式执行空域和频域信号转换。
快速傅里叶变换(FFT)算法是由科学家约翰弗里德里赫傅立叶发明的。
它是从傅立叶变换(FT)算法有效地改进而来的。
FT算法是一种将时域信号转换为频域信号的技术,因其可以实现复杂信号的高效处理而被广泛应用。
FFT算法旨在改善FT算法的处理效率。
它最早是由约翰弗里德里赫傅立叶于1846年发明的,后来由真空管算法的发展对它进行了优化,直至20世纪50年代,由心电图学家James Cooley和John Tukey使用计算机科学将其有效地实施。
FFT算法的发展为信号处理技术的发展提供了新的思路,由此,FFT算法成为信号处理技术的经典算法之一。
FFT算法的原理十分简单,是将时域信号转换为频域信号的一种有效方法。
此外,FFT算法可以有效地拆分复杂的频域信号,从而使其成本和处理效率更低。
FFT算法的基本原理是,通过傅立叶变换,将时域信号转换为频域信号。
傅立叶变换是一种从时域到频域的线性变换,它可以将时域信号转换为频域信号。
不同的时域信号会在频域中产生不同的响应,这样,对不同的时域信号可以做出不同的频域响应。
FFT算法的关键点是拆分时域信号,以减少傅立叶变换的耗时。
它通过利用均匀(uniform)采样和非均匀(non-uniform)采样,将时域信号转换为特定数量的离散频率信号,每个频率信号的幅值表示出时域信号在同一时刻的特定周期率的测量值。
非均匀采样是FFT算法的基本要素,它指将时域信号转换为频域信号时采用的采样步长不要求一定,而是逐渐增大。
这样可以减少傅立叶变换的处理时间。
最后,FFT算法可以将时域信号转换为频域信号,从而获得信号的实际内容。
快速傅立叶变换(FFT)算法是将时域信号转换为频域信号的一种高效手段。
DIF和DIT实现FFTFFT(快速傅里叶变换)是一种高效的算法,用于将一个离散的傅里叶变换(DFT)序列转换为其相应的频谱表示。
在FFT算法中,有两个重要的参数,即DIF(分离回归)和DIT(混合回归),它们在算法的实现中起着关键的作用。
DIF(Decimation-In-Frequency)表示在频域中将输入序列拆分为两个子序列,然后递归地对这些子序列进行FFT变换并组合结果。
具体过程如下:1.将输入序列分成偶数和奇数索引的两个子序列,分别称为偶数序列和奇数序列。
2.对这两个子序列分别进行DFT或递归DFT,得到它们的频谱表示。
3.将两个子序列的频谱结果合并为一个频谱。
其中,奇数序列的频谱结果在频率上紧跟在偶数序列的频谱结果后面。
4.重复上述步骤,直到得到最终的频谱。
DIT(Decimation-In-Time)表示在时域中将输入序列拆分为两个子序列,然后递归地对这些子序列进行FFT变换并组合结果。
具体过程如下:1.将输入序列分成偶数和奇数索引的两个子序列,分别称为偶数序列和奇数序列。
2.对这两个子序列分别进行DFT或递归DFT,得到它们的频谱表示。
3.将两个子序列的频谱结果交叉合并为一个频谱。
偶数序列的频谱结果与奇数序列的频谱结果交替出现。
4.重复上述步骤,直到得到最终的频谱。
总的来说,DIF和DIT实现FFT的步骤类似,只是在分解和合成的顺序上有所不同。
DIF算法在频域中进行分解,逐步减少输入序列的长度,最终得到频谱。
DIT算法在时域中进行分解,逐步增加输入序列的长度,最终得到频谱。
两种算法都可以实现DFT的高效计算,其中DIT算法更加直观,容易理解。
无论是DIF还是DIT,实现FFT算法都需要考虑递归的终止条件、处理长度为2的序列的情况以及合并子序列的方式。
在具体实现中,可以使用循环或递归的方式进行操作。
算法的时间复杂度为O(NlogN),其中N 是输入序列的长度。
总结起来,DIF和DIT是实现FFT算法的基本思想,它们在分解和合成的顺序上有所不同,但都能高效地计算离散傅里叶变换。
快速傅里叶变换(FFT)算法C++实现代码#include <math.h>#define DOUBLE_PI 6.283185307179586476925286766559// 快速傅里叶变换// data 长度为 (2 * 2^n), data 的偶位为实数部分, data 的奇位为虚数部分// isInverse表示是否为逆变换void FFT(double * data, int n, bool isInverse = false){int mmax, m, j, step, i;double temp;double theta, sin_htheta, sin_theta, pwr, wr, wi, tempr, tempi;n = 2 * (1 << n);int nn = n >> 1;// 长度为1的傅里叶变换, 位置交换过程j = 1;for(i = 1; i < n; i += 2){if(j > i){temp = data[j - 1];data[j - 1] = data[i - 1];data[i - 1] = temp;data[j] = temp;data[j] = data[i];data[i] = temp;}// 相反的二进制加法m = nn;while(m >= 2 && j > m){j -= m;m >>= 1;}j += m;}// Danielson - Lanczos 引理应用mmax = 2;while(n > mmax){step = mmax << 1;theta = DOUBLE_PI / mmax;if(isInverse){theta = -theta;}sin_htheta = sin(0.5 * theta);sin_theta = sin(theta);pwr = -2.0 * sin_htheta * sin_htheta;wr = 1.0;wi = 0.0;for(m = 1; m < mmax; m += 2){for(i = m; i <= n; i += step){j = i + mmax;tempr = wr * data[j - 1] - wi * data[j];tempi = wr * data[j] + wi * data[j - 1];data[j - 1] = data[i - 1] - tempr;data[j] = data[i] - tempi;data[i - 1] += tempr;data[i] += tempi;}sin_htheta = wr;wr = sin_htheta * pwr - wi * sin_theta + wr;wi = wi * pwr + sin_htheta * sin_theta + wi;}mmax = step;}}输入数据为data,data是一组复数,偶数位存储的是复数的实数部分,奇数位存储的是复数的虚数部分。
快速傅⾥叶变换(fft)及其逆变换(iff)的c代码实现#define float sample_t// data的长度为n,必须是2的指数倍,result的长度为2n,其中奇数项保存虚数,偶数项保存的是实数int fft(sample_t *data, int sample_number, sample_t *result){// 需要给奇数部分填充虚数0for(int i = 0; i < sample_number; ++i){result[2*i] = data[i];result[2*i+1] = 0;}int flag = 1;flag = fft_ifft_implement(result, sample_number, flag);return flag;}// data的长度是2n,result的长度为n,n必须是2的指数倍int ifft(sample_t *data, int sample_number, sample_t *result){int flag = -1;flag = fft_ifft_implement(data, sample_number, flag);// 奇数部分是虚数,需要舍弃for (int i = 0; i < sample_number; i++){result[i] = data[2*i] / sample_number;}return flag;}static int fft_ifft_implement(sample_t *data, int sample_number, int flag){// 判断样本个数是不是2的指数倍,如果不是能否补零成指数倍?sample_t number_log = log(sample_number) / log(2);int mmax = 2, j=0;int n = sample_number<<1;int istep, m;sample_t theta, wtemp, wpr, wpi, wr, wi, tempr, tempi;if (((int)number_log - number_log) != 0){return 0;}for(int i = 0; i < n-1; i=i+2){if(j > i){swap(data, j ,i);swap(data, j + 1 ,i + 1);}m = n / 2;while(m >= 2 && j >= m){j = j - m;m = m / 2;}j = j + m;}while(n > mmax){istep = mmax<<1;theta = -2 * PI / (flag * mmax);wtemp = sin(0.5 * theta);wpr = -2.0 * wtemp * wtemp;wpi = sin(theta);wr = 1.0;wi = 0.0;for(int m = 1; m < mmax; m = m + 2){for(int i = m; i < n + 1; i = i + istep){int j = i + mmax;tempr = wr * data[j-1] - wi * data[j];tempi = wr * data[j] + wi * data[j-1];data[j-1] = data[i-1] - tempr;data[j] = data[i] - tempi;data[i-1] += tempr;data[i] += tempi;}wtemp = wr;wr += wr * wpr - wi * wpi;wi += wi * wpr + wtemp * wpi;}mmax = istep;}return 1;}static void swap(sample_t *data ,int m, int n) {sample_t temp = data[m];data[m] = data[n];data[n] = temp;}。
快速傅里叶变换的原理一、前言快速傅里叶变换(FFT)是一种高效的计算傅里叶变换的方法,它的应用广泛,如信号处理、图像处理、数值分析等领域。
本文将详细介绍快速傅里叶变换的原理。
二、傅里叶变换在介绍快速傅里叶变换之前,我们需要先了解傅里叶变换。
傅里叶变换是将一个信号在时域上的函数转化为在频域上的函数,它可以将信号分解成不同频率的正弦波和余弦波组成的谱。
具体来说,对于一个连续时间函数f(t),它的傅里叶变换F(ω)定义为:F(ω) = ∫f(t)e^(-jωt)dt其中,j为虚数单位,ω为角频率。
对于一个离散时间函数f(n),它的傅里叶变换F(k)定义为:F(k) = Σf(n)e^(-j2πkn/N)其中,N为采样点数。
三、暴力计算傅里叶变换直接使用定义式计算离散时间信号的傅里叶变换需要进行N^2次复杂度的计算,这种方法被称为暴力计算。
当N很大时,计算量会非常大,因此需要寻找更高效的算法。
四、快速傅里叶变换快速傅里叶变换是一种高效的计算离散时间信号的傅里叶变换的方法。
它的基本思想是将一个长度为N的离散时间信号分解成两个长度为N/2的子信号,然后递归地对子信号进行FFT计算,最终将两个子信号合并成一个长度为N的信号。
具体来说,假设我们要计算一个长度为N的离散时间信号f(n)的FFT变换F(k),其中k=0,1,2,...,N-1。
我们可以将f(n)分解成两个长度为N/2的子信号:f_even(n) = f(2n)f_odd(n) = f(2n+1)然后对f_even(n)和f_odd(n)分别进行FFT计算:F_even(k) = FFT(f_even(n))F_odd(k) = FFT(f_odd(n))最后将F_even(k)和F_odd(k)合并成F(k),其中:F(k) = F_even(k) + e^(-j2πk/N)*F_odd(k)F((k+N/2)%N) = F_even(k) - e^(-j2πk/N)*F_odd(k)其中,e^(-j2πk/N)*F_odd(k)被称为旋转因子。
fpga 快速傅里叶变换
FPGA(Field-Programmable Gate Array)是一种硬件设计技术,它可以被用户定制以满足特定的计算需求。
而快速傅里叶变换(Fast Fourier Transform,FFT)是一种高效的计算离散傅里叶变换(Discrete Fourier Transform,DFT)的方法。
在FPGA中实现快速傅里叶变换,通常需要以下几个步骤:
1. 数据预处理:将输入的数据进行预处理,使其符合FFT算法的要求。
这通常包括将数据分为多个小段,并对每个小段进行重新排序。
2. 查找表(Look-Up Table,LUT)实现:在FPGA中,可以使用查找表来实现FFT。
查找表中的每个表项对应一个复数,这些复数构成了FFT的结果。
查找表的大小取决于输入数据的点数和FFT的阶数。
3. 循环移位和点积:在得到了查找表的结果后,可以通过循环移位和点积操作来得到最终的FFT结果。
4. 结果后处理:根据需要,可以对FFT的结果进行一些后处理,例如取绝对值、反三角等。
通过这种方式,FPGA可以实现快速傅里叶变换,从而提高计算效率。
基于DSP的FFT实现基于数字信号处理(DSP)的快速傅里叶变换(FFT)是一种高效的信号处理算法,可以将时域信号转换为频域信号。
FFT广泛应用于音频处理、图像处理、通信系统等领域。
FFT算法的核心思想是将N个采样点的离散信号转化为具有N个频域分量的频谱信号。
它通过分治思想,将原始信号分解为两个较小的子问题,并连续进行分解,直到问题规模减小到可以直接求解的程度。
FFT算法的基本步骤如下:1.将N个采样点按照时间顺序排列,作为输入信号。
2.如果N为奇数,将输入信号补零为N+1个点。
3.将输入信号拆分为两个子问题,每个子问题的规模为N/24.对每个子问题递归地应用FFT算法,得到子问题的频域分量。
5.组合子问题的频域分量,得到原始信号的频谱。
6.对频谱进行后处理,如频谱幅值计算、频率估计等。
FFT算法通过递归实现,其中最重要的步骤是蝶形运算。
蝶形运算是FFT算法的核心操作,通过对复数运算的重复应用,将输入信号转换为频域分量。
FFT算法的性能优于传统的傅里叶变换算法,这得益于其时间复杂度的优化。
传统的傅里叶变换算法的时间复杂度为O(N^2),而FFT算法通过分治思想,将时间复杂度优化为O(NlogN)。
这使得FFT算法在大规模信号处理中具有巨大的优势。
在实际应用中,FFT算法可以通过硬件加速来进一步提高性能。
现代DSP芯片内置了专门的FFT硬件,可以实现FFT算法的加速计算。
这些硬件加速器通过并行计算、流水线操作等技术,大幅提升了FFT算法的运行速度。
除了FFT算法之外,还有一些改进的算法可用于实现高效的傅里叶变换。
例如快速哈特利变换(FHT)算法、快速余弦变换(DCT)算法等。
这些算法在一些特定的应用场景下,具有更高的性能和更低的复杂度。
总之,基于DSP的FFT实现是一种高效的信号处理算法,广泛应用于各个领域。
它通过分治思想和蝶形运算,将时域信号转化为频域信号,实现了信号处理的高速计算和高质量结果。
电子科技大学通信与信息工程学院标准实验报告(实验)课程名称DSP设计与实践电子科技大学教务处制表电 子 科 技 大 学实 验 报 告学生姓名: 学 号 指导教师:实验地点: 实验时间: 一、实验室名称: 科B341 二、实验项目名称:快速傅立叶变换(FFT )的实现 三、实验学时:4 四、实验原理:基—2按时间抽取FFT 算法对于有限长离散数字信号{x[n]},0 ≤ n ≤ N-1,其离散谱{x[k]}可以由离散付氏变换(DFT )求得。
DFT 的定义为可以方便的把它改写为如下形式:不难看出,W N 是周期性的,且周期为N ,即W N 的周期性是DFT 的关键性质之一。
为了强调起见,常用表达式W N 取代W 以便明确其周期是N 。
由DFT 的定义可以看出,在x[n]为复数序列的情况下,完全直接运算N 点DFT 需要(N-1)2次复数乘法和N (N-1)次加法。
因此,对于一些相当大的N 值(如1024)来说,直接计算它的DFT 所作的计算量是很大的。
FFT 的基本思想在于,将原有的N 点序列序列分成两个较短的序列,这些序列的DFT 可以很简单的组合起来得到原序列的DFT 。
例如,若N 为偶数,将原有的N 点序列分成两个(N/2)点序列,那么计算N 点DFT 将只需要约[(N/2)2 ·2]=N 2/2次复数乘法。
即比直接计算少作一半乘法。
因子(N/2)2表示直接计算(N/2)点DFT 所需要的乘法次数,而乘数2代表必须完成两个DFT 。
()1,...,1,0][)2(10-==--=∑N k en x k X nk Nj N n π()1,...,1,0][10-==∑-=N k W n x k X nkNN n ...2,1,0,))((±±==++l m W W nk NlN k mN n N上述处理方法可以反复使用,即(N/2)点的DFT 计算也可以化成两个(N/4)点的DFT (假定N/2为偶数),从而又少作一半的乘法。
这样一级一级的划分下去一直到最后就划分成两点的FFT 运算的情况。
比如,一个N = 8点的FFT 运算按照这种方法来计算FFT 可以用下面的流程图来表示:x(0)x(1)x(2)x(3)x(4)x(5)x(6)x(7)X(7)X(6)X(5)X(4)X(3)X(2)X(1)X(0)关于蝶形结运算的具体原理及其推导可以参照讲义,在此就不再赘述。
实数FFT 运算对于离散傅立叶变换(DFT )的数字计算,FFT 是一种有效的方法。
一般假定输入序列是复数。
当实际输入是实数时,利用对称性质可以使计算DFT 非常有效。
一个优化的实数FFT 算法是一个组合以后的算法。
原始的2N 个点的实输入序列组合成一个N 点的复序列,之后对复序列进行N 点的FFT 运算,最后再由N 点的复数输出拆散成2N 点的复数序列,这2N 点的复数序列与原始的2N 点的实数输入序列的DFT 输出一致。
使用这种方法,在组合输入和拆散输出的操作中,FFT 运算量减半。
这样利用实数FFT 算法来计算实输入序列的DFT 的速度几乎是一般复FFT 算法的两倍。
本实验就用这种方法实现了一个256点实数FFT (2N = 256)运算。
⒈ 实数FFT 运算序列的存储分配如何利用有限的DSP 系统资源,合理的安排好算法使用的存储器是一个比较重要的问题。
参见FFT 实验程序的CMD 文件:MEMORY {PAGE 0: IPROG: origin = 0x3080, len = 0x1F80 VECT: origin = 0x3000, len = 0x80 EPROG: origin = 0x38000, len = 0x8000PAGE 1: USERREGS: origin = 0x60, len = 0x1c BIOSREGS: origin = 0x7c, len = 0x4 IDA TA: origin = 0x80, len = 0xB80 EDATA: origin = 0xC00, len = 0x1400}SECTIONS{.vectors: {} > VECT PAGE 0.sysregs: {} > BIOSREGS PAGE 1.trcinit: {} > IPROG PAGE 0.gblinit: {} > IPROG PAGE 0.bios: {} > IPROG PAGE 0frt: {} > IPROG PAGE 0.text: {} > IPROG PAGE 0.cinit: {} > IPROG PAGE 0.pinit: {} > IPROG PAGE 0.sysinit: {} > IPROG PAGE 0.data {} > EDA TA PAGE 1.bss: {} > IDA TA PAGE 1.far: {} > IDA TA PAGE 1.const: {} > IDATA PAGE 1.switch: {} > IDATA PAGE 1.sysmem: {} > IDATA PAGE 1.cio: {} > IDA TA PAGE 1.MEM$obj: {} > IDA TA PAGE 1.sysheap: {} > IDATA PAGE 1}从上面的连接定位CMD文件可以了解到,程序代码安排在0x3000开始的存储器中。
其中0x3000-0x3080存放中断向量表。
FFT程序使用的正弦表、余弦表数据(.data段)安排在0xc00开始的地方。
变量(.bss段定义)存放在0x80开始的地址中。
另外,本256点实数FFT程序的输入数据缓冲为0x2300-0x23ff,FFT后功率谱的计算结果存放在0x2200-0x22ff中。
⒉基二实数FFT运算的算法该算法主要分为四步:第一步,输入数据的组合和位倒序把输入序列作位倒序,是为了在整个运算最后的输出中得到的序列是自然顺序。
首先,原始的输入的2N = 256个点的实数序列复制放到标记有“d_input_addr”的相邻单元,当成N = 128点的复数序列d[n]。
奇数地址是d[n]的实部,偶数地址是d[n]的虚部。
这个过程叫做组合(n是从0到无穷,指示时间的变量,N是常量)。
然后,复数序列经过位倒序,存储在数据处理缓冲器中,标记为“fft-data”。
①如图2,输入实数序列为a[n],n=0,1,2,3,…,255。
分离a[n]成两个序列,如图3所示。
原始的输入序列是从地址0x2300到0x23FF,其余的从0x2200到0x22FF的是经过位倒序之后的组合序列:n=0,1,2,3, (127)②d[n]表示复合FFT的输入,r[n]表示实部,i[n]表示虚部:d[n]=r[n]+j i[n]按位倒序的方式存储d[n]到数据处理缓冲中,如图2。
图2* 编程技巧:在用C54x进行位倒序组合时,使用位倒序寻址方式可以大大提高程序执行的速度和使用存储器的效率。
在这种寻址方式中,AR0存放的整数N是FFT点数的一半,一个辅助寄存器指向一数据存放的单元。
当使用位倒序寻址把AR0加到辅助寄存器中时,地址以位倒序的方式产生,即进位是从左到右,而不是从右到左。
例如,当AR0 = 0x0060,AR2 = 0x0040时,通过指令:MAR AR2+0B我们就可以得到AR2位倒序寻址后的值为0x0010。
下面是0x0060(1100000)与0x0040(1000000)以位倒序方式相加的过程:1 1 0 0 0 0 01 0 0 0 0 0 0+0 0 1 0 0 0 0实现256点数据位倒序存储的具体程序段如下:bit_rev:STM #d_input_addr,ORIGINAL_INPUT ;在AR3(ORIGINAL_INPUT)中;放入输入地址STM #fft_data,DATA_PROC_BUF ;在AR7(DATA_PROC_BUF)中;放入处理后输出的地址MVMM DA TA_PROC_BUF,REORDERED_DA TA ;AR2(REORDERED_DA TA);中装入第一个位倒序数据指针STM #K_FFT_SIZE-1,BRCSTM #K_FFT_SIZE,AR0 ;AR0的值是输入数据数目的一半=128RPTB bit_rev_endMVDD *ORIGINAL_INPUT+,*REORDERED_DATA+ ;将原始输入缓冲中的数据;放入到位倒序缓冲中去之;后输入缓冲(AR3)指针加1;位倒序缓冲(AR2)指针也加;一MVDD *ORIGINAL_INPUT-,*REORDERED_DA TA+ ;将原始输入缓冲中的数据;放入到位倒序缓冲中去之;后输入缓冲(AR3)指针减一;位倒序缓冲(AR2)指针加一;以保证位倒序寻址正确MAR *ORIGINAL_INPUT+0B ;按位倒序寻址方式修改AR3 bit_rev_end:注意,在上面的程序中。
输入缓冲指针AR3(即ORIGINAL_INPUT)在操作时先加一再减一,是因为我们把输入数据相邻的两个字看成一个复数,在用寄存器间接寻址移动了一个复数(两个字的数据)之后,对AR3进行位倒序寻址之前要把AR3的值恢复到这个复数的首字的地址,这样才能保证位倒序寻址的正确。
第二步,N点复数FFT在数据处理缓冲器里进行N点复数FFT运算。
由于在FFT运算中要用到旋转因子W N,它是一个复数。
我们把它分为正弦和余弦部分,用Q15格式将它们存储在两个分离的表中。
每个表中有128项,对应从0度到180度。
因为采用循环寻址来对表寻址,128 = 27 < 28,因此每张表排队的开始地址就必须是8个LSB位为0的地址。
参照前面图1 DES 系统的存储区分配,所以我们必须把正弦表第一项“sine_table”放在0x0D00的位置,余弦表第一项“cos_table ”放在0x0E00的位置。
① 根据公式利用蝶形结对d[n]进行N=128点复数FFT 运算,其中所需的正弦值和余弦值分别以Q15的格式存储于内存区以0x0D00开始的正弦表和以0x0E00开始的余弦表中。
我们把128点的复数FFT 分为七级来算,第一级是计算两点的FFT 蝶形结,第二级是计算四点的FFT 蝶形结,然后是八点、十六点、三十二点六十四点、一百二十八点的蝶形结计算。
最后所得的结果表示为: D[k] = F{d[n]} = R[k] + j I[k]其中,R[k]、I[k]分别是D[k]的实部和虚部。
图3② FFT 完成以后,结果序列D[k]就存储到数据处理缓冲器的上半部分,如图3()1,...,1,0][10-==∑-=N k W n d k D nkNN n)2sin()2cos()2(nk Nj nk N eWnk Nj nk Nπππ-==-所示,下半部分任然保留原始的输入序列a[n],这半部分将在第三步中被改写。