快速傅里叶变换FFT2
- 格式:ppt
- 大小:1.36 MB
- 文档页数:88
⽂中内容均为个⼈理解,如有错误请指出,不胜感激前⾔先解释⼏个⽐较容易混淆的缩写吧FMT 快速莫⽐乌斯变化—>感谢stump提供多项式复数在介绍复数之前,⾸先介绍⼀些可能会⽤到的东西(好像画的不是很标准。
)定义设a ,b 为实数,i 2=−1,形如a +bi 的数叫复数,其中i 被称为虚数单位,复数域是⽬前已知最⼤的域在复平⾯中,x 代表实数,y 轴(除原点外的点)代表虚数,从原点(0,0)到(a ,b )的向量表⽰复数a +bi模长:从原点(0,0)到点(a ,b )的距离,即√a 2+b 2幅⾓:假设以逆时针为正⽅向,从x 轴正半轴到已知向量的转⾓的有向⾓叫做幅⾓运算法则加法:因为在复平⾯中,复数可以被表⽰为向量,因此复数的加法与向量的加法相同,都满⾜平⾏四边形定则(就是上⾯那个)乘法:⼏何定义:复数相乘,模长相乘,幅⾓相加代数定义:(a +bi )∗(c +di )=ac +adi +bci +bdi 2=ac +adi +bci −bd=(ac −bd )+(bc +ad )i单位根下⽂中,默认n 为2的正整数次幂在复平⾯上,以原点为圆⼼,1为半径作圆,所得的圆叫单位圆。
以圆点为起点,圆的n 等分点为终点,做n 个向量,设幅⾓为正且最⼩的向量对应的复数为ωn ,称为n 次单位根。
根据复数乘法的运算法则,其余n −1个复数为ω2n ,ω3n ,…,ωn n 注意ω0n =ωn n =1(对应复平⾯上以x 轴为正⽅向的向量)那么如何计算它们的值呢?这个问题可以由欧拉公式解决ωk n =cos k ∗2πn +i sin k ∗2πn例如图中向量AB 表⽰的复数为8次单位根单位根的幅⾓为周⾓的1n在代数中,若z n =1,我们把z 称为n 次单位根单位根的性质ωk n =cos k2πn +i sin k 2πn (即上⾯的公式)ω2k 2n =ωk n证明:ω2k 2n =cos2k ∗2π2n +i sin2k ∗2π2n =ωk nωk +n2n =−ωk n ωn2n =cos n 2∗2πn +i sin n 2∗2πn =cos π+i sin π=−1ω0n =ωn n =1讲了这么多,貌似跟我们的正题没啥关系啊。
快速傅里叶变换(Fast Fourier Transform,FFT)是一种在数字信号处理和数值分析中广泛应用的算法,它能够高效地计算离散傅里叶变换(Discrete Fourier Transform,DFT),从而在频域中分析信号的频谱特性。
而在matlab中,使用FFT函数可以方便地进行快速傅里叶变换的计算和处理。
1. FFT的基本原理在介绍matlab中的FFT函数之前,我们先来了解一下FFT的基本原理。
FFT算法是一种分治法的思想,在计算傅里叶变换时通过将原始信号分解为奇偶部分,然后递归地进行计算,最终得到傅里叶变换的结果。
这种分治的思想使得FFT算法的计算复杂度降低到了O(n log n),比直接计算DFT的O(n^2)复杂度要低很多,因此在实际应用中得到了广泛的应用。
2. matlab中的FFT函数在matlab中,可以使用fft函数来进行快速傅里叶变换的计算。
fft函数的基本语法如下:```Y = fft(X)```其中,X表示输入的信号序列,可以是实数或复数序列;Y表示经过FFT变换后得到的频谱结果。
在使用fft函数时,最常见的是对时域信号进行FFT变换,然后得到其频谱特性。
3. FFT在信号处理中的应用FFT算法在信号处理中有着广泛的应用,其中最常见的就是对信号的频谱特性进行分析。
通过对信号进行FFT变换,可以得到其频谱图,从而可以直观地了解信号的频域特性,包括频率成分、幅度特性等。
这对于音频处理、振动分析、通信系统等领域都是非常重要的。
4. FFT在图像处理中的应用除了在信号处理中的应用,FFT算法也在图像处理中有着重要的地位。
在图像处理中,FFT可以用来进行频域滤波,包括低通滤波、高通滤波、带通滤波等操作。
通过FFT变换,我们可以将图像从空域转换到频域,在频域中进行滤波操作,然后再通过逆FFT变换将图像恢复到空域,从而达到图像增强、去噪等效果。
5. FFT在数学建模中的应用除了在信号处理和图像处理中的应用外,FFT算法还在数学建模和仿真计算中有着重要的作用。
matlab的fft函数用法MATLAB中的fft函数用于计算快速傅里叶变换(FFT)。
FFT是一种将信号从时域转换为频域的方法,常用于信号处理、图像处理等领域。
在本文中,我将一步一步回答有关MATLAB中fft函数的使用方法。
一、基本语法在MATLAB中,fft函数的基本语法如下:Y = fft(X)其中,X是要进行FFT的向量或矩阵,输出结果Y是X的离散傅里叶变换的向量或矩阵。
二、一维FFT首先我们来看一维FFT的使用方法。
假设有一个长度为N的一维向量x,我们将对其进行FFT变换并得到变换结果y。
1. 创建输入向量首先,我们需要创建一个长度为N的向量x,作为FFT的输入。
可以通过以下代码实现:N = 1024; % 向量长度x = randn(N, 1); % 创建长度为N的随机向量2. 进行FFT变换接下来,我们使用fft函数对向量x进行FFT变换,代码如下:y = fft(x);3. 可视化结果为了更好地理解和分析FFT结果,通常会对结果进行可视化。
我们可以使用MATLAB的绘图函数来绘制FFT结果的幅度和相位谱。
例如,可以使用如下代码绘制幅度谱:f = (0:N-1)./N; % 频率轴amp = abs(y); % 幅度谱figure;plot(f, amp);xlabel('Frequency (Hz)');ylabel('Amplitude');title('Amplitude Spectrum');同样,可以使用如下代码绘制相位谱:phase = angle(y); % 相位谱figure;plot(f, phase);xlabel('Frequency (Hz)');ylabel('Phase');title('Phase Spectrum');三、二维FFT除了一维FFT,MATLAB中的fft函数还支持二维FFT。
快速傅里叶变换fft原理
快速傅立叶变换(Fast Fourier Transform,FFT)是一种将时域信号转变为频
域信号的数字信号处理方法。
它通常比傅里叶变换(Fourier Transform,FT)更快、更方便。
它通过将高维度的折叠为低维度,将傅里叶变换从背景计算量O(N2)优化到O(NlogN),并延长空间采样前的信号。
FFT可以理解为若干特殊形式的数学公式,用于将复数的时域函数转换为它们
的频域表示形式的变换,即其频域图像。
例如,我们可以将一个正弦信号的时域图像转换为它的频域图像,从而可以获得关于这个信号的频率的一些有用信息。
FFT的运算思想和FT一样,它们都使用复数的形式将时域信号变换成频域信号,但FFT采用更加高效的算法,以缩短复杂度为O(NlogN)。
它还允许用户以
恒定频率对信号进行采样,然后分析其时域运动规律。
因此,FFT应用于诸如脉冲
调制、音频信号分析等复杂的应用场景,广泛的地增强了计算能力。
fft2缩放因子
FFT(快速傅里叶变换)是一种在数字信号处理中常用的算法,用于将时域信号转换为频域信号。
在二维FFT中,缩放因子是一个重要的概念,用于校正由于离散傅里叶变换(DFT)导致的幅度误差。
在二维FFT中,对于一个大小为N×N的输入信号,其频域表示为X(k, l),其中k和l 分别是频域的行和列索引。
然而,由于DFT的限制,实际计算的X(k, l)可能存在幅度误差。
为了校正这个误差,通常会引入一个缩放因子,记为s。
缩放因子的计算公式如下:
s = 1 / (N * N)
通过将X(k, l)乘以s,可以得到更精确的频域表示。
需要注意的是,缩放因子的引入并不改变频域信号的相位。
此外,缩放因子的大小与FFT算法的实现有关。
不同的FFT算法(如Cooley-Tukey、Radix-2、Radix-4等)可能具有不同的缩放因子。
在实际应用中,为了获得更精确的结果,需要根据所使用的FFT算法选择合适的缩放因子。
值得注意的是,缩放因子在信号处理、图像处理、频谱分析等领域中都有广泛的应用。
除了二维FFT外,缩放因子也适用于其他类型的DFT和FFT算法。
因此,了解缩放因子的概念和使用方法对于数字信号处理领域的专业人员来说非常重要。
2维FFT算法实现——基于GPU的基2快速⼆维傅⾥叶变换上篇讲述了⼀维FFT的GPU实现(),后来我⼜由于需要做了⼀下⼆维FFT,⼤概思路如下。
⾸先看的肯定是公式:如上⾯公式所描述的,2维FFT只需要拆分成⾏FFT,和列FFT就⾏了,其中我在下⾯的实现是假设原点在F(0,0),由于我的代码需要原点在中⼼,所以在最后我将原点移动到了中⼼。
下⾯是原点F(0,0)的2维FFT的伪代码://C2DFFT//被执⾏2DFFT的是⼀个N*N的矩阵,在source_2d中按⾏顺序储存//⽔平⽅向FFTfor (int i=0;i<N;i++){fft1(&source_2d[i*N],&source_2d_1[i*N],N);}//转置列成⾏for (int i=0;i<N*N;i++){int x = i%N;int y = i/N;int index = x*N+y;source_2d[index] = source_2d_1[i];}//垂直FFTfor(int i=0;i<N;i++){fft1(&source_2d[i*N],&source_2d_1[i*N],N);}//转置回来for (int i=0;i<N*N;i++){int x = i%N;int y = i/N;int index = x*N+y;source_2d[index] = source_2d_1[i];}GPU实现⽆⾮把这些东西转换到GPU上。
我基于OpenGL的fragment shader来计算fft;数据都存放在纹理或者FBO⾥⾯。
和1维fft不同的是,NXN的数据⾥⾯,只是对当前列或者当前排做⼀维FFT,所以bit反转表只需要⼀个1*N的buffer就可以了。
对应的蝴蝶图数据也只需要1*N即可。
所以我们有如下的分配:static ofFbo _fbo_bitrev_table;static ofFbo _origin_butterfly_2d;_fbo_bitrev_table.allocate(N,1,GL_RGBA32F);_origin_butterfly_2d.allocate(N,1,GL_RGBA32F);⾸先要做的是把长度为N的bit反转表求出来,这个只需要求⼀次,所以在最开始的时候就⽤CPU求出来:for(int i=0;i<N;i++){_bitrev_index_2d.setColor(i,0,ofFloatColor(bit_rev(i,N-1),0,0,0));}_bitrev_index_2d.update();//翻转后的索引_fbo_bitrev_table.begin();_bitrev_index_2d.draw(0,0,N,1);_fbo_bitrev_table.end();然后初始化最初的蝴蝶图,这个和1维FFT是⼀样的,只是长度不同⽽已:for(int i=0;i<N;i++){//初始化⼆维蝴蝶图if(i%2==0){_data_2d.setColor(i,0,ofFloatColor(0.f,2.f,0,i+1));}else{_data_2d.setColor(i,0,ofFloatColor(1.f,2.f,0,i-1));}}_data_2d.update();/////////////////2D初始化///////////////////初始化2D蝴蝶图_weight_index_2d[0].begin();_data_2d.draw(0,0,N,1);_weight_index_2d[0].end();//备份2D初始蝴蝶图,⽤于下⼀次新的计算_origin_butterfly_2d.begin();_data_2d.draw(0,0,N,1);_origin_butterfly_2d.end();辅助函数:static unsigned int bit_rev(unsigned int v, unsigned int maxv){unsigned int t = log(maxv + 1)/log(2);unsigned int ret = 0;unsigned int s = 0x80000000>>(31);for (unsigned int i = 0; i < t; ++i){unsigned int r = v&(s << i);ret |= (r << (t-i-1)) >> (i);}return ret;}static void bit_reverse_copy(RBVector2 src[], RBVector2 des[], int len){for (int i = 0; i < len;i++){des[bit_rev(i, len-1)] = src[i];}}下⾯定义计算2维IFFT的函数:void GPUFFT::ifft_2d(ofFbo& in,ofFbo& out,int size);其中in是输⼊,out是输出,size就是N,由初始化的时候传⼊了⼀次,在这⾥写是为了⽅便调试的时候临时改变尺⼨。
快速傅立叶变换(FFT)算法实验摘要:FFT(Fast Fourier Transformation),即为快速傅里叶变换,是离散傅里叶变换的快速算法,它是根据离散傅里叶变换的奇、偶、虚、实等特性,对离散傅立叶变换的算法进行改进获得的。
这种算法大大减少了变换中的运算量,使得其在数字信号处理中有了广泛的运用。
本实验主要要求掌握在CCS环境下用窗函数法设计FFT快速傅里叶的原理和方法;并且熟悉FFT快速傅里叶特性;以及通过本次试验了解各种窗函数对快速傅里叶特性的影响等。
引言:快速傅里叶变换FFT是离散傅里叶变换DFT的一种快速算法。
起初DFT的计算在数字信号处理中就非常有用,但由于计算量太大,即使采用计算机也很难对问题进行实时处理,所以并没有得到真正的运用。
1965年J.W.库利和T.W.图基提出快速傅里叶变换,采用这种算法能使计算机计算离散傅里叶变换所需要的乘法次数大为减少,特别是被变换的抽样点数N越多,FFT算法计算量的节省就越显著。
从此,对快速傅里叶变换(FFT)算法的研究便不断深入,数字信号处理这门新兴学科也随FFT的出现和发展而迅速发展。
根据对序列分解与选取方法的不同而产生了FFT的多种算法,基本算法是基2DIT和基2DIF。
FFT 的出现,使信号分析从时域分析向频域分析成为可能,极大地推动了信号分析在各领域的实际应用。
FFT在离散傅里叶反变换、线性卷积和线性相关等方面也有重要应用。
一、 实验原理:FFT 并不是一种新的变换,它是离散傅立叶变换(DFT )的一种快速算法。
由于我们在计算DFT 时一次复数乘法需用四次实数乘法和二次实数加法;一次复数加法则需二次实数加法。
每运算一个X (k )需要4N 次复数乘法及2N+2(N-1)=2(2N-1)次实数加法。
所以整个DFT 运算总共需要4N^2次实数乘法和N*2(2N-1)=2N(2N-1)次实数加法。
如此一来,计算时乘法次数和加法次数都是和N^2成正比的,当N 很大时,运算量是可观的,因而需要改进对DFT 的算法减少运算速度。