当前位置:文档之家› 纳米压印光刻Nanoimprinting(2)

纳米压印光刻Nanoimprinting(2)

纳米压印光刻Nanoimprinting(2)
纳米压印光刻Nanoimprinting(2)

纳米压印光刻中的多步定位研究

第40卷 第3期2006年3月 西 安 交 通 大 学 学 报 J OU RNAL O F XI′AN J IAO TON G U N IV ERSIT Y Vol.40 №3 Mar.2006纳米压印光刻中的多步定位研究 刘红忠,丁玉成,卢秉恒,王 莉,邱志惠 (西安交通大学机械制造系统工程国家重点实验室,710049,西安) 摘要:在步进重复式压印光刻中,为了避免承片台支撑绞链结构间隙及微观姿态调整往返运动导致的表面材料不规则形变,建立了单调、无振荡、多步逼近目标位置的宏微两级驱动系统,并提出了径向基函数Ο比例、积分、微分(RB F2PID)及单调位置控制算法.控制结果证明,使用具有强鲁棒性的RB F2PID非线性控制模式,使得驱动过程呈现无超调、无振荡的单调过程,因此避免了由于系统微观振荡调节而引入的间隙误差和材料表面形变误差.此控制方式可使步进重复式压印系统的定位精度在满足100mm行程驱动的前提下,达到小于10nm的定位技术指标. 关键词:纳米压印光刻;多步定位;非线性控制 中图分类号:T H112;T H11311 文献标识码:A 文章编号:0253Ο987X(2006)03Ο0261Ο04 R esearch on Multi2Step Positioning for N ano Imprint Lithography Liu Hongzhong,Ding Yucheng,L u Bingheng,Wang Li,Qiu Zhihui (State Key Laboratory for Manufacturing Systems Engineering,Xi′an Jiaotong University,Xi′an710049,China) Abstract:In multi2step imprinting lit hograp hy p rocess,t he gap existing in t he hinges of t he stage st ruct ure and t he random motio n during t he stage positio n adjust ment usually lead to errors quite different fro m ones in t he t raditional precision po sitioning.To avoid t hese nonlinear errors,a ra2 dial basis f unctionΟp roportional integral differential(RB F2PID)and monotony position cont rolling algorit hm is int roduced,which enables t he motion locus to appear monotone,non2oscillatory and multi2step app roaching,and t he random errors f rom single direction driving mode and t he back2 lash errors by pre2loading control are eliminated completely.The experimental result s wit hin mo2 tion range of100mm confirm t hat t his nonlinearity compensation is very effective to improve t he po sitioning accuracy up to10nm during t he multi2step imp rinting process. K eyw ords:nano imprint lit hograp hy;multi2step positioning;nonlinearity cont rol 由于传统光学光刻存在着严重的衍射现象[1,2],因此当曝光特征尺寸小于100nm后,会大大降低曝光分辨率.近年来,提出的压印光刻、软压印光刻、接触式压印光刻和毛吸填充式压印光刻等非光学光刻方式,比投影、X射线、离子束及无掩模电子束光刻等先进技术具有更为广泛的应用前景[3Ο6],其复型的最小特征尺寸可达6nm[7Ο9].为此,纳米级定位及驱动将是实现上述目标的关键技术之一,也是压印光刻套刻对准的前提条件.如Sakuta 等[10]、Lee和K im等[11]在双伺服运动控制结构中都做了深入研究,解决了大行程高精度驱动模式及驱动过程中由摩擦而产生的误差.但是,在驱动过程中,由驱动间隙、振荡调整位姿及材料表面形变而带来的非线性误差还没有得到较好的抑制.由于压印光刻基本结构的不同,其驱动要求也不相同,因此对应的控制模式应该有所区别.针对步进重复式压印光刻机本身的结构特性,本文将对宏微两级驱动结构模式、柔性绞链机构及单调无振荡多步逼近控制 收稿日期:2005Ο07Ο11. 作者简介:刘红忠(1971~),男,博士后;丁玉成(联系人),男,教授,博士生导师. 基金项目:国家自然科学基金资助项目(50505037);国家重点基础研究发展计划资助项目(2003CB716203);中国博士后科学基金资助项目(2005037242).

光刻原理

光 刻 工 艺 一、目的: 按照平面晶体管和集成电路的设计要求,在SiO 2或金属蒸发层上面刻蚀出与掩模板完全相对应的几何图形,以实现选择性扩散和金属膜布线的目的。 二、原理: 光刻是一种复印图象与化学腐蚀相结合的综合性技术,它先采用照像复印的方法,将光刻掩模板上的图形精确地复制在涂有光致抗蚀剂的SiO 2层或金属蒸发层上,在适当波长光的照射下,光致抗证剂发生变化,从而提高了强度,不溶于某些有机溶剂中,未受光照射的部分光致抗蚀剂不发生变化,很容易被某些有机溶剂溶解。然后利用光致抗蚀剂的保护作用,对SiO 2层或金属蒸发层进行选择性化学腐蚀,从而在SiO 2层或金属层上得到与光刻掩模板相对应的图形。 (一)光刻原理图 (一)光刻胶的特性: 1.性能,光致抗蚀剂是一种对光敏感的高分子化合物。当它受适当波长的光照射后就能吸收一定波长的光能量,使其发生交联、聚合或分解等光化学反应。由原来的线状结构变成三维的网状结构,从而提高了抗蚀能力,不再溶于有机溶剂,也不再受一般腐蚀剂的腐蚀. 2.组成:以KPR 光刻胶为例: 感光剂--聚乙烯醇肉桂酸酯。 溶 剂--环己酮。 增感剂--5·硝基苊, 3.配制过程: 将一定重量的感光剂溶解于环己酮里搅拌均匀,然后加入一定量的硝基苊,再继续揖拌均匀,静置于暗室中待用。 感光剂聚乙烯醇肉桂酸酯的感光波长为3800?以内,加入5·硝基苊后感光波长范围发生了变化从2600—4700 ?。 (二)光刻设备及工具: 在SiO 2层上涂复光刻胶膜 将掩模板覆盖 在光刻胶膜上 在紫外灯下曝光 显影后经过腐蚀得到光刻窗口

1.曝光机--光刻专用设备。 2.操作箱甩胶盘--涂复光刻胶。 3.烘箱――烤硅片。 4.超级恒温水浴锅--腐蚀SiO2片恒温用。 5.检查显为镜――检查SiO2片质量。 6.镊子――夹持SiO2片。 7.定时钟――定时。 8.培养皿及铝盒――装Si片用。 9.温度计――测量温度。 图(二)受光照时感光树脂分子结构的变化 三、光刻步骤及操作原理 1.涂胶:利用旋转法在SiO2片和金属蒸发层上,涂上一层粘附性好、厚度适当、均匀的光刻胶。 将清洁的SiO2片或金属蒸发片整齐的排列在甩胶盘的边缘上,然后用滴管滴上数滴光刻胶于片子上,利用转动时产生的离心力,将片子上多余的胶液甩掉,在光刻胶表面粘附能力和离心力的共同作用下形成厚度均匀的胶膜。 涂胶时间约为1分钟。 要求:厚度适当(观看胶膜条纹估计厚薄),胶膜层均匀,粘附良好,表面无颗粒无划痕。 图(三)光刻工艺流程示意图

新型纳米加工技术的研究进展

新型纳米加工技术的研究进展 随着纳米技术的发展和电子器件小型化的需求,纳米加工方法越来越多地引起人们的关注,纳米技术的核心是纳米加工技术。新型纳米加工技术突破传统光刻限制和有机高分子结构的限制,属于多项纳米操纵加工技术的系统工程研究,主要特色为瞄准学科前沿的创新性应用基础研究,具有较强的创新性、前瞻性和原创性,具有广泛的应用前景。 标签:无机纳米材料;纳米加工技术;研究 随着纳米技术的发展和电子器件小型化的需求,纳米加工方法越来越多地引起人们的关注,纳米技术的核心是纳米加工技术。纳米加工技术作为引起一场新的产业革命的科学技术,备受世人瞩目。随着科技的发展,对电子器件小型化的要求越来越强烈,各种器件逐渐由微米向纳米尺度发展。特别是对纳米器件、光学器件、高灵敏度传感器、高密度存储器件以及生物芯片制造等方面的纳米化要求越来越强烈,如何缩小图形尺寸、提高器件的纳米化程度已经成为各国科学家们越来越关心的问题。然而由于传统刻蚀技术的限制使得器件纳米化的发展成为当今电子器件小型化发展的重要制约因素之一。因此,新型纳米加工技术突破传统光刻限制和有机高分子结构的限制,属于多项纳米操纵加工技术的系统工程研究,主要特色为瞄准学科前沿的创新性应用基础研究,具有较强的创新性、前瞻性和原创性,具有广泛的应用前景。 1 国内外研究现状 近年来,为了克服原有光刻技术对图形线宽的限制,人们已探索了许多先进的纳米刻蚀加工方法。AT&T BeII实验室的R·S·Becker等人利用扫描探针显微技术实现了在Ge表面原子级的加工。H·D·Day和D·R·Allee成功地实现了硅表面的纳米结构制备,从而在纳米加工领域开辟了新的天地。近年来,Mirkin研究组和其它几个研究集体利用扫描探针技术成功地制造了有机分子纳米图形与阵列、无机氧化物、金属纳米粒子、高分子溶胶等纳米图形和阵列以及蛋白质阵列。此外,离子束、电子束、极紫外、X射线、深紫外加波前工程、干涉光刻以及原子光刻等技术的出现进一步发展了纳米刻蚀加工技术,为克服光刻的限制,提高图形密度提供了可能。然而这些方法虽然可以实现相对复杂的纳米图形化,但其设备昂贵,投资成本较大、应用步骤复杂,更主要的在于生产效率低,产品价格高昂,因而难以在要求低成本、高产出的商业中得到广泛的应用,特别是在图形要求相对简单、有序,而密度和灵敏度要求较高的纳米器件中(如:传感器、激光器、平板显示器、高密度存储器件、生物芯片、量子器件等方面)的应用受到了很大的制约。因此,如何发展简单、便宜、适用于大规模生产的表面图案化技术已成为一个涉及众多学科领域的新课题。 当前,美、日两国在纳米光刻领域的研究处于世界领先地位。为了应对纳米技术的挑战,欧洲最近几年开展国家间的大型合作项目技术,纳米光刻技术得到了深入研究和广泛发展。近年来我国对纳米加工方面的研究也进行了大力的扶

纳米压印技术

纳米压印技术 李学明 摘要:纳米压印技术突破了传统光刻在特征尺寸减小过程中的难题,具有分辨率高、低成本、高产率的特点。自1995年提出以来,纳米压印已经经过了14年的发展,演变出了多种压印技术,广泛应用于半导体制造、mems、生物芯片、生物医学等领域。被誉为十大改变人类的技术之一。 关键词:纳米压印纳米技术微米纳米加工技术 Overview of Nanoimprint Lithography Technology Li Xueming Abstract: Nanoimprint lithography is a low cost and high throughput mass manufacturing technology with sub-10nm resolution, while many other technologies suffer serious drawbacks. It has been 14 years since Stephen Y Chou released this idea in 1995. There are lots of technologies derived from imprint lithography, and are popular in semiconductor manufacturing, mems, biomchip, biomedicine field. Nanoimprint has been high praised as one of the ten emerging technologies that will change the world. 压印这门古老的技术,从几千年前就为我们的生活带来了便利。古代帝王的玉玺、四大发明的活体印刷,甚至是我们的中秋美食月饼,都是压印技术的完美应用。硅器时代,同样是压印技术,也正为微电子行业带来了新的惊喜。 在半导体技术的发展过程中,器件的特征尺寸越来越小,光刻也变得越发复杂,而这也导致了下一代光刻(NGL, next generation lithography)的成本不断增加。要继续追求特征尺寸的缩小,就需要光刻中曝光波长的减小,而涉及到曝光波长的变化,就需要光刻工具的更替,这种更替需要的花费极其昂贵,对于许多公司来说都是望而止步。因此,许多研究机构都在努力寻找可替代的光刻技术。1995年,华裔科学家周郁(Stephen Chou)提出了纳米压印光刻(NIL)的思想。有别于传统的光刻技术,纳米压印将模具上的图形直接转移到衬底上,从而达到量产化的目的。纳米压印光刻技术具有加工原理简单,分辨率高,生产效率高,成本低等优点。 Electron beam光刻虽然有很高的分辨率,但是由于其工艺产率低,不适合大批量生产;X-ray光刻产率高,但是这种光刻的掩膜板和曝光系统非常复杂且昂贵。而纳米压印采用1:1比例的模版生成线宽,不用考虑图形转移受到分辨率限制的问题。鉴于这些优点,纳米压印技术已经被国际半导体技术蓝图机构(ITRS)收录纳入在16nm节点上。MIT的Technology Review于2003年发布的10 EMERGING TECHNOLOGIES THAT WILL CHANGE THE WORLD中,纳米压印也榜上有名。 长期以来,NIL受到了普遍的关注与推动,越来越多的研究机构和商业机构都开始加入这一领域。目前NIL主要的商业机构有:Nanonex Corp,由Stephen Chou于2000年创立,Molecular Imprint Inc(MII),该公司的技术由德克萨斯大学授权,另外还有奥地利的EV Group、德国SUSS MicroTec以及瑞典Obducat。

UV压印光刻刻蚀工艺研究

https://www.doczj.com/doc/359853279.html, UV压印光刻刻蚀工艺研究 史永胜, 丁玉成, 卢秉恒, 刘红忠 (西安交通大学机械制造系统工程国家重点实验室, 710049, 西安) 摘 要:针对UV压印光刻和传统光学光刻不同的技术特点,提出压印光刻刻蚀工艺路线。本文对反应离子刻 蚀和感应耦合等离子体刻蚀技术对阻蚀胶残留膜刻蚀进行了比较实验,确定了在第一步刻蚀中的刻蚀方式选择,并分析了压印光刻阻蚀膜残膜的反应离子刻蚀原理,通过对刻蚀诸参数如反应压力、气体流量、射频功 率的调节获得了稳定的刻蚀速率及优异的各向异性。并对第二步刻蚀进行了深入的理论分析和大量的实验研究,保证了刻蚀图形的质量。 关键词:UV压印二步刻蚀反应离子刻蚀阻蚀胶残留膜感应耦合等离子体刻蚀 1.引 言 随着技术的不断发展与进步,集成电路制造工艺已经进入100nm以下的技术节点[1,2],各大光刻机制造商 曝光出几十纳米特征线宽的新闻时见报端。在特征尺寸进入100nm以下时,由于衍射现象的存在和光学透镜 系统值数孔径的物理极限的限制,传统光学曝光技术的缺陷十分明显,光刻机制造商运用各种新技术来克服 这些困难,并取得了一定的成绩,但是昂贵的光学系统却使得这些新技术缺乏吸引力。 于是各种下一代光刻技术NGL(Next Generation Lithography)应运而生。NGL主要包括极紫外光刻EUVL、 X射线光刻XRL、电子束投影光刻IBPL和压印光刻。 压印光刻将传统的模具复型原理应用到微观制造领域,通过阻蚀胶的受力变形来实现图形化,因此分辨 率不受光的衍射,阻蚀胶表面光反射、阻蚀胶内部光散射、衬底材料反射和显影剂等制约传统光学曝光的因 素的影响,可以突破光学曝光的分辨率极限。因此压印光刻技术一出现就因分辨率高,成本低,产能大的优 势成为NGL技术中最为潜力的竞争者之一[3,4,5]。 ITRS明确把压印光刻(imprint lithography)列入最有竞争力的集成电路制造技术路线图,而且压印光刻 技术是作为32nm和22nm节点技术的候选。目前普林斯顿大学已经利用LADI(激光辅助压印)技术复制出6nm 尺寸的结构[6]。 在针对压印光刻技术的研究中,各研究者大多针对压印过程的实现展开研究,以期获得更小的线宽,更 适用于压印技术的各种材料和设备平台,而把后续的刻蚀工艺作为传统的集成电路制造中的简单兼容技术而 少去研究。 但事实上,由于压印光刻技术在原理上与光学光刻的不同,所采用材料要求上的差别,导致刻蚀工艺与 光学光刻相比,有很大的独立性。 本文针对压印光刻刻蚀工艺做了深入的理论分析与实验研究,揭示了压印光刻刻蚀工艺与传统光学曝光 刻蚀工艺原理上的区别,比较了各种刻蚀方式的优缺点,确定了刻蚀工艺路线,并得出了满意的实验结果。2.压印光刻刻蚀原理 压印光刻由于原理上的不同使得整个工艺路线与光学光刻相比有很大的独立性,如下图1所示 作者简介:史永胜(1981~),男. 博士生. 基金项目:国家自然科学基金(50505037), 国家973重点基础研究发展计划(2003CB716203),国家自然科学基金资助项目(50275118)资助

光刻工艺流程

光刻工艺流程 Lithography Process 摘要:光刻技术(lithography technology)是指集成电路制造中利用光学—化学反应原理和化学,物理刻蚀法,将电路图形传递到单晶表面或介质层上,形成有效图形窗口或功能图形的工艺技术。光刻是集成电路工艺中的关键性技术,其构想源自于印刷技术中的照相制版技术。光刻技术的发展使得图形线宽不断缩小,集成度不断提高,从而使得器件不断缩小,性能也不断提利用高。还有大面积的均匀曝光,提高了产量,质量,降低了成本。我们所知的光刻工艺的流程为:涂胶→前烘→曝光→显影→坚膜→刻蚀→去胶。 Abstract:Lithography technology is the manufacture of integrated circuits using optical - chemical reaction principle and chemical, physical etching method, the circuit pattern is transferred to the single crystal surface or the dielectric layer to form an effective graphics window or function graphics technology.Lithography is the key technology in integrated circuit technology, the idea originated in printing technology in the photo lithographic process. Development of lithography technology makes graphics width shrinking, integration continues to improve, so that the devices continue to shrink, the performance is also rising.There are even a large area of exposure, improve the yield, quality and reduce costs. We know lithography process flow is: Photoresist Coating → Soft bake → exposure → development →hard bake → etching → Strip Photoresist. 关键词:光刻,涂胶,前烘,曝光,显影,坚膜,刻蚀,去胶。 Key Words:lithography,Photoresist Coating,Soft bake,exposure,development,hard bake ,etching, Strip Photoresist. 引言: 光刻有三要素:光刻机;光刻版(掩模版);光刻胶。光刻机是IC晶圆中最昂贵的设备,也决定了集成电路最小的特征尺寸。光刻机的种类有接触式光刻机、接近式光刻机、投影式光刻机和步进式光刻机。接触式光刻机设备简单,70年代中期前使用,分辨率只有微

纳米压印技术概述

随着科技的进步和发展,人们从理论和实验研究中发现,当许多材料被加工为具有纳米尺度范围的形状时,会呈现出与大块材料完全不同的性质。这些特异的性质向人们展现了令人兴奋的应用前景。而在开发超大规模集成电路工艺技术的过程中,人们已经开发了一些能够进行纳米尺度加工的技术,例如电子束与X射线曝光,聚焦离子束加工,扫描探针刻蚀制技术等。但这些技术的缺点是设备昂贵,产量低,因而产品价格高昂。商用产品的生产必须是廉价的、操作简便的,可工业化批量生产的、高重复性的;对于纳米尺度的产品,还必须是能够保持它所特有的图形的精确度与分辩率。针对这一挑战,美国“明尼苏达大学纳米结构实验室”从1995年开始进行了开创性的研究,他们提出并展示了一种叫作“纳米压印”(nanoimprint lithography) 的新技术[1]。 纳米材料在电子、光学、化工、陶瓷、生物和医药等诸多方面的重要应用而引起人们的高度重视. 一纳米材料的概述:从分子识别、分子自组装、吸附分子与基底的相互关系、分子操作与分子器件的构筑,并通过具体的例证加以阐述,包括在STM 操作下单分子反应有机小分子在半导体表面的自指导生长; 多肽-半导体表面特异性选择结合.生物分子/无机纳米组装体、光驱动多组分三维结构组装体、DNA 分子机器。 所谓纳米材料指的是具有纳米量级从分1~100 nm 的晶态或非晶态超微粒构成的分子识别走向分子信息处理和自组织作用的

固体物质。 纳米压印技术具有产量高、成本低和工艺简单的优点,是纳米尺寸电子器件的重要制作技术。纳米压印技术主要包括热压印、紫外压印(含步进—闪光压印)和微接触印刷等。本文首先描述了纳米压印技术的基本原理,然后介绍了传统纳米压印技术的新进展,如气压辅助纳米压印技术、激光辅助压印技术、静电辅助纳米压印技术、超声辅助纳米压印技术和滚轴式纳米压印技术等。最后特别强调了纳米压印的产业化问题。我们希望这篇综述能够引起国内工业界和学术界的关注,并致力于在中国发展纳米压印技术。 这是一种全新的图形转移技术。纳米压印技术的定义为:不使用光线或者辐照使光刻胶感光成形,而是直接在硅衬底或者其它衬底上利用物理学的机理构造纳米尺寸图形。目前,这项技术最先进的程度已达到5nm 以下的水平[2]。纳米压印技术主要包括热压印(HEL)、紫外压印(UV - NIL)、微接触印刷(μCP)。纳米压印是加工聚合物结构的最常用方法,它采用高分辨率电子束等方法将结构复杂的纳米结构图案制在印章上,然后用预先图案化的印章使聚合物材料变形而在聚合物上形成结构图案。我们首先描述了纳米压印技术的基本原理,然后介绍了传统纳米压印技术以及纳米压印技术的新进展,最后别强调了纳米压印的产业化问题。 1 纳米压印技术的基本原理 纳米压印的具体工艺由于材料、目标图形和产品用途的不同而不

微光刻与微纳米加工技术

万方数据

万方数据

万方数据

万方数据

陈宝钦:微光刻与微/纳米加工技术 源的选择),选择相应的分辨率增强技术,以及分析相关的数据并对已有模型进行校准等工作。光刻模型主要包括光刻胶模型、()PC模型以及成像模型等。随着光刻设备的升级换代、RET的广泛应用,精确的模型需要充实。如超高数值孔径的浸没式光刻中的光学极化效应等。DFM可理解为,以快速提升芯片成品率及降低生产成本为目的,统一描述芯片设计中的规则、工具和方法,从而更好地控制设计电路向物理芯片的复制。是一种可预测制造过程中工艺可变性的设计,使得从设计到芯片制造的整个过程达最优化。DFM包括参数成品率、系统成品率和随机成品率的设计,以及可靠性、测试和诊断的设计,而相关EDA算法工具的开发应用是解决问题的关键所在。 1.3浸没透镜与两次曝光光刻技术 提高光刻分辨率有三种途径。一是缩短曝光光源波长,需要价格高昂的原理性设备换代;二是改善工艺因子K,。其代价是缩小了制造工艺窗口,同时还需要改变集成电路版图的设计规则、改善光刻胶的工艺和分辨率增强技术。对于目前主流的193nm光源的光刻技术来说,还难以满足45nm节点生产的需求;第三种途径就是在改善光学系统数值孔径上继续做文章。由于目前曝光镜头数值孔径已经接近1,再要提高光学透镜的数值孔径就需要设计更大口径、更复杂的镜头,这已经不太现实了。因此光刻专家们根据高倍油浸显微镜提高分辨率的原理,设法在曝光镜头的最后一个镜片与硅片之间增加高折射率的液体(如水)作为介质,以达到提高分辨率的目的。因为提高该介质的折射率町以加大光线的折射程度,等效地加大镜头口径尺寸与数值孔径,同时可以显著提高焦深(DOF)和曝光工艺的宽容度(El。)。浸没光刻技术莺点需要解决的问题是水迹、气泡和污染等缺陷困扰。目前采用193nm光源的浸没光刻(Immersion,193i)技术已经成为65nm和45nm光刻的主流技术。要想把193i技术进一步推进到32nm和22nm的技术节点,光刻专家还在寻找新技术,在没有更好的新光刻技术出现前。两次曝光技术(或叫两次成型技术,DPT)成为人们关注的热点。DPT的原理很简单,就是把原来一次光刻难以分辨的掩模图形交替式地分成两块掩模,每块掩模上图形的分辨率可以减少一半,减少了曝光设备分辨率的压力,同时还可以利用第二块掩模版对第一次曝光的图形进行修整。两次曝光有效地拓展了,现有曝光设备干法光刻的应用,不必等待更高的分辨率和更高数值孔径系统的出现就可以投入下一个节点产品的生产。两次曝光技术在使用中。很像移相掩模技术中的位相冲突问题,需要重点解决分色冲突问题。为此还有可能需要三次曝光光刻(TPT)。两次曝光技术可以是两次曝光两次刻蚀方式(1itho—etch—litho—etch);也可以是第一次曝光显影后进行抗蚀剂固化处理后再涂胶进行第二次曝光显影,最后一起刻蚀的方式(1itho-process—litho—etchalterna-tives)。此外。过去经常使用的牺牲体结构侧墙技术的自对准两次成型技术(self—aligned(spacer)doublepatterning)也可以归入两次曝光技术中。当然,两次曝光技术也有问题,如对套刻精度要求更苛刻和生产效率降低等问题。 (未完待续) 作者简介: 陈宝钦(1942一)男,福建人.中国 科学院微电子研究所研究员,博士生导师。 主要从事光掩模、电子束光刻、微光刻与 微纳米加工与技术的研究。 -??..-?-卜_?-..-—卜-?卜-—卜-?..。+-?卜-?卜??..-?..-—..-—-.-。+。+‘+*?卜-?—卜-—..-?卜-?..。+-—..?—-卜-?..。+-—.-?—-..-?.. 下期部分目次预告 高压I.DM()s两层金属场板的优化设计 高方块电阻发射区单晶硅太阳电池的性能优化 AlGaN/GaNHEMT器件工艺的研究进展 大孔Ti02一ZnO复合纳米材料的制备及其光催化性能一种适用于高灵敏微磁传感器的I,M()膜制备与分析 2011年1月聚苯胺纳米材料的合成与应用 基于MEMS的新型高场不对称波形离子迁移谱 纳米磁性液体合成装置的研制及其应用 基于光诱导介电泳的微粒自动化操作方法研究 MEMS集成宽町调范围滤波器的设计与制作 微纳电子枝术948卷第1期 5 万方数据

光刻工艺简要流程介绍

光刻工艺是半导体制造中最为重要的工艺步骤之一。主要作用是将掩膜板上的图形复制到硅片上,为下一步进行刻蚀或者离子注入工序做好准备。光刻的成本约为整个硅片制造工艺的1/3,耗费时间约占整个硅片工艺的40~60%。 光刻机是生产线上最贵的机台,5~15百万美元/台。主要是贵在成像系统(由15~20个直径为200~300mm的透镜组成)和定位系统(定位精度小于10nm)。其折旧速度非常快,大约3~9万人民币/天,所以也称之为印钞机。光刻部分的主要机台包括两部分:轨道机(Tracker),用于涂胶显影;扫描曝光机(Scanning)光刻工艺的要求:光刻工具具有高的分辨率;光刻胶具有高的光学敏感性;准确地对准;大尺寸硅片的制造;低的缺陷密度。 光刻工艺过程 一般的光刻工艺要经历硅片表面清洗烘干、涂底、旋涂光刻胶、软烘、对准曝光、后烘、显影、硬烘、刻蚀、检测等工序。 1、硅片清洗烘干(Cleaning and Pre-Baking) 方法:湿法清洗+去离子水冲洗+脱水烘焙(热板150~2500C,1~2分钟,氮 气保护) 目的:a、除去表面的污染物(颗粒、有机物、工艺残余、可动离子);b、除去水蒸气,是基底表面由亲水性变为憎水性,增强表面的黏附性(对光刻胶或者是 HMDS-〉六甲基二硅胺烷)。 2、涂底(Priming) 方法:a、气相成底膜的热板涂底。HMDS蒸汽淀积,200~2500C,30秒钟;优点:涂底均匀、避免颗粒污染;b、旋转涂底。缺点:颗粒污染、涂底不均匀、HMDS 用量大。

目的:使表面具有疏水性,增强基底表面与光刻胶的黏附性。 3、旋转涂胶(Spin-on PR Coating) 方法:a、静态涂胶(Static)。硅片静止时,滴胶、加速旋转、甩胶、挥发溶剂(原光刻胶的溶剂约占65~85%,旋涂后约占10~20%); b、动态(Dynamic)。低速旋转(500rpm_rotation per minute)、滴胶、加速 旋转(3000rpm)、甩胶、挥发溶剂。 决定光刻胶涂胶厚度的关键参数:光刻胶的黏度(Viscosity),黏度越低,光刻胶的厚度越薄;旋转速度,速度越快,厚度越薄; 影响光刻胶厚度均运性的参数:旋转加速度,加速越快越均匀;与旋转加速的时 间点有关。 一般旋涂光刻胶的厚度与曝光的光源波长有关(因为不同级别的曝光波长对应不 同的光刻胶种类和分辨率): I-line最厚,约0.7~3μm;KrF的厚度约0.4~0.9μm;ArF的厚度约0.2~ 0.5μm。 4、软烘(Soft Baking) 方法:真空热板,85~120℃,30~60秒; 目的:除去溶剂(4~7%);增强黏附性;释放光刻胶膜内的应力;防止光刻胶 玷污设备; 边缘光刻胶的去除(EBR,Edge Bead Removal)。光刻胶涂覆后,在硅片边缘的正反两面都会有光刻胶的堆积。边缘的光刻胶一般涂布不均匀,不能得到很好的图形,而且容易发生剥离(Peeling)而影响其它部分的图形。所以需要去除。

基于表面等离子干涉原理的周期减小光刻技术研究

目录 目录 摘要 ............................................................................................................................... I ABSTRACT ................................................................................................................... III 第1章绪论 . (1) 1.1课题背景及研究的目的和意义 (1) 1.2周期减小光刻技术的研究现状 (2) 1.2.1 干涉光刻技术 (2) 1.2.2 泰伯光刻技术 (5) 1.3周期减小光刻技术的新发展 (8) 1.3.1 表面等离子干涉光刻技术 (8) 1.3.2 双曲线超材料光刻技术 (10) 1.4本研究领域存在的关键技术问题和科学问题 (14) 1.5本文的主要研究内容 (15) 第2章基于表面等离子干涉和ENZ超材料的周期减小光刻理论和设计 (16) 2.1引言 (16) 2.2基于表面等离子干涉和ENZ超材料的周期减小光刻原理 (16) 2.2.1 表面等离子干涉的激发结构 (17) 2.2.2 ENZ双曲线超材料结构 (22) 2.3周期减小光刻结构设计 (25) 2.3.1 干涉激发结构设计 (26) 2.3.2 ENZ双曲线超材料结构的设计 (30) 2.4周期减小光刻结构的设计实例 (42) 2.5本章小结 (45) 第3章超大曝光深度周期减小光刻的研究 (46) 3.1引言 (46) 3.2超大曝光深度周期减小光刻原理 (46) 3.2.1 MIM光栅结构 (47) 3.2.2 多层波导结构 (49) 3.3超大曝光深度周期减小光刻结构设计 (52) 3.3.1 SPP干涉波与一阶衍射波的匹配 (52) 3.3.2 多层波导的耦合 (53) 3.3.3 基于高折射率介质的超透镜结构设计 (55)

纳米压印技术

纳米压印及其加工技术 摘要:纳米压印是一种全新的纳米图形复制方法。米压印可望成为一种工业化生产技术, 从根本上开辟了各种纳米器件生产的广阔前景。讲解了纳米压印相关技术种类,技术发展程度,及未来发展方向和应用前景。 关键词:纳米压印;影响因素;产业化发展 7月16日,王旭迪老师在我校格物楼二楼学术报告厅开展一场主题报告,本次报告主题为“纳米压印及其加工技术”。我专业80余人参加了此次报告会。 王老师讲解了纳米压印技术的分类、原理,以及此项技术的发展历程和应用前景。 一、纳米压印的技术方法 纳米压印技术最早由Stephen Y Chou教授在1995年率先提出,这是一种不同与传统光刻技术的全新图形转移技术。纳米压印技术的定义为:不使用光线或者辐照使光刻胶感光成形,而是直接在硅衬底或者其它衬底上利用物理学的机理构造纳米尺寸图形。 纳米压印技术是一种目前在国际上引起普遍关注的具有超高分辨率的新纳米光刻方法, 可以在柔性聚合物等薄膜上形成分辨率小于10nm 的大面积三维人工结构。纳米压印分为两步: 压印和图形的转移。将模版与基片进行对准, 基片由硅片和聚合物形成的抗蚀层组成。通常热压印中抗蚀层为传统光刻胶聚甲基丙烯酸甲脂(PMMA) ,且压印前已经均匀固化在硅片上。然后加压,使模版上的微细图形转移到抗蚀剂上。最后进行脱模分离, 使模版与抗蚀层分离。后续工艺为采用反应离子刻蚀(RIE)将残余层除去。这就完成了整个压印过程。 传统纳米压印技术主要有三种:热塑纳米压印技术、紫外固化压印技术和微接触纳米压印技术。

1.1 热塑纳米压印技术 热塑纳米压印技术主要的工艺流程:制备高精度掩模板,一般采用硬度大和 化学性质稳定的SiC、Si 3N 4 、SiO 2 ,利用电子束蚀刻技术或反应离子蚀刻技术来 产生图案;利用旋涂的方式在基板上涂覆光刻胶,常见的是PMMA和PS;加热至光刻胶的玻璃化转换温度(T g)之上50℃~100℃,然后加压(500kPa~1 000kPa)于模板并保持温度和压力一段时间,液态光刻胶填充掩模版图形空隙;降低温度至T g以下后脱模,将图形从模板转移到基片上的光刻胶;采用反应离子刻蚀去除残留光刻胶,就将图形转移到基板上。为了减小空气气泡对转移图案质量的影响,整个工艺过程都要在小于1Pa的真空环境中进行。 1.2 紫外固化纳米压印技术 紫外固化纳米压印技术由德州大学C GWillson教授提出。主要工艺过程:先制备高精度掩模板,而且要求掩模板对紫外光是透明的,一般采用SiO 2 材质作为掩模版;在基板上旋涂一层液态光刻胶,光刻胶的厚度为600nm~700nm,光刻胶要求黏度低,对紫外光敏感;利用较低压力将模板压在光刻胶之上,液态光刻胶填满模板空隙,从模板背面用紫外光照射,紫外光使光刻胶固化;脱模后用反应离子蚀刻方式除去残留光刻胶,将图案从模板转移到基板上。压印过程如图1-1所示。 紫外固化纳米压印技术与热塑压印技术相比不需要加热,可以在常温下进行,避免了热膨胀因素,也缩短了压印的时间;掩模板透明,易于实现层与层之间对准,层与层之间的对准精度可以达到50 nm,适合半导体产业的要求。但紫外固化纳米压印技术设备昂贵,对工艺和环境的要求也非常高;没有加热的过程,光刻胶中的气泡难以排出,会对细微结构造成缺陷。生产中常常采用紫外固化纳米压印技术和步进技术相结合,形成步进式快闪纳米压印技术,工艺过程如图1-2所示。该方法采用小模板分步压印紫外固化的方式,大大提高了在基板上大面积压印转移的能力,降低了掩模板制造成本,也降低了采用大掩模板带来的误差。但此方法对位移定位和驱动精度的要求很高。

光刻机的技术原理和发展趋势

光刻机的技术原理和发展趋势 王平0930******* 摘要: 本文首先简要介绍了光刻技术的基本原理。现代科技瞬息万变,传统的光刻技术已经无法满足集成电路生产的要求。本文又介绍了提高光刻机性能的关键技术和下一代光刻技术的研究进展情况。 关键字:光刻;原理;提高性能;浸没式光刻;下一代光刻 引言: 光刻工艺直接决定了大规模集成电路的特征尺寸,是大规模集成电路制造的关键工艺。作为光刻工艺中最重要设备之一,光刻机一次次革命性的突破,使大模集成电路制造技术飞速向前发展。因此,了解光刻技术的基本原理,了解提高光刻机性能的关键技术以及了解下一代光刻技术的发展情况是十分重要的。本文就以上几点进行了简要的介绍。 光刻技术的基本原理: 光刻工艺通过曝光的方法将掩模上的图形转移到涂覆于硅片表面的光刻胶上,然后通过显影、刻蚀等工艺将图形转移到硅片上。 1、涂胶 要制备光刻图形,首先就得在芯片表面制备一层均匀的光刻胶。截止至2000年5月23日,已经申请的涂胶方面的美国专利就达118项。在涂胶之前,对芯片表面进行清洗和干燥是必不可少的。目前涂胶的主要方法有:甩胶、喷胶和气相沉积,但应用最广泛的还是甩胶。甩胶是利用芯片的高速旋转,将多余的胶甩出去,而在芯片上留下一层均匀的胶层,通常这种方法可以获得优于+2%的均匀性(边缘除外)。胶层的厚度由下式决定: 式中:F T为胶层厚度,ω为角速度,η为平衡时的粘度,ρ为胶的密度,t为时间。由该式可见,胶层厚度和转速、时间、胶的特性都有关系,此外旋转时产生的气流也会有一定的影响。甩胶的主要缺陷有:气泡、彗星(胶层上存在的一些颗粒)、条纹、边缘效应等,其中边缘效应对于小片和不规则片尤为明显。

去除光刻胶的总结

Photoresists, developers, remover, adhesion promoters, etchants, and solvents ... Phone: +49 731 36080-409 www.microchemicals.eu e-Mail: sales@microchemicals.eu Dissolubility of Processed Photoresist Films Non cross-linked AZ ? and TI photoresists can be removed easily and residual-free from the substrate in many common strippers. If not, one or more of the following reasons decreasing the removableness of resist films have to be considered: From temperatures of approx. 150°C on (e. g. during a hardbake, dry etching, or coat-ing), positive photoresists cross-linking thermally activated. If applicable, the tempera-tures should be lowered. Cross-linking also takes place optically activated under deep-UV radiation (wavelengths < 250 nm) in combination with elevated temperatrues which occurs during evaporation or sputtering of coatings, or dry-etching. The desired crosslinking of negative resists is enhanced during any subsequent process steps with elevated temperatures, and the resist removal might become difficult. Material re-deposited on the resist structures during dry etching will also make it difficult to remove the resist film. Using Solvents as Remover Acetone is not well-suited as stripper for photoresists: The high vapour pressure of acetone causes a fast drying and thus re-deposition of stripped photoresist onto the substrate form-ing striations. If nevertheless acetone shall be used for this purpose, a subsequent rinse with isopropyl alcohol - immediately after the acetone step - is recommended in order to remove the resist-contaminated acetone residual-free. NMP (1-Methyl-2-pyrrolidon) is a powerful stripper due to its physical properties: NMP yields a low vapour pressure (no striation formation), strongly solves organic impurities as well as resists, keeps the removed resist in solution, and can be heated to 80°C due to its high boiling point. However , since NMP is classified as toxic and teratogenic, a recommended alternative ist ... DMSO (Dimethyl sulfoxide) has a performance as photoresist stripper comparable to the performance of NMP , and is a kind of “safer-solvent” substitute for NMP . We already have high-purity DMSO in our product range, please contact us for the specifications or/and a free sample! Alkaline Solutions as Remover If the alkaline stability of the substrate is high enough, aqueous alkaline solutions such as 2-3 % KOH or NaOH (= typical developer concentrates) can be used as remover . For highly cross-linked resists, higher concentrations or/and elevated temperatures might be required.It has to be considered that many metals (Al, Cu ...) are not sufficiently alkaline stable, and also crystalline silicon will be attacked at high pH-values and temperatures. AZ ? 100 Remover AZ ? 100 Remover is an amine-solvent mixture, and a ready-to-use standard remover for AZ ? and TI photoresists. In order to improve its performance, AZ ? 100 Remover can be heated to 60°C. Since AZ ? 100 Remover is strongly alkaline, aluminium containing substrates might be at-tacked as well as copper- or GaAs alloys/compounds. In this case, AZ ? 100 Remover should be used as concentrate, any dilution or contamination (even in traces!) of AZ ? 100 Remover with should be avoided.

相关主题
文本预览
相关文档 最新文档