第3章 力学量用算符表达
- 格式:ppt
- 大小:1.31 MB
- 文档页数:60
第三章 量子力学中的力学量 1. 证明 厄米算符的平均值都是实数(在任意态)[证] 由厄米算符的定义**ˆˆ()F d F d ψψτψψτ=⎰⎰厄米算符ˆF的平均值 *ˆF Fd ψψτ=⎰ **ˆ[()]F d ψψτ=⎰ ***ˆ[]Fd ψψτ=⎰**ˆ[()]Fd ψψτ=⎰**ˆ[]F d ψψτ=⎰ *F =即厄米算符的平均值都是实数2. 判断下列等式是否正确(1)ˆˆˆHT U =+ (2)H T U =+(3)H E T U ==+[解]:(1)(2)正确 (3)错误因为动能,势能不同时确定,而它们的平均值却是同时确定 。
3. 设()x ψ归一化,{}k ϕ是ˆF的本征函数,且 ()()k kkx c x ψϕ=∑(1)试推导k C 表示式(2)求征力学量F 的()x ψ态平均值2k k kF c F =∑(3)说明2k c 的物理意义。
[解]:(1)给()x ψ左乘*()m x ϕ再对x 积分**()()()()mm k k k x x dx x c x dx ϕϕϕτϕ=⎰⎰*()()k m k kc x x dx ϕϕ=∑⎰因()x ψ是ˆF的本函,所以()x ψ具有正交归一性**()()()()mk m k k k kkx x dx c x x dx c mk c ϕψϕϕδ===∑∑⎰⎰ ()m k = *()()k m c x x dx ϕψ∴=⎰(2)k ϕ是ˆF 的本征函数,设其本征值为kF 则 ˆk k kF F ϕϕ= **ˆˆm k m k k kF F dx F c dx ψψψϕ==∑⎰⎰**()m mk k k kc x F c dx ϕϕ=∑∑⎰**m k kmkx mkc c F dϕϕ=∑⎰*m k k mk mkcc F δ=∑2k k kc F =∑即 2k k kF c F =∑(3)2k c 的物理意义;表示体系处在ψ态,在该态中测量力学量F ,得到本征值k F 的 几率为2k c 。
第3章 力学量用算符表达习题3.1 下列函数哪些是算符22dxd 的本征函数,其本征值是什么?①2x , ② x e , ③x sin , ④x cos 3, ⑤x x cos sin +解:①2)(222=x dxd∴ 2x 不是22dxd 的本征函数。
② x xe e dxd =22∴ xe 是22dxd 的本征函数,其对应的本征值为1。
③x x dx dx dxd sin )(cos )(sin 22-== ∴ 可见,x sin 是22dx d 的本征函数,其对应的本征值为-1。
④x x dx dx dxd cos 3)sin 3()cos 3(22-=-= ∴ x cos 3 是22dxd 的本征函数,其对应的本征值为-1。
⑤)cos (sin cos sin sin (cos )cos (sin 22x x xx x x dxd x x dx d +-=--=-=+) ∴ x x cos sin +是22dxd 的本征函数,其对应的本征值为-1。
3.2 一维谐振子处在基态t i x e t x ωαπαψ22022),(--=,求:(1)势能的平均值2221x V μω=; (2)动能的平均值μ22p T =.解:(1) ⎰∞∞--==dx e x x V x2222222121απαμωμωμωμωαμωαπαπαμω ⋅==⋅=22222241212121221 ω 41=(2) ⎰∞∞-==dx x p x p T )(ˆ)(2122*2ψψμμ⎰∞∞----=dx e dxd e x x22222122221)(21ααμπα ⎰∞∞---=dx e x x 22)1(22222αααμπα ][222222222⎰⎰∞∞--∞∞---=dx e x dx e x xααααμπα ]2[23222απααπαμπα⋅-=μωμαμαπαμπα⋅===442222222 ω 41=或 ωωω 414121=-=-=V E T 习题3.3 指出下列算符哪个是线性的,说明其理由。
1第三章矩阵力学基础(I)—力学量和算符上一章,中我们系统地介绍了波动力学。
它的着眼点是波函数),(t x ψ。
薛定谔从粒子的波动性出发,用波函数),(t x ψ猫述粒子的运动状态。
通过在波函数的运动方程中引入 的方法进行量子化,在一定的边界条件下,求解定态薛定谔方程,证明对于束缚态,会出现量子化的、分立的本征谱。
在本章和下一章中,我们将介绍另一种量子化的方案。
它是海森伯(Heisenberg )、玻恩、约丹(Jordan)、坎拉克(Dirac)提出和实现的。
着眼点是力学量和力学量的测量。
他们将力学量看成算符。
通过将经典力学运动方程中的坐标和动量都当作算符的方法,引入r 和p 的对易关系.将经典的泊松括号改为量子的泊松括号,实现量子化。
这种量子化,通常称为正则量子化。
在选定了一定的“坐标系”或称表象后,算符用矩阵表示。
算符的运算归结为矩阵的运算。
本章将首先讨论力学量的算符表示和算符的矩阵表示,证实量子力学中的力学量必须用线性厄米算符表示。
在选取特定的表象即“坐标系”后,这些算符对应线性厄米矩阵。
然后进一步讨论力学量的测量,它的可能值、平均值以及具有确定值的条件。
我们将证实算符的运动方程中含有对易子,出现 。
在矩阵力学中,算符的运动方程起着和波动力学中波函数的运动方程—薛定谔方程—同样的作用。
§3. 1力学量的平均值在量子力学中,微观粒子的运动状态用波函数描述。
一旦给出了波函数,就确定了微观粒子的运动状态.于是自然要问,所谓“确定”是什么意思,在什么意义下讲“确定”?在本章中我们将看到:所谓“确定”,是在能给出几率和求得平均值意义下说的。
一般说来,当微观粒子处在某一运动状态时,它的力学量,如坐标、动量、角动量、能量等,不同时具有确定的数值,而具有一系列可能值,每一可能值均以一定的概率出现。
当给定描述这一运动状态的波函数ψ后,力学量出现各种可能值的相应的概率就完全确定。
利用统计平均的方法,可以算出该力学量的平均值,进而与实验的观测值相比较。