力学量和算符.
- 格式:ppt
- 大小:230.50 KB
- 文档页数:11
表象与矩阵力学思考题:3-1力学量的本征态在该力学量自身的表象中的矩阵表示是什么?3-2左矢与右矢能相加吗?3-3一个力学量算符在一个表象中表示成一个矩阵,该矩阵的维度由什么决定?3-4如果一个表象是无穷维,而实际的数值计算中又不能进行无穷维的计算,哪该怎么办? 3-5在第一章介绍了薛定谔方程,其中的波函数是在什么表象中的表示?3-6比较力学量分别为连续谱和离散谱时,它们的本征函数簇作为基组的完备性和归一性关系式。
习题:3-1写出动量表象中的薛定谔方程。
3-2写出动量表象中粒子在常力作用下的运动方程。
3-3粒子在一维无限深势阱V (x )=0,0£x £a ¥,x <0,x >aìíïîï 中运动。
求动量算符在该体系能量表象中的矩阵。
3-4已知体系的哈密顿算符H 和另一力学量算符A 在能量表象中的矩阵分别为H = w 010*******éëêêêùûúúú,010100001A a ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦ 0(a ω和均为正的实数)在初始时刻,体系在能量表象中的态函数为210)121t ψ⎡⎤⎢⎥==⎢⎥⎢⎥⎣⎦(,求(1)体系在能量表象中的态函数)t ψ(;(2)体系的能量可能值及相应的几率;(3)体系能量的期望值;(4)力学量A 的可能取值及相应的几率;(5)力学量A 的期望值;(6)体系态矢量)t ψ(在A 表象中的矩阵表示;(7)能量表象与A 表象间的变换矩阵。
3-5已知体系的哈密顿算符在某一表象中的矩阵表示为H =e 201020102éëêêêùûúúú(1)求体系能量的本征值和相应的本征函数;(2)求出将H对角化的幺正变换矩阵。
第三章力学量和算符内容简介:在上一章中,我们系统地介绍了波动力学,它的着眼点是波函数。
用波函数描述粒子的运动状态。
本章将介绍量子力学的另一种表述,它的着眼点是力学量和力学量的测量,并证实了量子力学中的力学量必须用线性厄米算符表示。
然后进一步讨论力学量的测量,它的可能值、平均值以及具有确定值的条件。
我们将证实算符的运动方程中含有对易子,出现。
§3.1 力学量算符的引入§3.2 算符的运算规则§3.3 厄米算符的本征值和本征函数§3.4 连续谱本征函数§3.5 量子力学中力学量的测量§3.6 不确定关系§3.7 守恒与对称在量子力学中。
微观粒子的运动状态用波函数描述。
一旦给出了波函数,就确定了微观粒子的运动状态。
在本章中我们将看到:所谓“确定”,是在能给出概率以及能求得平均值意义下说的。
一般说来。
当微观粒子处在某一运动状态时,它的力学量,如坐标、动量、角动量、能量等,不同时具有确定的数值,而具有一系列可能值,每一可能值、均以一定的概率出现。
当给定描述这一运动状态的波函数后,力学量出现各种可能值的相应的概率就完全确定。
利用统计平均的方法,可以算出该力学量的平均值,进而与实验的观测值相比较。
既然一切力学量的平均值原则上可由给出,而且这些平均值就是在所描述的状态下相应的力学量的观测结果,在这种意义下认为,波函数描写了粒子的运动状态。
力学量的平均值对以波函数(,)r t ψ描述的状态,按照波函数的统计解释,2(,)r t ψ表示在t 时刻在 r r d r →+中找到粒子的几率,因此坐标的平均值显然是:()2*(,)(,)(,) 3.1.1r r t rdr r t r r t dr ψψψ∞∞-∞-∞==⎰⎰坐标r 的函数()f r 的平均值是:()()()*(,)(,) 3.1.2f r r t f r r t dr ψψ∞-∞=⎰现在讨论动量的平均值。
第三章 力学量和算符内容简介:在上一章中,我们系统地介绍了波动力学,它的着眼点是波函数 。
用波函数描述粒子的运动状态。
本章将介绍量子力学的另一种表述,它的着眼点是力学量和力学量的测量,并证实了量子力学中的力学量必须用线性厄米算符表示。
然后进一步讨论力学量的测量,它的可能值、平均值以及具有确定值的条件。
我们将证实算符的运动方程中含有对易子,出现 。
§ 3.1 力学量算符的引入 § 3.2 算符的运算规则§ 3.3 厄米算符的本征值和本征函数 § 3.4 连续谱本征函数§ 3.5 量子力学中力学量的测量 § 3.6 不确定关系 § 3.7 守恒与对称在量子力学中。
微观粒子的运动状态用波函数描述。
一旦给出了波函数,就确定了微观粒子的运动状态。
在本章中我们将看到:所谓“确定”,是在能给出概率以及能求得平均值意义下说的。
一般说来。
当微观粒子处在某一运动状态时,它的力学量,如坐标、动量、角动量、能量等,不同时具有确定的数值,而具有一系列可能值,每一可能值、均以一定的概率出现。
当给定描述这一运动状态的波函数 后,力学量出现各种可能值的相应的概率就完全确定。
利用统计平均的方法,可以算出该力学量的平均值,进而与实验的观测值相比较。
既然一切力学量的平均值原则上可由 给出,而且这些平均值就是在 所描述的状态下相应的力学量的观测结果,在这种意义下认为,波函数描写了粒子的运动状态。
力学量的平均值对以波函数(,)r t ψ 描述的状态,按照波函数的统计解释,2(,)r t ψ表示在t 时刻在 r r d r →+中找到粒子的几率,因此坐标的平均值显然是:()2*(,)(,)(,) 3.1.1r r t rdr r t r r t dr ψψψ∞∞-∞-∞==⎰⎰坐标r 的函数()f r的平均值是:()()()*(,)(,) 3.1.2f r r t f r r t dr ψψ∞-∞=⎰现在讨论动量的平均值。
119§3.6 算符与力学量的关系重点: 完全性关系,算符与力学量的关系的基本假设 难点: 完全性关系一、厄米算符的本征函数的完全性 1.复习§3.1的两个假定假定1:量子力学中的每个力学量用一个线性厄米算符表示。
假定2:算符Fˆ的本征值集合即是测量体系力学量F 可能得到的所有量值;体系处在F ˆ的属于本征值的本征态nψ时,测力学量F ,得到确定值n λ。
但是在任意态ψ中(非F ˆ的本征态),此时Fˆ与代表的力学量F 的关系如何?这需引进新的假设,适合于一般情况,且不能与假定2相抵触,应包含它。
2.完全性:若F ˆ是满足一定条件⎟⎟⎠⎞⎜⎜⎝⎛ΦΦ级数收敛的平方可积的n n F ˆ)2(F ˆ)1(的厄米算符,且它的正交归一的本征函数系)x (1Φ、)x (2Φ…)x (n Φ…对应的本征值为1λ、2λ…n λ…,则任一函数)x (Ψ可以按)x (n Φ展为级数:)x (C )x (n nn Φ=Ψ∑ ①式中n C 是与x 无关的展开系数。
我们称本征函数)x (n Φ的这种性质为完全性,或者说)x (n Φ组成完全系。
120说明:①展开系数∫ΨΦ=∗dx )x (C n n以)x (m ∗Φ左乘)x (C )x (n nn Φ=Ψ∑,且对x 的整个区域积分有m mn n n mnn n nn m m C C dx )x ()x (C dx)x (C dx )x ()x (=δ=ΦΦ=ΦΦ=ΨΦ∑∫∑∑∫∫∗∗∗即:∫ΨΦ=∗dx )x (C n n ② ②表示力学量的算符是厄米算符,不管它是否满足完全性关系要求的条件,都可以直接将数学上证明过的定理拿来就用,即假定力学量算符本征函数的正交归一系具有完全性。
3.展开系数2n C 的物理含义:设)x (Ψ为归一化的波函数,则根据)x (n Φ是正交归一化的完全函数系,有:1dx )x ()x (ΨΨ=∫∗=dx C C n nn m mm Φ⋅Φ∑∫∑∗∗==ΦΦ∗∗∫∑dx C C n m n n ,m m n ,m n n ,m m C C δ∑∗2nn C ∑=即:1C 2nn=∑因左边是总几率,所以2n C 有几率的意义。
算符即运算规则算符即运算规则。
它作用在一个函数ψ(x)(x)上即是对上即是对ψ(x)(x)进行某进行某种运算种运算,,得到另一个函数ϕ(x)§1.7 1.7 量子力学中的力学量和算符量子力学中的力学量和算符例:)()(ˆx x Fϕψ=)()(ˆx xf x f x =)()(ˆx f x f I =dxd D =ˆ1、定义2、乘法与对易算符的乘法一般不服从交换律:)ˆ(ˆˆψψB A BA ≡AB B Aˆˆˆˆ≠例如:则算符的对易式可记为则算符的对易式可记为::若对任意若对任意ΨΨ,都有:则称和对易:引入记号: ψψA B B Aˆˆˆˆ=A ˆB ˆ]ˆ,ˆ[ˆˆˆˆB A A B B A≡−0]ˆ,ˆ[=B AI x Dˆ]ˆ,ˆ[=h i p xx =]ˆ,ˆ[易证:可定义算符的可定义算符的n n 次方为:A A AA n ˆˆˆˆ⋅⋅⋅=可定义算符的多项式和算符的函数可定义算符的多项式和算符的函数。
例如:3、线性算符设C 1, C 2为常数为常数,,若算符满足:则称其为线性算符则称其为线性算符。
量子力学态叠加原理要求力学量算符必须是线性算符例如例如,,下列算符为线性算符下列算符为线性算符::22112211ˆˆ)(ˆΨ+Ψ=Ψ+ΨF C F C C C F x pH y x x ˆ,ˆ,,2∂∂∂∂∂算符的本征值方程:4、本征函数本征函数、、本征值λ为算符的本征值的本征值,,为算符的本征值为λ的本征函数的本征函数。
例如,e 2x 是微商算符的本征函数:)()(ˆx x Fλψψ=)(x ψFˆF ˆF ˆ定态薛定谔方程:它是哈密顿算符的本征方程它是哈密顿算符的本征方程,,波函数ψ 是哈密顿算符的本征函数征函数,,能量E 是哈密顿算符的本征值是哈密顿算符的本征值。
例如例如::ψψE H=ˆ2211ˆˆΨ=ΨΨ=ΨλλF F )(ˆˆ)(ˆ221122112211Ψ+Ψ=Ψ+Ψ=Ψ+ΨC C F C F C C C F λ则:狄拉克符号:〉≡ψψ|)(r v |)(*ψψ〈≡r r ∗〉〈=〉〈≡∫ψϕϕψτϕψ||)()(*d r r v v一个算符如果满足如下关系一个算符如果满足如下关系,,则称为厄米算符则称为厄米算符,:,:其中积分遍及整个空间其中积分遍及整个空间,,函数ψ, ϕ是任意的品优函数是任意的品优函数。