算符与力学量的关系
- 格式:pdf
- 大小:998.70 KB
- 文档页数:26
)(Et r p i p Ae-⋅=ρϖηϖψ《量子力学》复习 提纲一、基本假设 1、(1)微观粒子状态的描述 (2)波函数具有什么样的特性 (3)波函数的统计解释2、态叠加原理(说明了经典和量子的区别)3、波函数随时间变化所满足的方程 薛定谔方程4、量子力学中力学量与算符之间的关系5、自旋的基本假设 二、三个实验1、康普顿散射(证明了光子具有粒子性) 第一章2、戴维逊-革末实验(证明了电子具有波动性) 第三章3、史特恩-盖拉赫实验(证明了电子自旋) 第七章 三、证明1、粒子处于定态时几率、几率流密度为什么不随时间变化;2、厄密算符的本征值为实数;3、力学量算符的本征函数在非简并情况下正交;4、力学量算符的本征函数组成完全系;5、量子力学测不准关系的证明;6、常见力学量算符之间对易的证明;7、泡利算符的形成。
四、表象算符在其自身的表象中的矩阵是对角矩阵。
五、计算1、力学量、平均值、几率;2、会解简单的薛定谔方程。
第一章 绪论1、德布洛意假设: 德布洛意关系:戴维孙-革末电子衍射实验的结果: 2、德布洛意平面波:3、光的波动性和粒子性的实验证据:4、光电效应:5、康普顿散射: 附:(1)康普顿散射证明了光具有粒子性(2)戴维逊-革末实验证明了电子具有波动性∑=nnn c ψψ1d 2=⎰τψ(全)()ψψψψμ∇-∇2=**ηϖi j ⎩⎨⎧≥≤∞<<=ax x a x x V 或0,0,0)(0=⋅∇+∂∂j tϖρ⎥⎦⎤⎢⎣⎡+∇-=),(222t r V H ϖημ)(,)(),(r er t r n tE i n n n ϖϖϖηψψψ-=n n n E H ψψ=(3)史特恩-盖拉赫实验证明了电子自旋第二章 波函数和薛定谔方程1.量子力学中用波函数描写微观体系的状态。
2.波函数统计解释:若粒子的状态用()t r ,ρψ描写,τψτψψd d 2*=表示在t 时刻,空间r ρ处体积元τd 内找到粒子的几率(设ψ是归一化的)。
第一节力学量算符一. 算符算符: 作用在一个函数上得出另一个函数的运算符号,量子力学中的算符是作用在波函数上的运算符号。
用表示一算符。
二.力学量算符1.坐标的算符就是坐标本身:2.动量算符:, ,3.动能算符4.哈密顿算符:5.角动量算符:如果量子力学中的力学量在经典力学中有相应的力学量,则表示这个力学量的算符由经典表示式中将换成算符得出算符和它所表示的力学量的关系?第二节算符基本知识一线性算符满足运算规则的算符称为线性算符。
二单位算符保持波函数不改变的算符三 算符之和加法交换律加法结合律两个线性算符之和仍为线性算符。
四 算符之积定义: 算符 与 的积 为注意: 一般说算符之积不满足交换律,即: 这是与平常数运算规则不同之处。
五 逆算符设能唯一解出,则定义的逆算符为:注意: 不是所有的逆算符都有逆算符。
,六 算符的复共轭,转置,厄密共轭1. 两个任意波函数与的标积2. 复共轭算符算符的复共轭算符为:把的表示式中所有复量换成其共轭复量3.转置算符定义: 算符的转置算符满足:即:4.厄密共轭算符算符的厄密共轭算符定义为即算符的厄密共轭算符即是的转置复共轭算符5.厄密算符厄密算符是满足下列关系的算符注意:两个厄密算符之和仍为厄密算符,两个厄密算符之积却不一定是厄密算符例:证明是厄密算符证:为厄密算符,为厄密算符第三节 力学量算符的本征值与本征函数一 厄密算符的本征值与与本征函数设体系处于 测量力学量O ,一般说,可能出现不同结果,各有一定的几率,多次测量结果的平均值趋于一确定值,每次具体测量的结果围绕平均值有一个涨落,定义为如为厄密算符,也是厄密算符存在这样一种状态,测量力学量 所得结果完全确定。
即. 这种状态称为力学量的本征态。
在这种状态下称为算符的一个本征值, 为相应的本征函数。
二 力学量算符的性质 1. 力学量算符是厄密算符量子力学的一个基本假定: 测量力学量 时,所有可能出现的值,都是力学量算符的本征值。
§3.7 算符的对易关系 两力学量同时有确定值的条件测不准关系一、泊松括号 “ [” 1.定义:∧∧∧∧∧∧-=A B B A B A ],[ 2.性质:],[],[∧∧∧∧-=A B B A为常数λλλλ],[],[],[∧∧∧∧∧∧==B A B A B A],[],[],[∧∧∧∧∧∧∧+=+C A B A C B A (1)],[],[],[∧∧∧∧∧∧∧∧∧+=C A B C B A C B A∧∧∧∧∧∧∧∧∧+=B C A C B A C B A ],[],[],[0]],[[]],[,[]],[,[=++∧∧∧∧∧∧∧∧∧B A C A C B C B A计算力学量算符对易式的基本方法有二:一是将对易式作用在任意函数上,进行运算,以求之。
二、量子力学的基本对易式下面我们用第一种方法求出坐标、动量算符之间的对易式。
对于任意函数ψ,有()ψψψψψψψ i i x x i x x i x x i x x i x P P x x x =+∂∂+∂∂-=∂∂+∂∂-=⎪⎭⎫⎝⎛-∧∧由ψ的任意性,设i P x x =∧∧],[ (2) 同理: i P y y =∧∧],[],[0],[0],[],[====∧∧∧∧∧∧∧∧y x x y z P P P y P x i P z将以上式子写成通式有:αββαδ i P x =∧∧],[ (3)0],[=∧∧βαP P (4) 其中 ⎪⎩⎪⎨⎧≠===βαβαδβααβ1,,,zy x由上可知:动量分量和它所对应的坐标是不对易的,而和它不对应的坐标是对易的;动量各分量之间也是对易的。
力学量都是坐标和动量的函数,知道了坐标和动量之间的对易关系后,就可以得出其他力学之间的对易关系。
三、角动量算符的对易式)(],[],[0]],[],[],[],[00],[],[],[],[],[],[],[],[x y y x yz z x z x z yz z y z x x z z y x y z z y z z x y z y x P y P x i P x i P y i P P x z P z x P z P P P z y P P x z P x P z P P z y P z P y P x P z P z P z P x P y P z P y P x P z P z P y l l ∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧∧-=+-=⎭⎬⎫⎩⎨⎧+++⎭⎬⎫⎩⎨⎧+=++-++=+--=--=z l i = (5)同理: x z y l i l l ∧∧∧= ],[ (6) y x z l i l l ∧∧∧= ],[ (7) (5)、(6)和(7)三式可以合写为一个矢量公式∧∧∧=⨯L i L L(8)上式可看作是角动量算符的定义。
II.力学量与算符1.量子力学中与力学量有关的基本假设有哪些?关于力学量及其表示,量子力学有三条基本假定:(1)有关量子体系运动的每一个力学量都可以用一个线性厄密算符来表示.(2)对于该力学量的测量值,必定是相应的线性厄米算符的本征值之一.(3)如果体系处于态,该态可按算符的本征态展开那么在态中,测量力学量取值的概率正比于展开系数的模的平方.以上三条假定,共同给出了关于力学量的完整概念.可见,在量子力学中,力学量与态是相对独立的概念。
而力学量算待与其数值也有不同含义.在经典物理中,力学量可由运动状态完全确定,不必引入算符表示.并且,力学量与其数值也是一体的概念.2. 量子力学为什么要用算符表示力学量 ?用算符表示力学量,是由于量子体系所固有的波粒二象性所要求的.这正是量子力学处理方法上的基本特点之一.我们知道,表示量子态的波函数是一种概率波.因此,即使在确定的量子态中,也并非各种力学量都有完全确定区而是一般地表现为不同数值的统计分布.这就注定了经典力学量的表示方法 (可由运动状态完全决定)不再适用,因此需要寻求新的表示方法.我们从力学量平均值的表示式出发,来说明引入算符的必要性.如果体系处于态中,则它的位置平均值为类似地,它的动量平均位也可表示为但是要求出第二个积分,必须将表示为的函数.然而这是办不到的.因为按不确定关系的表示是无意义的,因此不能直接在坐标表象中按上式求动量平均值.我们可先在动量表象中求出动量平均值,再转换到坐标表象中去.利用有可见,若在坐标表象中计算动量平均值,那么动量矢量恰与算符相当,实际上,任何一个力学量在自身表象(连续谱)中计算其平均值,都与一个特定的算符相当,这就自然地引入了算符表示的概念.用算符表示力学量的问题还可以从另一角度来说明.我们知道量子力学中,力学与力学量之间的关系,从其数值是否能同时确定来考虑,有相互对易与不对易两种,而经典力学量之间都是对易的,因此经典力学量的表示方法不能适用于量子力学.然而在数学中,算符与算符之间一般并不满足交换律.也就是存在不对易的情形.因此用算符表示力学量是适当的.3.什么是算符的本征值和本征函数?它们有什么物理意义?含有算符的方程称为的本征值方程, 为的一个本征值,而则称为的属于本征值的本征函数.如果算符代表一个力学量,上述概念物理意义如下:当体系处于的本征态时,测量的数值是确定的,恒等于,并且根据本章开头列出的假设,当体系处于任意态时,单次测量的值必等于它的诸本征值之一.4.什么是算符的期望值(平均值)?它们有什么物理意义?力学量的平均值(或称期望值)的一般定义为它的意义包括以下几点:(1)当体系处于态时,就等于对于的所有测量值的平均;(2)如为的一个本征态,则就等于对应的本征值;(3)如果可在经典力学与量子力学间建立对应关系,那么与经典力学量对应的便是量子力学中的力学量的平均值。
量子力学中的量子力学力学量的算符关系量子力学是研究微观粒子行为和性质的理论框架,它描述了自然界中微观领域中的物质和能量的行为方式。
在量子力学中,量子力学力学量的算符关系是描述物理量之间的对易关系或反对易关系的数学表达式。
这些算符关系是量子力学理论的基石,对于量子力学系统的描述和计算具有重要意义。
一、量子力学力学量的基本概念在量子力学中,力学量指的是描述物理系统状态的特性,比如位置、动量、角动量、能量等。
这些力学量由相应的物理量算符来表示,量子态的演化和测量是通过这些算符的操作来实现的。
在量子力学中,力学量算符是一种特殊的线性算符,它们作用于量子态(波函数或矢量表示)来得到相应的测量结果。
力学量算符的本征态对应于测量得到的确定值,而本征值则是该测量值对应的物理量数值。
二、量子力学力学量的算符关系量子力学力学量的算符关系可以通过对易关系或反对易关系来描述。
对于可同时测量的力学量,它们的算符满足对易关系;而对于不可同时测量的力学量,它们的算符满足反对易关系。
1. 对易关系对易关系表示两个力学量算符的乘积与其反序乘积之间的关系。
对于两个可同时测量的力学量A和B,它们的算符满足对易关系:[A, B] = AB - BA = 0其中[A, B]表示算符的对易子。
对于满足对易关系的力学量算符,它们的本征态可以共享相同的基础。
2. 反对易关系反对易关系描述的是两个不可同时测量的力学量算符之间的关系。
对于不可同时测量的力学量A和B,它们的算符满足反对易关系:{A, B} = AB + BA = 0其中{A, B}表示算符的反对易子。
反对易关系的存在意味着这两个力学量之间存在一定的互换关系,即测量一个力学量会影响到另一个力学量的测量结果。
三、具体力学量的算符关系1. 位置和动量在量子力学中,位置算符和动量算符是最基本的力学量。
它们的算符关系由玻尔-海森堡不确定关系给出:Δx · Δp ≥ h/4π其中Δx表示位置的不确定度,Δp表示动量的不确定度,h为普朗克常数。
119§3.6 算符与力学量的关系重点: 完全性关系,算符与力学量的关系的基本假设 难点: 完全性关系一、厄米算符的本征函数的完全性 1.复习§3.1的两个假定假定1:量子力学中的每个力学量用一个线性厄米算符表示。
假定2:算符Fˆ的本征值集合即是测量体系力学量F 可能得到的所有量值;体系处在F ˆ的属于本征值的本征态nψ时,测力学量F ,得到确定值n λ。
但是在任意态ψ中(非F ˆ的本征态),此时Fˆ与代表的力学量F 的关系如何?这需引进新的假设,适合于一般情况,且不能与假定2相抵触,应包含它。
2.完全性:若F ˆ是满足一定条件⎟⎟⎠⎞⎜⎜⎝⎛ΦΦ级数收敛的平方可积的n n F ˆ)2(F ˆ)1(的厄米算符,且它的正交归一的本征函数系)x (1Φ、)x (2Φ…)x (n Φ…对应的本征值为1λ、2λ…n λ…,则任一函数)x (Ψ可以按)x (n Φ展为级数:)x (C )x (n nn Φ=Ψ∑ ①式中n C 是与x 无关的展开系数。
我们称本征函数)x (n Φ的这种性质为完全性,或者说)x (n Φ组成完全系。
120说明:①展开系数∫ΨΦ=∗dx )x (C n n以)x (m ∗Φ左乘)x (C )x (n nn Φ=Ψ∑,且对x 的整个区域积分有m mn n n mnn n nn m m C C dx )x ()x (C dx)x (C dx )x ()x (=δ=ΦΦ=ΦΦ=ΨΦ∑∫∑∑∫∫∗∗∗即:∫ΨΦ=∗dx )x (C n n ② ②表示力学量的算符是厄米算符,不管它是否满足完全性关系要求的条件,都可以直接将数学上证明过的定理拿来就用,即假定力学量算符本征函数的正交归一系具有完全性。
3.展开系数2n C 的物理含义:设)x (Ψ为归一化的波函数,则根据)x (n Φ是正交归一化的完全函数系,有:1dx )x ()x (ΨΨ=∫∗=dx C C n nn m mm Φ⋅Φ∑∫∑∗∗==ΦΦ∗∗∫∑dx C C n m n n ,m m n ,m n n ,m m C C δ∑∗2nn C ∑=即:1C 2nn=∑因左边是总几率,所以2n C 有几率的意义。
算符即运算规则算符即运算规则。
它作用在一个函数ψ(x)(x)上即是对上即是对ψ(x)(x)进行某进行某种运算种运算,,得到另一个函数ϕ(x)§1.7 1.7 量子力学中的力学量和算符量子力学中的力学量和算符例:)()(ˆx x Fϕψ=)()(ˆx xf x f x =)()(ˆx f x f I =dxd D =ˆ1、定义2、乘法与对易算符的乘法一般不服从交换律:)ˆ(ˆˆψψB A BA ≡AB B Aˆˆˆˆ≠例如:则算符的对易式可记为则算符的对易式可记为::若对任意若对任意ΨΨ,都有:则称和对易:引入记号: ψψA B B Aˆˆˆˆ=A ˆB ˆ]ˆ,ˆ[ˆˆˆˆB A A B B A≡−0]ˆ,ˆ[=B AI x Dˆ]ˆ,ˆ[=h i p xx =]ˆ,ˆ[易证:可定义算符的可定义算符的n n 次方为:A A AA n ˆˆˆˆ⋅⋅⋅=可定义算符的多项式和算符的函数可定义算符的多项式和算符的函数。
例如:3、线性算符设C 1, C 2为常数为常数,,若算符满足:则称其为线性算符则称其为线性算符。
量子力学态叠加原理要求力学量算符必须是线性算符例如例如,,下列算符为线性算符下列算符为线性算符::22112211ˆˆ)(ˆΨ+Ψ=Ψ+ΨF C F C C C F x pH y x x ˆ,ˆ,,2∂∂∂∂∂算符的本征值方程:4、本征函数本征函数、、本征值λ为算符的本征值的本征值,,为算符的本征值为λ的本征函数的本征函数。
例如,e 2x 是微商算符的本征函数:)()(ˆx x Fλψψ=)(x ψFˆF ˆF ˆ定态薛定谔方程:它是哈密顿算符的本征方程它是哈密顿算符的本征方程,,波函数ψ 是哈密顿算符的本征函数征函数,,能量E 是哈密顿算符的本征值是哈密顿算符的本征值。
例如例如::ψψE H=ˆ2211ˆˆΨ=ΨΨ=ΨλλF F )(ˆˆ)(ˆ221122112211Ψ+Ψ=Ψ+Ψ=Ψ+ΨC C F C F C C C F λ则:狄拉克符号:〉≡ψψ|)(r v |)(*ψψ〈≡r r ∗〉〈=〉〈≡∫ψϕϕψτϕψ||)()(*d r r v v一个算符如果满足如下关系一个算符如果满足如下关系,,则称为厄米算符则称为厄米算符,:,:其中积分遍及整个空间其中积分遍及整个空间,,函数ψ, ϕ是任意的品优函数是任意的品优函数。