基于地表温度与植被指数特征空间反演地表参数的研究进展
- 格式:pdf
- 大小:491.80 KB
- 文档页数:8
基于地表温度-植被指数特征空间的土壤干旱监测李润林;董鹏程;王瑜;汪晓斌【摘要】以张掖市甘州区绿洲为研究区,采用5期遥感影像(2011~2015年),运用ENVI 5.2提取归一化植被指数(NDVI)、改进型土壤调节植被指数(MSAVI)和地表温度(Ts),构建Ts-NDV I和Ts-MSAVI特征空间,对比分析两种特征空间.结果表明,Ts-MSAVI特征空间的干边和湿边斜率均小于0,这与前人的研究干边斜率是负值,湿边斜率是正值的结论有所不同.Ts-NDVI和Ts-MSAVI这两种特征空间具有相同的趋势,其中2012、2013、2014年这3年两种特征空间系数r2较高,其余2年系数r2较低.整体而言,Ts-NDV I特征空间的干湿边系数相比Ts-MSAVI特征空间的干湿边系数要高,稳定性好.从TV DI旱情等级分布图上可以得出2012年的受旱面积最大,干旱和重旱面积占总面积的70.39%,2013年干旱情况最严重,重干旱面积为1611.972 km2,重旱面积占到总面积的43.5%,2014年干旱程度开始缓解,轻旱、干旱和重旱面积开始降低,湿润和正常面积开始增加,2015年干旱程度得到全面缓解,湿润和正常面积占到总面积的21.9%,但是干旱和重旱面积比重依然很大,说明张掖市甘州区绿洲旱情依然很严峻.%Selecting oasis of Ganzhou district as the study area in Zhangye city,using ENVI 5.2 software to extact normalized difference vegetation(NDVI),modified soil adjusted vegetation index(MSAVI)and temperature of surface(Ts),Ts-NDVI feature space and Ts-MSAVI feature space were built. The two feature spaces were compared and analyzed. The results showed that the slope of dry-edge and wet-edge of Ts-MSAVI feature space was less than 0,which was not consistent with the previous research. The previous research thinked the dry-edge slope was negative and the wet edge slope was positive. The feature space of Ts-NDVI and Ts-MSAVI had the same trend. The r2 coefficient of two feature spaces was higher in the three years of 2012,2013 and 2013,and the r2 coefficient of the other two years was lower. On the whole,the wet-edge coefficient of the Ts-NDVI feature space was higher than that of the Ts-MSAVI feature space,and the stability was good. From the TV DI drought severity map,it could be concluded that the drought area was the largest in 2012,the drought and heavy drought area accounted for 70.39% of the total area. In 2013,the drought was the most serious,the area of heavy drought was 1611.972 km2,the area of heavy drought occupied 43.5% of the total area and the degree of drought in 2014 was lightened. And heavy drought area began to decrease,wet and normal area began to increase. In 2015,the degree of drought had been fully relieved, wet and normal area accounted for 21.9% of the total area. But the proportion of drought and heavy drought area was still great, indicating that the drought of Ganzhou district oasis in Zhangye city was still very serious.【期刊名称】《湖北农业科学》【年(卷),期】2017(056)016【总页数】7页(P3060-3066)【关键词】干旱;归一化植被指数(TVDI);改进型土壤调节植被指数(MSAVI);地表温度;张掖市甘州区【作者】李润林;董鹏程;王瑜;汪晓斌【作者单位】农业部兰州黄土高原生态环境重点野外科学观测实验站,兰州730050;中国农业科学院兰州畜牧与兽药研究所,兰州 730050;农业部兰州黄土高原生态环境重点野外科学观测实验站,兰州 730050;中国农业科学院兰州畜牧与兽药研究所,兰州 730050;农业部兰州黄土高原生态环境重点野外科学观测实验站,兰州 730050;中国农业科学院兰州畜牧与兽药研究所,兰州 730050;农业部兰州黄土高原生态环境重点野外科学观测实验站,兰州 730050;中国农业科学院兰州畜牧与兽药研究所,兰州 730050【正文语种】中文【中图分类】TP79;X43干旱是世界上许多重大自然灾害之一,在各种自然灾害中,旱灾对农业生产的影响最大。
基本原理一)地表反射率是指地表物体向各个方向上反射的太阳总辐射通量与到达该物体表面上的总辐射通量之比。
反照率可以通过遥感成像提供的辐射亮度值L 或反照率p ,二向性反射率分布函数BRDF 来获得:地物反射率的光谱特征差异是从遥感影像中识别地表不同类型地物的基本依据,也是地表其他各种物理、生物物理参数反演的依据地表。
地表反射率的计算步骤:1、辐射定标:根据遥感影像DN 值计算到达传感器的各波段辐射亮度也就是将传感器记录的辐射量化值(Digital Number ,DN )转换成绝对辐射亮度值、表观反射率,或者表观温度的过程。
绝对定标:通过各种标准辐射源,建立辐射亮度值与辐射量化值(DN )之间的定量关系式中,辐射亮度值L 的常用单位为W/(m2.μm.sr),或者μW/(cm2.nm.sr) 。
1W/(m2.μm.sr)=0.1 μW/(cm2.nm.sr)2、各波段表观反射率计算3、大气辐射校正(ENVI FLAASH/QUAC )绝对大气辐射校正:消除大气辐射衰减效应,将遥感影像的DN 值转换为地表反射率、辐亮度、地表温度等的方法,此过程包含了辐射定标。
相对大气辐射校正:将遥感影像的DN 值转换为类似的整型数,同时消除大气辐射衰减效应。
FLAASH 是用数学建模辐射的物理行为,纠正波长在可见光至近红外和短波红外区域,最多3微米。
(对于热地区,使用基本工具>预处理>校准工具>热大气压校正菜单选项。
)不同于预先计算模拟结果的数据库内插辐射传输特性许多其他大气校正程序, FLAASH 采用了MODTRAN4辐射传输代码。
MODTRAN4并入ENVI FLAASH 的版本被修改,以校正在HITRAN -96水行参数的误差。
可以选择任何一种标准MODTRAN 大气模型和气溶胶类型,FLAASH 还包括以下功能:校正邻近效应(像素混合是由于表面反射辐射的散射) 计算场景的平均能见度(气溶胶/雾量)。
地表反射率、温度、植被指数、几何精纠正和Landsat影像影像几何精纠正1.深入理解影像几何精纠正的原理2.学会使用影像对影像的几何精纠正方法和具体操作步骤1. 扫描地形图(宁夏中卫地区1:25万104811.img )进行几何精纠正(包括投影参数、单位的调整将选定参考点保存)。
2. 利用纠正好的全色波段高分辨率影像完成同景多光谱影像的几何精纠正。
1. 扫描地形图(宁夏中卫地区1:25万104811.img )进行几何精纠正(包括投影参数、单位的调整将选定参考点保存)。
2. 利用纠正好的全色波段高分辨率影像完成同景多光谱影像的几何精纠正Landsat影像数据下载、导入、目视解译与分析1.学会在美国NASA/USGS网上进行Landsat卫星影像的检索和下载,认识影像名编号意义。
2.初步掌握ENVI/IDL影像处理软件的使用方法,熟悉软件的用户界面、功能模块,掌握基本功能的使用。
复习遥感导论课程中的遥感影像目视解译环节,选择自己熟悉的地区,进行Landsat TM/ETM+影像的目视解译。
实习内容1、课前准备:根据自己感兴趣的地区,下载一景Landsat TM/ETM+影像。
2、将单波段分别添加在ENVI中(采用file| open image file工具,注意在添加波段数据时,热红外波段影像应另存为一个文件)3、利用Basic tools | layer stscking视窗选择多波段影像进行添加,在available中选择刚才添加的影像,选择RGB color分别选取4、3、2和7、4、2波段组合进行彩色合成,此时,可以再打开一个视窗(new display)观察地物的色调变化。
列表说明上述地物分别在两种波段组合下的颜色特征。
4、查询并记录影像文件的基本信息、投影信息,以及各个波段直方图信息。
5、将影像缩小、放大、漫游工具识别影像中的土地利用/土地覆盖类型,可能的土地利用/土地覆盖类型包括:(1) 耕地farmland(8) 公路/铁路road or railway(2) 草地grassland(9) 河流stream(3) 裸地barren land(10) 水库reservoir(4) 森林forest(11) 冰雪ice and snow(5) 城镇居民地town(12) 云cloud(6) 农村居民地village(13) 阴影shadow(7) 沙漠desert6、利用load RGB将图像显示,后用视窗中的光谱剖面工具,提取上述地物在不同波段的数值(Digital Number,DN);要求针对影像中的6种地物至少各采集10个样本,取平均值,做光谱剖面图,分析不同地物的灰度值随波段变化的特点。
陆地表面温度反演的研究现状及发展趋势地球表面温度是一个重要参数,精确定量反演陆面温度,对旱灾预报和作物缺水研究、农作物产量估算、全球气候变化等领域的研究具有巨大的推动作用。
利用遥感资料进行地表温度的反演已成为目前遥感定量研究中的热点和难点之一。
近年来有关方法的研究非常多,主要反演方法可分为5类。
本文对各种方法所要解决的关键问题及优缺点做了评述。
如何提高反演的精度和模型的适用性是地表温度热红外遥感的未来发展趋势。
标签:陆地表面温度比辐射率热红外遥感组分温度反演在许多模型中,如大气与地表的能量与水汽交换、数字天气预报、气候变化等方面,地表温度都是一个不可或缺的重要参量[1]。
大多数地-气界面的通量都可参数化为温度的一个函数[2]。
遥感可以提供二维陆面温度分布信息[3]。
通过遥感技术,可获得区域性或全球性地表温度分布状况。
因此利用卫星数据演算地表温度,探讨卫星热通道的理论及其实际应用方法,已成为遥感科学的一个重要领域。
近年来许多方法被用于从热红外波段探测到的经大气影响的地表辐射,并结合其它辅助数据来估算地表温度。
1遥感反演地表温度的原理目前遥感反演地表温度的方法主要有传统的大气校正法、单窗算法等。
这些算法最基本的理论依据是维恩位移定律和普朗克定律。
根据Planck定理,黑体的光谱发射特性可以表示为:式中B(λ)T是黑体辐射强度,单位为W·m-2·sr-1·μm-1 ,λ是波长,C1和C2是辐射常数,C1=3.7418×W·m-2;C2=1.4387685×λm·K,T是温度,单位是K 。
Planck函数给出了黑体辐射的辐射强度与温度波长的定量关系。
从(1)式可以看出,温度确定后,由Planck函数可以确定辐射源的能量谱分布,进而可以推算出物体的能量谱峰值的波长[4]。
反之,从物体的能量谱分布及辐射强度也可计算出物体的实际温度。
这也是地表温度能被反演的理论基础。
地表反射率、温度、植被指数、几何精纠正和Landsat影像一、DNVI建模【地表反射率】第3波段第4波段【DNVI】【3、4波段表观反射率和地表反射率的线性关系】【表观反射率和地表反射率的线性关系数学表达式】波段关系式波段关系式1波段y=0.8933*x+0.0473 4波段y=0.9401*x+0.0065 2波段y=0.8801*x+0.0242 5波段y=0.9399*x+0.001 3波段y=0.9161*x+0.0143 7波段y=0.9584*x+0.0004【部分地物的DNVI值】地物DNVI值min max mean stdev Reservior 0.057713 0.338587 0.145087 0.038598 Snow -0.12395 0.152669 0.025088 0.031572Urban -0.356923 0.038094 -0.273288 0.045284Plant 0.333387 0.786695 0.656094 0.081619Desert 0.071897 0.155663 0.100783 0.014291River 0.043469 0.429917 0.127503 0.08131【结果与分析】:通过对提取地物的DNVI值的可以发现,绿色的DNVI值比较高,原因是绿色植物叶绿素引起的红光吸收和叶肉组织引起的近红外光反射使得植被在近红外波段和红光波段有很大的差异;水体和裸地在红光波段和近红外波段反射率相当,因此水库和裸地的NDVI值接近0;雪地NDVI最低值中出现负值,是由于在近红外波段比可见光波段有较低的反射率;沙漠中植被很少,因此其近红外波段和红光波段的反射情况和裸地类似,因此其NDVI值接近于0;河流的NDVI值稍大于由于河流中存在一定的含沙量,使得地物在近红外波段的反射率大于近红外波段。
二、温度反演【温度反演】低增益温度反演高增益温度反演【第1波段部分地物低增益温度反演数据】开尔文温度摄氏温度反演温度地物min max mean stdev min max mean Reservior 287.47641 289.289886 288.13127 0.388036 14.32641 16.13989 14.98127 Snow 273.154785 293.990417 278.177771 3.788266 0.004785 20.84042 5.027771 Bare Land 295.989319 310.676086 303.445647 2.819391 22.83932 37.52609 30.29565 Urban 300.165253 310.928528 307.469228 1.530421 27.01525 37.77853 34.31923 Plant 294.278015 305.525879 298.698402 2.333251 21.12802 32.37588 25.5484 Desert 302.605286 309.915955 306.491575 1.39902 29.45529 36.76596 33.34158影像几何精纠正1.深入理解影像几何精纠正的原理2.学会使用影像对影像的几何精纠正方法和具体操作步骤1. 扫描地形图(宁夏中卫地区1:25万104811.img )进行几何精纠正(包括投影参数、单位的调整将选定参考点保存)。
地表温度反演实验报告地表温度是指地球表面的温度,是一个重要的气象参数,对于气候变化、城市热岛效应等问题具有重要的影响。
地表温度反演是通过遥感技术获取地表温度信息的一种方法,可以有效地监测地表温度的变化情况。
本实验旨在利用卫星遥感数据,反演地表温度,并对结果进行分析和讨论。
实验方法:我们收集了MODIS卫星传感器获取的遥感数据,包括云量、地表温度等信息。
然后,利用反演算法对这些数据进行处理,得到地表温度的反演结果。
接着,我们将反演结果与实地观测数据进行对比分析,验证反演结果的准确性。
最后,我们对地表温度的空间分布特征进行研究,分析其与地形、植被覆盖等因素的关系。
实验结果:经过反演算法处理,我们得到了一幅地表温度的空间分布图。
从图中可以看出,地表温度在不同区域有明显的差异,一般来说,城市区域的地表温度要高于郊区和农田地区。
另外,我们还发现地形和植被覆盖对地表温度有一定的影响,高海拔地区的地表温度要低于低海拔地区,而植被茂密的地区地表温度相对较低。
实验分析:通过对地表温度的反演结果进行分析,我们可以发现地表温度的空间分布受到多种因素的影响,包括城市化程度、地形、植被覆盖等。
城市热岛效应导致城市区域地表温度升高,而高海拔地区地表温度较低,这些都是地表温度空间分布差异的原因之一。
植被覆盖可以降低地表温度,起到调节气候的作用。
结论:地表温度反演是一种有效的监测地表温度变化的方法,可以为气候研究、城市规划等领域提供重要的参考依据。
通过对地表温度的反演结果进行分析,可以更好地理解地表温度的空间分布特征,为环境保护和气候调控提供科学依据。
希望通过本实验的研究,能够更深入地探讨地表温度变化的规律,为未来的研究提供参考。