动力学2习题课
- 格式:ppt
- 大小:880.50 KB
- 文档页数:19
例题E2-1 如图E2-1所示,一个单层建筑理想化为刚性大梁支承在无重的柱子上。
为了计算此结构的动力特性,对这个体系进行了自由振动试验。
试验中用液压千斤顶在体系的顶部(也即刚性大梁处)使其产生侧向位移,然后突然释放使结构产生振动。
在千斤顶工作时观察到,为了使大梁产生0.20in[0.508cm]位移需要施加20 kips[9 072 kgf]。
在产生初位移后突然释放,第一个往复摆动的最大位移仅为0.16 in[0. 406 cm],而位移循环的周期为1.4 s。
从这些数据可以确定以下一些动力特性:(1)大梁的有效重量;(2)无阻尼振动频率;(3)阻尼特性;(4)六周后的振幅。
2- 1图E2-1所示建筑物的重量W为200 kips,从位移为1.2 in(t=0时)处突然释放,使其产生自由振动。
如果t=0. 64 s时往复摆动的最大位移为0.86 in,试求(a)侧移刚度k;(b)阻尼比ξ;(c)阻尼系数c。
2-2 假设图2- la 所示结构的质量和刚度为:m= kips ·s 2/in ,k=40 kips/in 。
如果体系在初始条件in 7.0)0(=υ、in/s 6.5)0(=υ&时产生自由振动,试求t=1.0s 时的位移及速度。
假设:(a) c=0(无阻尼体系); (b) c=2.8 kips ·s/in 。
2-3 假设图2- 1a 所示结构的质量和刚度为:m=5 kips ·s 2/in ,k= 20 kips/in ,且不考虑阻尼。
如果初始条件in 8.1)0(=υ,而t=1.2 s 时的位移仍然为1.8 in ,试求:(a) t=2.4 s 时的位移; (b)自由振动的振幅ρ。
例题E3-1 一种便携式谐振荷载激振器,为在现场测量结构的动力特性提供了一种有效的手段。
用此激振器对结构施以两种不同频率的荷载,并分别测出每种情况下结构反应的幅值与相位。
由此可以确定单自由度体系的质量、刚度和阻尼比。
第十二章 化学动力学基础 (二)本章知识要点与公式1. 碰撞理论双分子碰撞频率 :2AB AB A B Z pd L c = 22AA AA A 2Z d L π= 临界能c E 与活化能a E 的关系:12a c E E RT =+ 用简单碰撞理论计算双 分子反应的速率常数:2AB aEk d RT π⎛⎫=- ⎪⎝⎭ 2AA 2a E k d RT π⎛⎫=- ⎪⎝⎭ 概率子Pexp a E k PA RT ⎛⎫=- ⎪⎝⎭2ABA d π= A P A =n n n n 2. 过渡态理论用统计热力学方法计算速率常数:,0B B B exp E k T f k h f RT π≠⎛⎫=- ⎪⎝⎭用热力学方法计算速率常数:()0010B r m r m exp exp nk T S H k c h R RT ≠≠-⎛⎫⎛⎫∆∆=- ⎪ ⎪⎝⎭⎝⎭对于双分子理想气体反应:1n000B r m r m exp exp k T S H P k h RT R RT -≠≠⎛⎫⎛⎫⎛⎫∆∆=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭3.原盐效应稀溶液中,离子强度对反应速率的影响: A B 0lg2kz z k = A z 与B z 同号,产生正的原盐效应,I ↑ k ↑;A z 与B z 昇号,产生负的原盐效应,I k ↑↓。
4. 光化学反应光化学第一定律:只有被分子吸收的光才能引起分子的光化学反应。
光化学第二定律:在初级反应中, 一个反应分子吸收一个光子而被活化。
1 mol 光子能量(1 Einstein ) 101197J m mol Lhcu Lh νλλ-.===⋅⋅量子产率 ar I ϕ=5. 催化反应催化剂通过改变反应历程,改变反应的表观活化能来改变反应速率,只能缩短达到平蘅的时间,而不能改变平蘅的组成。
酶催化反应历程( Michaelis – Menten 机理)米氏常数12m 1k kK k -+=当[]S →∞ 时 []m m m111S K r r r =⋅+将1r对[]1S 作图,可求m K 和m r .典型俐题讲解例 1 500K 时,实验测得 NO 2 分解反应的提前因子为 61312.0010mol m s --⨯⋅⋅,碰撞截面为1921.0010m -⨯,试计算该反应的概率因子 P解 :2AA2A d π=c 2σ= ()()19223-12 1.0010m 602310mol-=⨯⨯⨯.⨯7-13133710mol m s -=.⨯⋅⋅61371320010mol m s 33710mol m s A P A --1∞--1∞.⨯⋅⋅==.⨯⋅⋅ 例 2 实验测得 N 2O 5 分解反应在不同温度时的反应速率常数,数据列于表中。