膨胀型阻燃剂
- 格式:ppt
- 大小:234.50 KB
- 文档页数:25
膨胀型阻燃剂的阻燃机理
膨胀型阻燃剂是一种常用于聚合物材料中的阻燃添加剂,其阻燃机理主要涉及以下几个方面:
膨胀作用:
膨胀型阻燃剂在受热条件下会发生膨胀反应,产生大量气体。
这些气体可以隔离氧气,降低聚合物与火源之间的接触,减少燃烧反应的发生。
热分解作用:
膨胀型阻燃剂在高温下会发生热分解反应,产生具有阻燃效果的气体和炭化物。
这些产物可以在燃烧过程中吸收热量,降低燃烧反应的温度,减缓火势的蔓延。
碱金属盐的催化作用:
膨胀型阻燃剂中通常含有碱金属盐,如氢氧化铝、磷酸铵等。
这些盐类在高温下可以催化燃烧反应中的焦炭生成,形成炭化层,隔离燃烧反应,起到阻燃的作用。
充填作用:
膨胀型阻燃剂可以作为填料填充在聚合物材料中,增加材料的密度,降低热传导和气体扩散速度。
这种充填作用可以有效减缓燃烧反应的传播速度。
综合上述机理,膨胀型阻燃剂通过膨胀作用、热分解作用、碱金属盐的催化作用和充填作用等多种方式,协同作用来减缓燃烧反应的发展和蔓延,提供阻燃保护。
这种阻燃机理有助于降低聚合物材料的燃烧速率和火灾危险性,提高材料的阻燃性能。
7-8膨胀型阻燃剂及应用膨胀型阻燃剂是一种能够通过膨胀来抑制或延缓材料燃烧的化合物。
当材料在受热时,膨胀型阻燃剂会分解产生无烟气体和大量的灰烬,这种膨胀效应会形成一层密集的保护层,阻碍火焰燃烧并防止火势蔓延。
因此,膨胀型阻燃剂广泛应用于各种材料的阻燃处理,以提高材料的阻燃性能。
膨胀型阻燃剂的应用范围非常广泛,包括建筑材料、电缆、塑料、橡胶、涂料和纺织品等。
在建筑材料中,膨胀型阻燃剂可以添加在隔热材料中,提高材料的阻燃性能,达到消防安全要求。
在电缆行业中,膨胀型阻燃剂可以添加在电缆绝缘层和护套中,一旦发生火灾,可以有效地抑制火势扩大,并保护电缆内部设备的安全。
在塑料和橡胶制品中,膨胀型阻燃剂可以添加在制品中,提高其阻燃性能,减少火灾发生的危险。
此外,膨胀型阻燃剂还可以用于涂料和纺织品等领域,以提高产品的防火性能。
膨胀型阻燃剂的实现机制主要是通过分解产生膨胀气体和残留物。
膨胀气体可以分为两类,一类是能抑制氧气结合的气体,如二氧化碳和氮气等;另一类是有助于阻燃效果的气体,如氨和盐酸等。
这些气体的产生可以降低火焰的温度,并抵挡氧气的进入,从而达到抑制火焰蔓延的目的。
在选择膨胀型阻燃剂时,需要考虑以下几个因素:首先,阻燃剂的燃烧性能和阻燃效果;其次,阻燃剂对材料性能的影响,如强度、硬度和耐热性等;最后,阻燃剂的添加量和加工条件。
由于不同材料对阻燃剂的适应性不同,必须根据具体材料的需求进行选择。
目前,市场上存在多种膨胀型阻燃剂,如含阻燃橡胶、含阻燃聚合物和含阻燃玻璃纤维等。
这些阻燃剂具有各自的优点和适用范围,需要根据具体应用场景的要求进行选择。
此外,一些新型膨胀型阻燃剂也在不断研发中,例如基于纳米技术的膨胀型阻燃剂和绿色环保型膨胀型阻燃剂等。
总之,膨胀型阻燃剂是一种能够通过膨胀来抑制或延缓材料燃烧的化合物。
它具有广泛的应用范围,可应用于建筑材料、电缆、塑料、橡胶、涂料和纺织品等领域,以提高材料的阻燃性能。
在选择膨胀型阻燃剂时,需要考虑阻燃剂的燃烧性能和阻燃效果,以及其对材料性能的影响。
膨胀型阻燃剂的制备及应用来源:中国化工信息网 2007年11月14日由于环保等各方面的压力,阻燃剂的无卤化进程步伐越来越快。
膨胀型阻燃剂被认为是很有希望的途径之一,目前正受到越来越多的关注。
膨胀型阻燃剂是由酸源、气源和结炭源所组成,酸源是含阻燃元素磷化合物受热氧化生成磷酸、偏磷酸,最后生成不挥发的且稳定的聚偏磷酸,覆于燃烧物表面起着隔热、隔氧阻止燃烧,因此酸源起着重要的作用。
气源以含氮化合物受热分解生成难燃的气体N2、NH3、H2O等,使受热物表面周围空气稀释,因此气源的选择也十分重要。
结炭源是在材料受热时快速降解炭化形成致密的炭化层,目前公认季戊四醇是极好的结炭源。
作者以含磷量极高的甲基磷酸二甲酯(简称DMMP)(Ⅰ)作为酸源,三聚氰胺三聚氰酸盐(Ⅱ)为气源、季戊四醇(Ⅲ)为结炭源制备了膨胀型阻燃剂,当Ⅰ:Ⅱ:Ⅲ=5.0:2.5:0.83时,对不饱和聚酯树脂具有极好的阻燃作用,添加15%时能使不饱和聚酯树脂的氧指数达到28.5,燃烧残余物为松散的黑色物质,说明具有结炭作用。
1 试验部分1.1 主要仪器与试剂Nicolet 170SX FT-IR红外光谱仪,ARC400型核磁共振分析仪,HC-2型氧指数测定仪。
磷含量采用燃烧、磷钼酸铵沉淀法测定。
三聚氰胺,工业品;三聚氰酸,工业品;不饱和聚酯树脂,工业品;季戊四醇,工业品;亚磷酸三甲酯,工业品。
1.2 试验内容1.2.1 阻燃剂DMMP(Ⅰ)的合成向装有带干燥管的回流冷凝管、温度计和电动搅拌的反应瓶中加入500.0g 亚磷酸三甲酯,催化剂NPSM20.0g,开动搅拌,缓慢加热到回流温度(105-110℃),当回流明显减慢时,继续加热使反应体系始终保持回流状态,当内温达到160℃且无回流现象时,即为反应终点。
将反应装置改为减压蒸馏装置,收集95-97℃/0.092MPa馏分,得无色透明产品485.0g。
1.2.2 三聚氰胺三聚氰酸盐(Ⅱ)的制备将64.5g三聚氰酸溶于90℃的热水中,分批加入63.0g三聚氰胺,90℃搅拌反应2.5h,pH值7左右时,冷却到室温,过滤,滤饼用热水洗涤,抽干,60℃真空干燥。
膨胀型阻燃剂及应用膨胀型阻燃剂是一种能够在高温下膨胀产生阻隔效果的化学物质。
它主要由含氮的化合物组成,当受到高温作用时,化合物会分解产生气体,并且在分解过程中产生大量的灰炭,从而形成一层膨胀隔热层,阻止火焰蔓延。
膨胀型阻燃剂具有以下多种特点:首先,膨胀型阻燃剂的分解过程产生的气体能够使它膨胀成为多孔的泡沫状物质,并且这种物质具有较低的热导率,能够有效隔热。
其次,膨胀型阻燃剂产生的灰炭可以形成一层致密的隔热层,能够阻挡热量的传导和辐射,从而减缓火势的蔓延。
此外,膨胀型阻燃剂还具有绝热性能,它能够吸收空气中的热量,从而将火焰附近的温度降低。
最后,膨胀型阻燃剂还具有多孔结构,能够有效地吸附和排出有害气体,减少有毒物质的释放,保护环境和人体健康。
1.建筑材料:膨胀型阻燃剂被广泛应用于各种建筑材料中,如木材、塑料、绝缘材料等。
在火灾发生时,阻燃剂会迅速膨胀,形成一层隔热层,防止火势蔓延并保护建筑结构。
2.电子电器:许多电子产品和电器设备中都含有阻燃剂。
例如,手机、电视、电脑等设备的外壳通常都采用阻燃材料,以防止高温或电火花引起的火灾。
3.输电线缆:输电线缆中的阻燃剂起到防止电火花引起火灾的作用。
膨胀型阻燃剂在电火花产生时能够迅速膨胀,形成一层隔热层,防止火焰传播。
4.航空航天领域:在航空航天领域,因为飞行器在高温高速环境下飞行,所以使用阻燃剂尤为重要。
膨胀型阻燃剂被广泛应用于飞机内饰、燃料箱和发动机罩等部件中,以提高航空器的火灾安全性能。
综上所述,膨胀型阻燃剂是一种能够在高温下膨胀产生阻隔效果的化学物质,它在防止火焰蔓延、防止热量传导和辐射方面具有独特的优势。
它的应用领域广泛,包括建筑材料、电子电器、输电线缆和航空航天等领域。
通过使用膨胀型阻燃剂,可以提高材料和设备的抗火性能,降低火灾风险,保护生命财产安全。
膨胀型阻燃剂膨胀型阻燃剂(IFR)是一种以氮、磷为主要组成的复合阻燃剂,它不含卤素,也不采用氧化锑作为协效剂,该类阻燃剂在受热时发泡膨胀,故称为膨胀型阻燃剂,它是一类高效低毒的环保型阻燃剂。
20世纪90年代后,膨胀型阻燃剂的研究逐渐开始活跃,它被公认为是实现阻燃剂无卤化的有效途径之一,其在纺织品的阻燃整理中也极具潜力。
基本要素:膨胀型阻燃剂有三个基本要素。
即酸源、炭源和气源。
酸源又称脱水剂或炭化促进剂,一般是无机酸或燃烧中能原位生成酸的化合物,如磷酸、硼酸、硫酸和磷酸酯等;炭源也叫成炭剂,它是形成泡沫炭化层的基础,主要是一些含碳量高的多羟基化合物,如淀粉、蔗糖、糊精、季戊四醇、乙二醇、酚醛树脂等;气源也叫发泡源,是含氮化合物,如尿素、三聚氰胺、聚酰胺等。
三组分中,酸源最为主要,比例最大,且阻燃元素含于酸源中,所以酸源是真正意义上的阻燃剂,碳源和发泡剂则是协效剂。
阻燃机理:IFR的阻燃作用主要是依靠在材料表面形成多孔泡沫焦炭层,它是一个多相系统,含有固体和液体和气态产物。
炭层阻燃性质主要体现在:使热难于穿透凝聚相,阻止氧气进入燃烧区域,阻止降解生成的气态或液态产物溢出材料表面。
焦碳层形成过程为:在150℃左右,酸源产生能酯化多元醇和可作为脱水剂的酸;在稍高的温度下,酸与碳源进行酯化反应,而体系中的胺基则作为酯化反应的催化剂,加速反应;体系在酯化反应前和酯化过程中熔融,反应过程中产生的不燃性气体使已处于熔融状态的体系膨胀发泡,与此同时,多元醇和酯脱水碳化,形成无机物及碳残余物,体系进一步发泡;反应接近完成时,体系胶化和固化,最后形成多孔泡沫炭层。
应用及发展方向:膨胀型阻燃剂应用于纤维和织物主要通过两种方式,一是将阻燃剂配制成整理液,通过涂布等方式整理到织物表面,天然纤维大多采用此方法;二是将膨胀型阻燃剂作为一种共聚单体加入到聚合物中,大多用于合成纤维的阻燃。
合成一种具酸源、炭源和气源三位一体的膨胀型阻燃剂是当今阻燃研究的一个热点。
含N-P笼型大分子膨胀型阻燃剂IFR201-A一、产品简介IFR201-A型膨笼型大分子膨胀型型阻燃剂是四川卓安新材料科技有限公司通过常用化工原料合成的一种集酸源、碳源、气源于一体的高性能阻燃剂。
该阻燃剂经过特殊处理后微溶于水,在生产过程中无环境污染,自身无毒,质量稳定可靠。
该阻燃剂发泡均匀致密且碳层强度好,发泡能力是经典体系的1.2-1.5倍。
使用该阻燃剂可代替经典体系(即聚磷酸铵、三聚氰胺和季戊四醇三组分体系),在相同膨胀倍数下,添加量约为经典体系的75%左右即可,从而可大大降低阻燃剂添加量,降低防火涂料成本。
二、产品特点1)发泡均匀,碳层强度好;2)按需定制细度;3)球磨时间短;4)防火性能稳定;5)组分单一,集酸、碳、气源为一体;6)合成工艺简单,质量可靠;7)不受阻燃剂批次影响。
三、规格参数四、适用范围工厂地址 Add:四川省成都崇州市经济开发区1)油性(溶剂型)室外薄型钢结构防火涂料的膨胀发泡;2)油性(溶剂型)室外超薄型钢结构防火涂料的膨胀发泡;3)水性薄型钢结构防火涂料膨胀发泡;2)水性超薄型钢结构防火涂料膨胀发泡。
五、使用方法1)六、注意事项1)由于该阻燃剂目数较高,采用有PE内衬的编织袋包装;2)使用时要一定避免受潮,开袋未用完时需密封保存。
附1:卓安笼型大分子膨胀型阻燃剂与经典体系优劣对比卓安“含N-P笼型大分子系列防火涂料专用膨胀型阻燃剂”除了发泡均匀且炭层强度好之外,该阻燃剂还可根据实际需要加工成要求的细度,从而大大降低涂料的球磨时间。
在经典体系中,由于三种原料的颗粒细度不一,这将大大提高涂料的球磨时间,使涂料的生产成本大为提高(据调查,经典体系的球磨时间一般为80分钟,本产品的球磨时间约为30分钟);同时,经典体系生产的防火涂料的防火性能受三种原料质量的制约,从而导致涂料的防火性能不够稳定,而卓安N-P笼型大分子膨胀型阻燃剂组分单一,合成工艺简单可靠,且性能稳定,从而可以保证涂料防火性能不受阻燃剂批次的影响。
化学膨胀型阻燃剂为制备低烟无卤环保阻燃橡胶材料提供了另一种重要途径。
膨胀型阻燃剂(IFR)是指一类以碳、氮、磷元素为核心成分的复合阻燃剂,一般由碳源(成炭剂)、酸源(脱水剂)和气源(膨胀剂)三部分组成。
传统使用的IFR为聚磷酸铵(APP)、季戊四醇(PER)和三聚氰胺(MEL)三者及其衍生物并用。
IFR的阻燃机理被认为是:复合材料在燃烧时,三源间发生化学反应生成多孔膨胀炭层,该炭层实质为碳的微晶。
该炭层不易燃烧,但可以起到隔热、隔氧、抑烟和防熔滴等作用,从而达到阻燃的目的。
炭层形成的历程是:(1)在较低的温度下,酸源分解释放出无机酸;(2)在稍高于酸源释放酸的温度下,体系中的酸与醇发生酯化反应;(3)阻燃材料在酯化前和酯化过程中逐渐融化、变软;(4)反应过程中产生的水蒸气和气源放出的不燃性气体使整个熔融体系发泡膨胀,同时酯脱水炭化,形成无机物及碳的残渣;
(5)体系胶化和固化,形成多孔泡沫炭层,反应结束。
上述各步反应几乎同时发生,但又须按严格的顺序进行,如果其中任何一个反应不能适时进行就不能起到膨胀阻燃的作用。
作者简介:李磊(1985-),男,中级职称、硕士研究生、主要研究高分子先进复合材料的共混改性。
收稿日期:2023-07-27聚丙烯(PP )作为一种常用的塑料,在汽车、小家电、纺织、快速消费品、建筑等行业得到广泛应用[1]。
然而,由于它的易燃性,近些年来火灾事故频发,对人们的生命安全和财产造成了巨大的损害,因此对聚丙烯PP 的阻燃性能越来越受到社会的广泛关注。
随着人们环保和安全意识的逐渐提高,绿色环保、高效的无卤阻燃剂已成为阻燃PP 的发展趋势[2~3]。
本研究采用聚磷酸铵(APP )和实验室合成的三嗪成炭剂(CFA )作为膨胀型阻燃剂来阻燃PP ,在前期已取得了良好的阻燃性能和综合力学性能[4]。
本文主要通过锥形量热法、热重法、红外分析等手段研究了APP 与CFA 复合阻燃PP 的阻燃机理。
1 实验部分1.1 主要原料和设备PP ,3080,台塑聚丙烯(宁波)有限公司;APP,聚合度>2000,浙江传化合成材料有限公司;三嗪成炭剂CFA ,实验室合成;PTFE ,大金氟化工(中国)有限公司;抗氧剂,168、1010,西尼尔化工科技有限公司;双螺杆挤出机,SHJ36 南京诚盟化工机械有限公司;高效膨胀型阻燃剂阻燃聚丙烯的阻燃机理李磊1,周俊2(1.苏州俄邦工程塑胶有限公司,江苏 苏州 215021;2.国材(苏州)新材料科技有限公司,江苏 苏州 215021)摘要:本文采用多聚磷酸铵(APP ) 、实验室自制三嗪系成炭(CFA ) ,聚丙烯(PP 3080)调整相应比例,采用熔融共混挤出法制备了三元复合材料无卤阻燃聚丙烯,并研究了固定APP 和CAF 比例为3:1作为复合阻燃剂的前提条件下,分别按照复合阻燃剂和聚丙烯(PP 3080)以20:80、24:76、28:72、32:68的比例制成的三元复合材料对阻燃性能的影响。
结果表明,在三元复合阻燃PP 体系中,复合阻燃剂添加当加入24%(质量分数)时,与原料PP 相比,PHRR 、a v-EHC 、av -SEA 分别降低了 72.3%、23.4%、44.5%,TPHRR 是原料PP 的1.89倍,呈现出优异的阻燃效果。
阻燃剂一、氮系阻燃剂1、三聚氰胺常用于制造膨胀型防火涂料中的发泡成分, 其发泡效果好, 成炭致密。
除单独作阻燃剂外, 常用的阻燃品种是与酸反应产生的衍生盐, 如汽巴精化开发出的M系列阻燃剂, 广泛用于PE、PP 以及P VC 塑料等热塑性、热固性塑料等领域; 三聚氰胺与液态磷酸酯合用, 广泛应用于阻燃聚氨酯泡沫材料。
16000元/吨2、双氰胺双氰胺主要用于制造胍盐阻燃剂, 可以代替三聚氰胺, 或者与三聚氰胺结合。
欧洲专利报导双氰胺等比例混合, 添加量5% , 可使聚酰胺达到U L94 V 0 级的阻燃效果, 且这种阻燃剂对材料的撕裂强度影响很小。
此外, 双氰胺可以制造木材防火胶。
日本专利报导用双氰胺甲醛磷酸制成阻燃剂, 用于防火人造板。
11500元/吨3、氰尿酸三聚氰胺盐( MCA)MCA是由三聚氰胺和三聚氰酸在一定的温度下, 以水为介质合成的, 是一种添加型的阻燃剂。
它无毒无臭无味, 分解温度高, 不仅阻燃效果好, 而且加工时烟雾小, 与高分子材料相容性好, 无表面迁移现象。
主要用于尼龙、PBT、PP、环氧树脂、有机硅、聚氨酯、橡胶等高分子材料的阻燃。
其阻燃效果好, 可以和磷、溴、锑系阻燃剂有良好的协同效应, 也可和其他助剂复合使用, 取得良好的阻燃效果。
从经济的角度出发, 做尼龙类材料的阻燃效果最明显。
16000元/吨二、磷- 氮阻燃剂的种类1、三聚氰胺磷酸盐类三聚氰胺磷酸盐类常用的有磷酸三聚氰胺、磷酸双三聚氰胺、焦磷酸三聚氰胺、三聚氰胺磷酸酯等, 这是目前合成阻燃剂中最常见的一类。
磷酸三聚氰胺:37000元/吨焦磷酸三聚氰胺:24000元/吨a 三聚氰胺磷酸盐市售一般有磷酸蜜胺盐、磷酸二蜜胺盐等, 组成不同结构有差异, 因而其溶解性、热稳定性和分散性不同, 阻燃效果也不一样。
其阻燃效果比聚磷酸胺好, 具有耐候性。
主要用于建筑特别是钢结构涂料中。
b 三聚氰胺焦磷酸盐用磷酸处理三聚氰胺, 再于250~ 270 加热可制得用于有效阻燃聚氨酯塑料的三聚氰胺焦磷酸盐, 解决了其他大多用于纺织、纤维和塑料的阻燃剂不能有效阻燃聚氨酯的难题。
深圳市长园特发科技有限公司
膨胀型阻燃剂的阻燃机理
膨胀型阻燃剂主要由3部分组成:碳源(成炭剂)、气源(发泡剂)。
其中各个组分的作用如下,炭源:在脱水剂和发泡剂的联合作用下,形成具有多孔结构的炭质泡沫层;酸源:加热或燃烧下能够生成酸的化合物,从而促使炭源脱水,加速炭层形成;气源:发泡剂在融化后固化前受热分解,释放惰性气体从而使所形成的炭层膨胀起来。
此外,除了以上3部分外,膨胀型阻燃剂通常要添加协效剂,起催化增强的作用,其代表物质在表1中列出。
膨胀型阻燃剂主要由所形成的多孔泡沫炭层在凝聚相起到阻燃作用,该炭层的形成主要按以下5步:
1.在温度较低时由酸源放出能酯化多元醇且可作为脱水剂的无机酸;
2.在温度稍高于释放酸时,发生酯化反应,而体系中的胺则作为酯化的催化剂;
3.体系在酯化前或酯化过程中熔化;
4.反应产生的水蒸气和由气源产生的不燃性气体使熔融体系膨胀发泡;
5.反应接近完成时,体系胶化和固化,最终形成多孔泡沫炭层。
要的。
深圳市长园特发科技有限公司
技术部:范宇。
膨胀阻燃剂阻燃机理一、引言膨胀阻燃剂是一种新型的阻燃材料,其主要作用是通过吸收和释放水分来形成膨胀层,从而起到阻燃的效果。
膨胀阻燃剂具有环保、低毒、高效等特点,在建筑、交通运输等领域得到广泛应用。
本文将会详细介绍膨胀阻燃剂的机理。
二、膨胀阻燃剂的分类根据不同的化学组成和特性,可以将膨胀阻燃剂分为以下几类:1. 磷系膨胀阻燃剂磷系膨胀阻燃剂是目前应用最广泛的一种,其主要成分是含氮、含氧的有机物和无机盐。
在高温下,这些物质会产生氮氧化物和水,在加入适量的碱性金属盐后,会发生化学反应生成稳定的多孔结构,从而形成了一个具有良好隔热性能和低导电性能的保护层。
2. 氢氧化铝型膨胀阻燃剂氢氧化铝型膨胀阻燃剂主要是由氢氧化铝和一些助剂组成,其主要机理是在高温下,氢氧化铝会分解产生水和氧气,从而形成一个多孔的保护层。
此外,它还具有良好的耐火性能和耐腐蚀性能。
3. 硅酸盐型膨胀阻燃剂硅酸盐型膨胀阻燃剂主要是由硅酸盐和一些助剂组成,其主要机理是在高温下,硅酸盐会分解产生二氧化硅和水,在加入适量的碱性金属盐后,会发生化学反应生成稳定的多孔结构。
三、膨胀阻燃剂的机理1. 膨胀机理当材料受到火焰的侵袭时,膨胀阻燃剂中的水分会被释放出来。
在高温下,这些水分会迅速转化为水蒸气,并与其他物质产生反应。
例如,在磷系膨胀阻燃剂中,含有氮、磷等元素的有机物会在高温下分解产生氮氧化物和水,然后与金属盐发生反应生成稳定的多孔结构。
这些多孔结构具有良好的隔热性能和低导电性能,可以有效隔离火源。
2. 阻燃机理膨胀阻燃剂中的化学成分可以通过吸收和释放水分来形成膨胀层,从而起到阻燃的效果。
例如,在磷系膨胀阻燃剂中,含有氮、磷等元素的有机物可以在高温下分解产生氮氧化物和水,然后与金属盐发生反应生成稳定的多孔结构。
这些多孔结构具有良好的隔热性能和低导电性能,可以有效隔离火源。
3. 炭化机理当膨胀阻燃剂受到火焰侵袭时,其中的有机物会发生裂解并形成碳化物。
阻燃工程师必背:典型阻燃剂机理大全(下)在上期推文中,阻博士给大家系统整理介绍了卤系阻燃剂、磷系阻燃剂、无机阻燃剂和协同阻燃的机理。
今天,我们将继续上期话题,为大家介绍其他几种经典阻燃剂的阻燃机理。
膨胀型阻燃体系阻燃机理膨胀型阻燃剂主要由三部分组成:炭化剂(炭源)、炭化催化剂(酸源)、膨胀剂(气源)。
炭化剂为膨胀多孔炭层的炭源,一般是含碳丰富的多官能团(如—OH)物质,季戊四醇(PER)及其二缩醇、三缩醇是常用的炭化剂。
炭化催化剂一般是可在加热条件下释放无机酸的化合物。
无机酸要求沸点高,而氧化性不太强。
聚磷酸铵(APP)为常用的炭化催化剂。
膨胀剂为受热放出惰性气体的化合物,一般是铵类和酰胺类物质,如尿素、密胺、双氰胺及其衍生物。
各组分的选择准则如下:(1)酸源:为了具有实用性,酸源必须能够使含碳多元醇脱水。
在火灾发生前,我们不希望脱水反应发生,所以常用的酸源都是盐或酯。
酸源释放酸必须在较低的温度进行,尤其应低于多元醇的分解温度。
如果有机部分有助于成炭,使用有机磷化物效果更好。
(2)炭源:炭源的有效性与碳含量及活性羟基的数量有关。
炭源应在其本身或基体分解前的较低温度下与催化剂反应。
(3)气源:发泡剂必须在适当的温度分解,并释放出大量气体。
发泡应在熔化后、固化前发生。
适当的温度与体系有关。
对于特定的膨胀阻燃聚合物体系,有时并不需要3个组分同时存在,有时聚合物本身可以充当其中的某一元素。
使用以上准则可预测大多数体系的有效性。
膨胀型阻燃剂受热时,炭化剂在炭化催化剂作用下脱水成炭,碳化物在膨胀剂分解的气体作用下形成蓬松有孔封闭结构的炭层。
一旦形成,其本身不燃,且可削弱聚合物与热源间的热传导,并阻止气体扩散。
一旦燃烧得不到足够的燃料和氧气,燃烧的聚合物便会自熄。
此炭层经历以下几步形成:(1)在较低温度下由酸源放出能酯化多元醇和可作为脱水剂的无机酸。
(2)在稍高于释放酸的温度下,发生酯化反应,而体系中的胺则可作为酯化的催化剂。
1、P-N系膨胀型阻燃剂的阻燃机理一般包括三部分,即碳源(常为多羟基化合物,如季戊四醇)、酸源(如聚磷酸铵,即APP)及发泡剂(如三聚氰胺),它们是通过下述相互作用而形成炭层的:①在较低温度(150℃左右,具体温度取决于酸源和其他组分的性质)下,有酸源产生能酯化多元醇和可作为脱水剂的酸;②在稍高于释放酸的温度下,酸与多元醇(碳源)进行酯化法反应,而体系中的胺则作为此酯化反应的催化剂,加速反应进行;③体系在酯化反应前或酯化反应过程中熔化;④反应过程中产生的水蒸气和气源产生的不燃性气体使已处于溶融状态的体系膨胀发泡。
与此同时,多元醇和酯脱水炭化,形成无机物及炭残余物,且体系进一步膨胀发泡;⑤反应接近完成时,体系胶化和固化,最后形成多孔泡沫炭层。
2.P-N系膨胀型阻燃剂由三部分组成,(1)酸源:提供酯化反应所需的酸;(2)碳源:提供酯化反应所需的羟基或者其它基团的物质;(3)气源:提供体系膨胀发泡所需要的气体。
3..为什么某些P-N系阻燃剂挤出过水槽的时候条子容易粘水?条子容易粘水是由于阻燃剂的部分组份水溶性比较好,通过螺杆机出口的时候,温度比较高的条子接触到冷水槽,粉体容易析出,所以阻燃剂里面成份必须是难溶水的。
而我公司EPFR-100A与EPFR-100C阻燃剂应用于PP中,不会出现上述条子粘水现象。
4.为什么不同的PP加入相同的份数阻燃剂存在阻燃效率的差异?由于PP基体的不同,如均聚PP和共聚PP,由于其内部烯烃含量的不同,这是因为共聚PP里面有PE侧链,PP中的H原子比PE中活性大;PP比PE燃烧热小,与阻燃剂一开始共同起作用,PE分解温度高,后面才起作用;PP基材分解温度在227-247度之间,而PE 在335-450度之间,阻燃剂分解温度在260度,PP与阻燃剂匹配性更好。
5.P-N系膨胀型无卤阻燃剂用于玻纤PP为什么效果会变差?一般来说随PP量的减少,阻燃剂量的增加,材料的阻燃效果会越来越好,为什么在玻纤里面PP相对减少(加入了玻纤),阻燃剂份数不变,而阻燃会变差了甚至不阻燃,这主要是由于玻纤的加入破坏了P-N膨胀体系的阻燃机制,玻纤分布于塑料的各个地方,对于炭层的闭合有大大的破坏作用,以至于不能隔绝氧气而达到组燃烧的效果。