膨胀型阻燃剂的研究与应用
- 格式:pdf
- 大小:167.82 KB
- 文档页数:5
阻燃剂研究综述1.阻燃剂的涵义阻燃剂又称难燃剂,耐火剂或防火剂,赋予易燃聚合物难燃性功能,用以提高材料抗燃性,即阻止材料被引燃及抑制火焰传播的助剂。
主要适用于阻燃合成和天然高分子材料(包括塑料、橡胶、纤维、纸张、涂料等)。
采用阻燃材料有助于延迟或防止高分子材料的燃烧,使其点燃时间增长,点燃自熄或难以点燃。
有助于确保各种制品的安全及减少人们的生命和财产损失。
2.阻燃剂的重要历史性发展[1]1966年,Fenimore和Martin根据材料在不同氧浓度中的燃烧情况,反复测定了使材料持续燃烧所需的最低氧浓度,得到了很好的重复性,提出了“氧指数”的概念,从而使得阻燃材料的燃烧性能有了科学的定性手段,对现代阻燃科学技术产生了深远的影响,并得到了广泛的应用。
随着现代科技的进步,许多先进的分析测试仪器和处理方法如傅里叶变换红外光谱仪、热分析技术、X射线光电子能谱(XPS)、锥形量热仪( Cone Calorimeter)等被应用于阻燃研究,成为阻燃科学理论研究的有效手段。
3.阻燃剂的分类[1]按阻燃剂与被阻燃基材的关系,阻燃剂可分为添加型和反应型两大类,目前使用的阻燃剂85%为添加型,仅有15%为反应型。
前者多用于热塑性高聚物,后者多用于热固性高聚物。
按阻燃元素种类,阻燃剂可分为卤素(溴系及氯系)、有机磷系及卤-磷系、磷-氮系、氮系、硅系、锑系、铝-镁系、无机磷系、硼系、锡系等。
前五类属于有机类,后几类属于无机类。
近年来,出现一类新的“膨胀型阻燃剂”,它们是磷-氮化合物或者混合物。
人们对阻燃高聚物,较少采用单一的阻燃剂,往往是采用多种阻燃剂的复配系统,以发挥协同阻燃效应或同时提高材料的多种阻燃性能。
3.1溴系阻燃剂溴系阻燃剂之所以受到人们如此青睐,其主要原因是他的阻燃效率高,价格适中,这是其他阻燃剂难以匹敌的。
其次是溴系阻燃剂的品种多,适用范围广,而且溴的来源充足。
溴系阻燃剂的效率为:脂肪族>指环族>芳香族,但芳香族的热稳定性最高。
阻燃剂及有机磷系阻燃剂的综述1引言材料是实现工业、农业、国防和科学技术现代化的重要物质基础,它与信息、能源并列为现代文明的三大支柱,是现代社会赖以生存和发展的基本条件之一。
然而,自20世纪30年代,有机高分子材料进入国民经济的各个领域及人民生活的各个方面后,人类即开始面临新的火灾威胁,原因是这类材料大部分是易燃或可燃的。
这不但限制了它们的应用,还给人类社会带来频繁的火灾危害和严重的经济损失,表1.1列举了半个世纪以来世界各国部分特大火灾。
据统计,经济发达的国家和地区在1989-1993年间的年均火灾损失达国民生产总值的0.1-0.4%。
因此,阻燃已成为当前人类提高社会消防能力,确保人民生命和财产免遭火灾的重要措施,以阻燃为目的的高分子材料改性也愈加引人注目,从而大大促进了阻燃材料和技术的研究、生产。
制备应用低烟、低毒和环境污染低的阻燃剂是加工绿色阻燃材料的需求。
阻燃剂是用以提高材料抗燃性,即阻止材料被引燃及抑制火焰传播的助剂。
阻燃剂主要用于阻燃合成和天然高分子材料(包括塑料、橡胶、纤维、木材、纸张、涂料等)。
一个理想的阻燃剂最好能同时满足下述条件,但这实际上几乎是不可能的,所以选择实用的阻燃剂时大多是在满足基本要求的前提下,在其他要求间折中和求得的最佳的平衡:(1)阻燃效率高,获得单位阻燃效能所需的用量少。
(2)本身低毒或基本无毒(对大鼠口服的LD50)5000mg/kg),燃烧时生成的有毒和腐蚀性气体量及烟量尽可能少。
(3)与被阻燃基材的相容性好,不易迁移和渗出。
(4)具有足够高的热稳定性,在被阻燃基材加工温度下不分解,但分解温度也不宜过高,以在250~400度之间为宜。
(5)不致过多恶化被阻燃基材的加工性能和最后产品的物理-机械及电气性能。
可以认为,现有的阻燃剂和阻燃工艺无一不或多或少地对被阻燃高聚物的某一性能或某几种性能会产生不利的影响,而且阻燃剂用量越多,影响越大,所以性能优良的阻燃剂和合理的阻燃剂配方在于能在材料阻燃性和实用性间求得和谐的统一。
含N-P笼型大分子膨胀型阻燃剂IFR201-A一、产品简介IFR201-A型膨笼型大分子膨胀型型阻燃剂是四川卓安新材料科技有限公司通过常用化工原料合成的一种集酸源、碳源、气源于一体的高性能阻燃剂。
该阻燃剂经过特殊处理后微溶于水,在生产过程中无环境污染,自身无毒,质量稳定可靠。
该阻燃剂发泡均匀致密且碳层强度好,发泡能力是经典体系的1.2-1.5倍。
使用该阻燃剂可代替经典体系(即聚磷酸铵、三聚氰胺和季戊四醇三组分体系),在相同膨胀倍数下,添加量约为经典体系的75%左右即可,从而可大大降低阻燃剂添加量,降低防火涂料成本。
二、产品特点1)发泡均匀,碳层强度好;2)按需定制细度;3)球磨时间短;4)防火性能稳定;5)组分单一,集酸、碳、气源为一体;6)合成工艺简单,质量可靠;7)不受阻燃剂批次影响。
三、规格参数四、适用范围工厂地址 Add:四川省成都崇州市经济开发区1)油性(溶剂型)室外薄型钢结构防火涂料的膨胀发泡;2)油性(溶剂型)室外超薄型钢结构防火涂料的膨胀发泡;3)水性薄型钢结构防火涂料膨胀发泡;2)水性超薄型钢结构防火涂料膨胀发泡。
五、使用方法1)六、注意事项1)由于该阻燃剂目数较高,采用有PE内衬的编织袋包装;2)使用时要一定避免受潮,开袋未用完时需密封保存。
附1:卓安笼型大分子膨胀型阻燃剂与经典体系优劣对比卓安“含N-P笼型大分子系列防火涂料专用膨胀型阻燃剂”除了发泡均匀且炭层强度好之外,该阻燃剂还可根据实际需要加工成要求的细度,从而大大降低涂料的球磨时间。
在经典体系中,由于三种原料的颗粒细度不一,这将大大提高涂料的球磨时间,使涂料的生产成本大为提高(据调查,经典体系的球磨时间一般为80分钟,本产品的球磨时间约为30分钟);同时,经典体系生产的防火涂料的防火性能受三种原料质量的制约,从而导致涂料的防火性能不够稳定,而卓安N-P笼型大分子膨胀型阻燃剂组分单一,合成工艺简单可靠,且性能稳定,从而可以保证涂料防火性能不受阻燃剂批次的影响。
阻燃剂基本知识及用途技术的目的是使非阻燃材料具备阻燃的性能,在一定条件下不容易燃烧或者能够自熄。
阻燃的途径不外乎以下几种:1、阻燃剂使可燃烧物炭化,从而达到阻燃效果。
这种阻燃效果主要是在固相中发挥作用,这种类别的阻燃材料主要是磷类阻燃剂(包括有机磷类和无机磷类)。
2、阻燃剂在燃烧条件下形成不挥发隔膜,隔绝空气达到阻燃目的。
这种阻燃效果主要是在液相中发挥作用。
这种类别的阻燃材料主要有硼酸盐、卤化物、氧化锑和磷类材料,或者这几种材料间的相互反映生成的物质。
3、阻燃剂分解产物将氢氧自由基连锁反应切断从而达到阻燃目的。
这种阻燃效果主要是在气相中发挥作用。
这种类别的材料主要是在气相中发挥作用。
这类阻燃材料主要是卤化物和氧化锑。
4、燃烧热的分散和可燃物质的稀释。
这类阻燃材料主要是硼酸锌、氢氧化铝、氢氧化镁等物质,主要是因分解大量吸热、所产生的不燃物质稀释可燃性气体而达到阻燃目的。
其他的还有氮系的阻燃剂,目前新型的磺酸盐系列(市场品为3M的FR-2025),硅系的偶联剂(GE 开发出高效产品,却因为其高昂的成本而应用不多)等。
按照标准的规定,一般采用酒精喷灯燃烧实验或者模拟巷道丙烷燃烧实验来检测产品的阻燃性能。
卤素阻燃剂基本知识根据许多科学研究显示,卤素系阻燃剂已经成为日常环境中到处扩散的污染物,且对于环境与人类的威胁日益升高。
而制造、循环回收、或抛弃家电及其它消费性产品的行为,则是造成这些污染物释放到环境的主要途径。
为保护环境,某些卤素系阻燃剂已经不能使用在电器产品和房屋建材的塑料材料部份(此泛指塑料的表面/外壳)。
塑料材料中禁用卤素系阻燃剂的原因是此种阻燃剂无法回收使用,而且在燃烧与加热过程中会释放有害物质,威胁到人类身体的健康、环境和下一代子孙。
如同其它有毒的重金属(如铅、镉、水银、六价铬等),欧盟(EuropeanUnion)在欧盟电子电机中危害物资禁用(RestrictionoftheUseofHazardousSubstancesinelectricalandelectronicequipment,RHS)指令中决定在2006年7月1日全面禁止PBB(PolybrominatedBiphenyls)及PBDE(PolybrominatedDiphenylEthers)等溴系阻燃剂的使用。
阻燃剂的研究现状及发展前景【摘要】本文通过对阻燃剂相关文章的查阅,介绍了阻燃剂的分类和几种阻燃剂的阻燃原理,介绍了近几年阻燃剂的发展现状,通过对几种常见阻燃剂的利与弊的分析,对阻燃剂的发展做出了预测和展望。
【关键词】阻燃剂阻燃原理发展前景前言:随着工业技术的发展,各种合成材料被广泛的应用于日常生活、生产和社会建设的各个行业与领域,在国民经济建设中发挥着巨大作用。
但是合成材料一般易燃,为了解决这一问题,阻燃剂应运而生。
一、阻燃剂的分类和原理阻燃剂又称堆燃剂、耐火剂或防火剂,是一类以物理方式或化学方式在固相、液相或气相中发挥作用(如吸热作用、覆盖作用、抑制链反应等)在燃烧过程的某个特定阶段如加热、分解、引燃或火焰的扩张阶段抑制甚至中断燃烧过程,从而赋予易燃聚合物难燃性、自熄性和消烟性的功能性助剂。
依应用方式分为添加型阻燃剂和反应型阻燃剂。
添加型阻燃剂直接与聚合物混配,加工方便,适应面广,是阻燃剂的主体;反应型阻燃剂常作为单体键合到集合物链中,对制品性能影响小且阻燃效果持久。
按有效元素分类,添加型阻燃剂主要包括磷系、卤系、膨胀型、硅氧烷类等。
放映型阻燃剂多我反应性官能团的有机卤和有机磷的单体。
此外,具有抑烟作用的钼化合物、锡化合物和铁化合物等亦属阻燃剂的范畴。
1 磷系阻燃剂:根据其使用的特性,磷系阻燃剂添加包含两种。
物理方法:在高分子材料混入或涂覆阻燃剂,以减少可燃材料的比例,这样可用阻燃剂将材料与氧化剂、热源隔开,以保护材料,以及覆盖在可燃材料表面;化学方法:用具有活性官能团的阻燃剂与可燃材料表面进行枝接反应,以获得阻燃效果。
目前,磷系阻燃剂的阻燃机理主要有以下几种。
1.1成碳机理磷系阻燃剂受热分解产生有吸水或脱水效果的强酸(如聚磷酸和焦磷酸等),主要作用是促进多羟基化合物脱水炭化,形成具有一定厚度的不易燃烧的碳层,将可燃材料与氧化剂、热源隔开,阻止物质和热量的传递,以阻断燃烧的进行。
1.2连锁反应阻止机理(热机理)以阻燃剂的热分解产生的气体为催化剂,与可燃材料热解产生的可燃性气体,从而中断可燃性气体的连锁反应。
第24卷㊀第3期2016年6月㊀材㊀料㊀科㊀学㊀与㊀工㊀艺MATERIALSSCIENCE&TECHNOLOGY㊀Vol 24No 3Jun.2016㊀㊀㊀㊀㊀㊀doi:10.11951/j.issn.1005-0299.20160312环状磷腈/聚磷酸铵/三聚氰胺膨胀阻燃环氧树脂研究王会娅,卢林刚,陈英辉,郭㊀楠,杨守生(中国人民武装警察部队学院,河北廊坊,065000摘㊀要:本文以DOPO衍生物六(4-DOPO羟甲基苯氧基)环三磷腈(DOPOMPC)㊁聚磷酸铵(APP)以及三聚氰胺(MEL)形成复配膨胀体系(IFR)阻燃环氧树脂.采用极限氧指数(LOI)㊁水平㊁垂直燃烧(UL-94)方法研究了IFR体系对环氧树脂体系阻燃性能影响,通过锥形量热(CONE)研究了体系燃烧特性,通过扫描电子显微镜(SEM)对体系成炭情况进行观察.结果表明,IFR膨胀阻燃体系对环氧树脂具有良好的协同阻燃作用,其中8%DOPOMPC/8%APP/4%MEL(EP3)体系LOI值较纯EP(EP0)提高37.8%;各项燃烧参数也得到了改善,热释放速率峰值(pk-HRR)㊁有效燃烧热平均值(av-EHC)㊁比消光面积平均值(av-SEA)及一氧化碳释放速率平均值(av-CO)相对于10%DOPOMPC/10%APP/EP(EP1)分别降低了53.8%㊁84.4%㊁57.7%和75.8%;拉伸强度㊁弯曲强度和冲击强度较EP1分别提高了1.3倍㊁79.4%和2.5倍;宏观拍摄和扫描电镜结果表明EP3膨胀炭层连续㊁均匀㊁致密,阻燃效果良好.关键词:三聚氰胺;膨胀阻燃;环氧树脂;协同阻燃中图分类号:TQ323.8文献标志码:A文章编号:1005-0299(2016)03-0068-06Studyofsynergisticintumescentflame⁃retardantepoxyresinbasedonMELandDOPOderivativesWANGHuiya,LULingang,CHENYinghui,GUONan,YANGShousheng(ChinesePeopleᶄsArmedPoliceForceAcademy,Langfang065000,China)Abstract:Synergisticmelamine(MEL),hexalis⁃(4⁃DOPO⁃methanolphen⁃oxy)⁃cyclotriphosphazene(DOPOMPC)andpolyphosphate(APP)wereaddedtoEpoxyresin(EP)toformanintumescentflameretardantsystem(IFR).TheflameretardancyofepoxyresinthatwasaddedwithdifferentMELadditiveamountwasmeasuredbyUL⁃94vertical/horizontalburningtestandlimitedoxygenindex(LOI)test.ThermalstabilityandmechanicalpropertiesofepoxyresinwerealsoinvestigatedbyTGAandCONE.TheflameretardantmechanismofepoxyresinwasinvestigatedbySEM.ResultsshowedthatproperadditionofMELplayedaroleofsynergis.Thelimitedoxygenindexvaluecoulddecline37.8%forthesampleEP3(8%DOPOMPC/8%APP/4%MEL).Theconeexperimentalresultsshowedthatthepeakvalueheatreleaserate,averagevalueeffectiveheatofcombustion,theaveragevaluespecificextinctionareaandtheaveragevaluecarbonmonoxideoftheEP3wererespectivelyreduced53.8%㊁84.4%㊁57.7%and75.8%comparedtothoseofEP1(10%DOPOMPC/10%APP/EP).Andthetensilestrength,flexuralstrengthandimpactstrengthwereincreasedby1.3times,79.4%and2.5timescomparedtoEP1;TheobservationofthemacroandmicromorphologyshowedthatthecarbonlayerofEP3wasconsecutive,evenanddense.Keywords:melamine(MEL);intumescentflameretardan;epoxyresin;synergisticeffect收稿日期:2016-02-22.基金项目:国家自然科学基金项目(214722241);河北省自然科学基金资助项目(E2016507027).作者简介:王会娅(1974 ),女,副教授.通信作者:卢林刚,E⁃mail:llg@iccas.ac.cn.㊀㊀磷杂菲(DOPO)和磷腈模块均是有机磷系阻燃剂中后起之秀,它们的结构组成决定了其作为阻燃剂组成单元时阻燃高效性[1-8].新近合成的P-N膨胀型阻燃剂六(4-DOPO羟甲基苯氧基)环三磷腈(DOPOMPC)是集磷杂菲(DOPO)和磷腈模块于一体的星状分子,其与聚磷酸铵(APP)复配作用于易燃高分子材料环氧树脂时表现出良好的阻燃效果,但材料力学性能大幅度下降是该新型阻燃剂推向市场㊁应用于环氧树脂材料阻燃的重大阻力[9-12].本课题将三聚氰胺(MEL)[13-15]作为膨胀体系中的气源引入DOPOMPC/APP/EP复配成新的膨胀阻燃体系(IFR),以期提高环氧树脂阻燃性能,以及改善其力学性能.O O HPC HOO HOP CO H O P OC H O HH OC HOPOO HH COPOOPC H O O HOPNNPP NOOOOO图1㊀六(4-DOPO羟甲基苯氧基)环三磷腈(DO⁃POMPC)结构式1㊀实㊀验1.1㊀主要原料依据参考文献[7]合成六(4-DOPO羟甲基苯氧基)环三磷腈(DOPOMPC);聚磷酸铵II型(APP),平均聚合度>1500,工业级,青岛海化阻燃材料有限公司;间苯二胺(m-PDA),分析纯,天津大茂化学试剂厂;E-44环氧树脂,工业级,蓝星新材料无锡树脂厂;三聚氰胺(MEL),分析纯,天津赢达稀贵化学试剂厂;其他试剂均为分析纯.1.2㊀主要设备及仪器氧指数仪HC-2CZ,南京上元分析仪器厂;水平垂直燃烧仪UL94SCZ-3,南京上元分析仪器厂;锥形量热仪S001,英国FTT公司;万能电子试验机XWW-10A,河北承德金建检测仪器有限公司;简支梁冲击试验机XJJ-5,河北承德金建检测仪器有限公司;扫描电子显微镜KYKY2800,中科科仪厂.1.3㊀性能测试按照GB/T2406 93进行氧指数测定,每组试样数10,尺寸120.0mmˑ6.5mmˑ3.0mm;按ANSI/UL94 2010进行水平垂直燃烧测定,每组样条数5,尺寸130.0mmˑ12.5mmˑ3.0mm;按ASTME 1354标准进行锥形量热实验,热辐射功率35kW㊃m-2,每组试样数2,尺寸100mmˑ100mmˑ4mm;按照GB1040 92㊁GB/T9341 2000进行拉伸强度㊁弯曲强测定,加载强度均为2mm㊃min-1;按照GB/T1043 2008进行耐冲击强度测定,冲击速度2.9m㊃s-1;将燃烧后炭层粘到样品盘上,断口表面经喷金处理,通过SEM上进行形貌分析.1.4㊀阻燃环氧树脂制备参考表1配方,设定鼓风干燥箱温度为80ħ,对模具进行预热,降低环氧树脂粘度;按照配方称取固化剂间苯二胺,置于鼓风干燥箱使其熔化为液态.于80ħ下依次将已干燥的DO⁃POMPC,APP和MEL加至EP,搅拌使混合均匀;将固化剂间苯二胺与混合阻燃剂的EP倒入已预热模具中,固化4h后自然冷却.将混合物倒入双辊塑炼机进行混炼㊁塑化㊁拉片,将片材放入模具中,经平板硫化机加热㊁加压㊁冷却,最后裁剪得到所需标准试样.表1㊀纯EP及DOPOMPC/APP/MEL/EP复合材料的配方样品EPm-PDADOPOMPCAPPMELEP090.99.1000EP172.77.310100EP272.77.3992EP372.77.3884EP472.77.37.57.55EP572.77.36.76.76.7EP672.77.35510EP772.77.33.33.313.4EP872.77.32.52.5152㊀结果与讨论2.1㊀极限氧指数(LOI)㊁UL-94燃烧分析表2为纯EP(EP0)及复合材料LOI㊁UL-94燃烧性能测试数据.经DOPOMPC/APP阻燃的环氧树脂(EP1)体系LOI值从纯EP0时的25.4%增至36.3%,较EP0提高41.8%,实现材料难燃;保持阻燃剂总添加量20%(质量分数)不变,添加不同质量分数的MEL制得EP2 EP8阻燃体系,在UL94燃烧试验中,DOPOMPC/APP/MEL/EP体系两次施焰时间均很短,小于4s,且移开火焰后迅速自熄,基本不存在有焰燃烧,均达到V-0级;但体系LOI值随MEL量增加逐渐降低,这是因为MEL加入使阻燃剂受热分解产生气源量增加,导致燃烧初期所形成的炭层破裂;其中EP3(8%DOPOMPC/8%APP/4%MEL/EP)体系LOI值为35%,虽较EP1略有下降,但相比EP0仍提高37.8%;EP3燃烧后形成炭层硬度较大,整个样条均燃烧完毕无断裂,表明适量的MEL添加至DO⁃POMPC/APP体系,能够提高炭层质量.㊃96㊃第3期王会娅,等:环状磷腈/聚磷酸铵/三聚氰胺膨胀阻燃环氧树脂研究表2㊀DOPOMPC/APP/MEL/EP复合材料的氧指数和UL94测试结果样品LOI/%UL94HBUL94VEP025.4HB-3-16.1V-2EP136.3HBV-0EP234.6HBV-0EP335.0HBV-0EP430.0HBV-0EP529.6HBV-0EP628.2HBV-0EP728.2HBV-0EP828.0HBV-0Notes:LOI⁃Limitedoxygenindex;UL94HB⁃Horizontalflametest;UL94⁃flametest.2.2㊀燃烧特性分析2.2.1㊀易燃性和释热特性分析表3㊁图2分别为复合材料锥形量热试验相关数据及热释放速率与时间关系曲线.由表3数据可知,纯EP0的HRR曲线陡峭,170s时被引燃,很快达到峰值1243.27kW㊃m-2,平均热释放速率av-HRR达286.73kW㊃m-2,热释放总量THR达104.31MJ㊃m-2;经DOPOMPC/APP阻燃的EP1引燃时间增加至200s,HRR曲线明显平缓,pk-HRR值㊁av-HRR和THR值较EP0分别降至314.37kW㊃m-2㊁74.75kW㊃m-2㊁28.19MJ㊃m-2,降幅74.7%㊁73.9%㊁73.0%,表明DOPOMPC/APP的加入延缓了环氧树脂热降解,具有良好的阻燃作用;经DOPOMPC/APP/MEL膨胀阻燃剂的引入使EP2 EP8体系HRR进一步降低,HRR曲线较EP1更加平缓,燃烧时间延长,体系引燃时间较EP1均有不同程度提前,这是由于MEL受热先于阻燃剂以及APP发生分解;随MEL添加量增加pk-HRR㊁av-HRR及THR呈现先降后增的趋势,其中EP3降幅最大,其pk-HRR㊁av-HRR及THR较EP1分别降至145.22kW㊃m-2㊁68.25kW㊃m-2㊁27.05MJ㊃m-2,降幅53.8%㊁8.7%㊁4.1%;此外,由图2可见,经添加DOPOMPC/APP/MEL复合阻燃材料体系的HRR曲线呈M峰形,为高效膨胀阻燃的典型特征,有效抑制环氧树脂的热分解性能,抑制了火灾蔓延.表3㊀DOPOMPC/APP/MEL/EP复合材料的锥形量热试验数据样品TTI/spk-HRR/(kW㊃m-2)av-HRR/(KW㊃m-2)av-EHC/(MJ㊃kg-1)av-SEA/(m2㊃kg-1)av-CO/(kg㊃kg-1)THR/(MJ㊃m-2)EP01701243.27286.7328.991115.060.18104.31EP1200314.3774.7588.993583.380.2928.19EP2100189.1177.2213.561319.500.0817.33EP3160145.2268.2513.901515.080.0727.05EP4180147.9887.4215.691472.700.0742.90EP5130179.1779.3815.75125.140.0731.24EP6195142.6892.1817.282961.190.0566.94EP7145210.36119.0016.151711.860.0555.00EP8105289.22158.9317.19569.150.0463.61Notes:TTI⁃Timetoignition;pk⁃HRR⁃Peakheatreleaserate;av⁃HRR⁃Averageheatreleaserate;av⁃EHC⁃Averageeffectiveheatofcombustion;av⁃SEA⁃Averagespecificextinctionarea;av⁃CO⁃COaveragereleaserate;THR⁃Totalheatrelease.120010008006004002000100200300400t /sH R R /(k W m -2)E P 0E P 1E P 2E P 3E P 6图2㊀纯EP及部分阻燃复合材料的热释放速率曲线由表3数据可见,EP1的平均有效燃烧热(av-EHC)相较EP0从28.99MJ㊃kg-1升高至88.99MJ㊃kg-1,气相燃烧程度大幅增加;而经DOPOMPC/APP/MEL膨胀阻燃作用的EP2 EP8试样av-EHC较EP1明显降低,且相较EP0降幅显著,最低降至13.56MJ㊃kg-1;其中MEL添加量为4%(EP3)时,较EP1㊁EP0分别下降84.4%㊁52.1%.表明MEL可以通过促进体系成炭实现固相阻燃,抑制热分解速率,而且其分解产生的不燃气体不仅可以稀释可燃气体和氧气浓度,实现气相阻燃,从而降低材料的火灾危险性.2.2.2㊀生烟特性及烟毒性分析图3中(a)㊁(b)分别为复合材料比消光面积曲线和CO释放速率曲线.比消光面积(SEA)㊁CO释放量越大,材料烟毒危险性越大.由表3数据和图3曲线可见,EP1体系av-SEA㊁av-CO相较EP0分别增幅2.21倍㊁61.1%,DOPOMPC/APP使体系烟毒性显著增加;加入MEL后,EP2 EP8体系SEA㊁CO比EP1大幅度降低,特别是CO释放量在加入MEL后得到明显抑制,使体系在燃烧中㊃07㊃材㊀料㊀科㊀学㊀与㊀工㊀艺㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀第24卷㊀期才有大量烟气产生;其中EP3的av-SEA㊁av-CO比EP1分别降低57.7%,75.9%,效果最好,实现了抑烟和减少CO释放的效果.450040003500300025002000150010005000050100150200250300350S E A /(m 2k g -1)t /s E P 0E P 1E P 31.51.00.550100150200250300350C O Y /(k g k g -1)t /sE P 0E P 1E P 3(a )(b )图3㊀(a)㊁(b)分别为EP0㊁EP1和EP3样品的比消光面积以及CO释放率曲线2.2.3㊀燃烧特性指数分析表4为复合材料四项燃烧性能指数.表4㊀阻燃体系的燃烧性能指数样品FGI/(kW㊃m-2㊃s-1)THRI6min/(MJ㊃m-2)TSPI6min/(m2㊃g㊃kg-1㊃s-1)ToxPI6min/(g㊃s-1)EP07.312.013.551.19EP11.571.433.741.06EP21.891.313.250.47EP30.911.393.380.47EP40.791.503.420.57EP51.381.462.320.52EP60.731.523.700.41EP71.451.633.610.47EP82.751.763.220.56Notes:FGI⁃Firegrowthindex;THR6min⁃Totalheatreleaseindex;TSPI6min⁃Totalsmokeproduceindex;ToxPI6min⁃Toxicgasproduceindex.由表4可见,DOPOMPC/APP阻燃的试样EP1较EP0除TSPI6min略有升高外,其余三项指数分别下降78.5%㊁28.9%㊁10.9%,表明DOPOMPC/APP虽降低了材料对热反应能力,但抑烟效果并不理想;而DO⁃POMPC/APP/MEL阻燃的的EP2 EP8体系四项指数均有不同程度降低,随MEL比例增加整体呈现先增后减的趋势,FGI最低降至0.73kW㊃m-2㊃s-1,TSPI6min最低降至2.32m2㊃g㊃kg-1㊃s-1;其中EP3综合效果最佳,四项燃烧性能指数较EP0分别降幅87.6%㊁30.8%㊁4.8%㊁60.5%,较EP1分别降幅42.0%㊁2.8%㊁9.6%㊁55.7%,可见相较DOPOMPC/APP/EP阻燃体系,MEL的加入使材料火势蔓延㊁火灾中放热量㊁烟气和有毒气体生成得到进一步遏制.因此适量MEL可与DOPOMPC/APP呈现出良好协同效果,形成优质膨胀炭层,隔热㊁隔氧,降低环氧树脂火灾危险性.2.3㊀力学性能分析表6为复合材料力学性能试验结果.由于DO⁃POMPC/APP阻燃体系与基体间极性相差较大,难以相容,EP1各项力学参数严重下降,拉伸强度㊁断裂伸长率㊁弯曲强度及弯曲模量㊁冲击强度较EP0分别降幅68.4%㊁85.1%㊁68.0%㊁16.7%㊁75.4%;MEL的加入使DOPOMPC/APP/MEL阻燃的EP2 EP8试样各项力学性能均有大幅度提高,且随MEL比例增加呈现先增大后减小的趋势;其中EP3的力学性能增幅最大,与EP1相比,拉伸强度㊁断裂伸长率㊁弯曲强度㊁弯曲模量和冲击强度分别提高了1.3倍㊁3.6倍㊁79.4%㊁56.6%和2.5倍,表明MEL的引入不仅改善了阻燃环氧树脂的弹性,而且提高了体系韧性.这可能是由于三聚氰胺与共混物的分子链产生了物理缠结,当外力作用时,基体通过产生银纹而吸收部分能量,起到了增韧效果.表6㊀纯EP及DOPOMPC/APP/MEL/EP阻燃体系力学性能测试数据样品拉伸强度/MPa断裂伸长率/%弯曲强度/MPa弯曲模量/MPa冲击强度/(kJ㊃m-2)EP0140.105.45286.2846.0926.40EP144.330.8191.5538.406.49EP288.673.00156.9844.0513.07EP3102.193.75164.2360.1522.63EP457.271.67146.2545.2020.73EP543.281.37125.1040.1617.79EP650.051.43127.8652.8120.76EP754.812.15127.2858.6014.69EP857.742.04120.4654.8211.542.4㊀炭层宏观及微观形貌分析2.4.1㊀膨胀炭层宏观形貌分析图4为EP0㊁EP1㊁EP3炭层宏观形貌.膨胀阻燃材料在燃烧过程中能否生成优质㊁高效炭层,是影响其阻燃效果的关键.由图4可见,EP0炭层略有膨胀,但多处破损,无法形成有效覆盖;相比之下,DOPOMPC/APP阻燃下EP1燃烧后形成的炭层致密坚硬,体积膨胀较大,可有效隔热隔氧[6];㊃17㊃第3期王会娅,等:环状磷腈/聚磷酸铵/三聚氰胺膨胀阻燃环氧树脂研究加入DOPOMPC/APP/MEL体系的EP3炭层呈圆锥状,均匀覆盖于材料表面,体积㊁致密度较EP1进一步提高,MEL作为气源分解释放大量气体促进炭层迅速膨胀,蓬松多孔的结构使基体与炭层表面存在一定温度梯度,基体表面温度较火焰温度低得多,减缓了环氧树脂进一步降解并释放可燃性气体的可能性,同时隔绝了外界氧的进入,从而在相当长的时间发挥了良好的阻燃效应.(a)E P0(b)E P1(c)E P3图4㊀EP0、EP1和EP3的炭层宏观形貌2.4.2㊀膨胀炭层微观形貌分析图5 图7为EP0㊁EP1和EP3炭层微观形貌.由图可见,EP0炭层表面凹凸多孔,放大500倍的图片中炭层薄弱难以有效隔热隔氧;EP1炭层较EP0致密厚实,呈片层状且相互粘连,这是因为APP作为酸源分解㊁脱水形成偏磷酸或聚偏磷酸,其中一部分附着于材料表面使粘度增加,进而形成致密有效的炭层[6];EP3炭层致密㊁连续,有许多凹陷区域,这是因为MEL㊁DOPOMPC与APP组成的三元膨胀体系在受热时分解生成大量NH3㊁水蒸气及其他气体没有突破炭层阻隔,留在基体内部使得炭层内表面出现凹陷区域;与EP1炭层相比,EP3炭层表面结构更为均匀,呈现为一个整体,表明MEL与DOPOMPC/APP之间协同作用明显,能够充分发挥炭层隔热㊁隔氧㊁抑烟作用,从而提高环氧树脂的阻燃性能.(a)E P0(低倍)(b)E P0(高倍)图5㊀EP0燃烧后的SEM图片(b)E P1(高倍)(a)E P1(低倍)图6㊀EP1燃烧后的SEM图片㊃27㊃材㊀料㊀科㊀学㊀与㊀工㊀艺㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀第24卷㊀(a)E P3(低倍)(b)E P3(高倍)图7㊀EP3燃烧后的SEM图片3㊀结㊀论1)制备了DOPOMPC/APP/MEL/EP阻燃复合材料,固定阻燃体系总添加量25%和DO⁃POMPC/APP为1/1,改变MEL组分,添加2%的MEL(EP3)阻燃体系的氧指数达到35.0%.2)锥形量热测试实验表明,DOPOMPC/APP/MEL/EP(PE3)火灾危险性最低,其pk-HRR㊁av-HRR㊁av-EHC㊁av-CO较纯PE0分别降低88.3%㊁76.2%㊁52.1%㊁和61.1%,呈现出良好的抑热抑毒效果.扫描电镜分析表明DOPOMPC/APP/MEL/EP燃烧形成的炭层致密,阻隔效应强.3)力学性能测试表明,DOPOMPC/APP/MEL/EP阻燃复合材料物理机械性能得到有效改善.参考文献:[1]㊀陈胜,李光斗,桂明胜等.含磷腈衍生物阻燃粘胶纤维的结构与性能[J].合成纤维工业,2006,29(2):33-36.CHENsheng,YEGuangdou,GUIMingsheng,etal.Struetureandpropertiesofflame⁃retardantviscoserayoncontainingphosphazenederivatives[J].ChinaSyntheticFiberindustry,2006,29(2):33-36.[2]㊀杨连成,陶再洲,钟晓萍等.反应型DOPO基阻燃剂在环氧树脂中的应用[J].热固性树脂,2008,23(6):38-44.YANGLiancheng,TAOZaizhou,ZHONGXiaoping,etal.Applicationsofreactive⁃typeDOPObasedflameretardantinepoxyresins[J].Thermosettingresin,2008,23(6):38-44.[3]㊀MAHaiyun,FANGZhengping.Synthesisandcarboniza⁃tionchemistryofaphosphorous⁃nitumescentflameretard⁃ant[J].ThermochimicaActa,2012,(543):130-136.[4]㊀XUJZ,HEZM,WUWH.etal.Studyofthermalpropertiesofflameretardantepoxyresintreatedwithhexakis[p⁃(hydroxymethyl)phenoxy]cyclotriphosp⁃hazene[J].Therm.Anal.Calorim.2013,114(3):1341-1350.[5]㊀WANGX,HUY,SONGL.etal.Preparation,flameretardancyandthermaldegradationofepoxythermosetsmodifiedwithphosphorous/nitrogen⁃containingglycidylderivative[J].PolymersforAdvancedTechnologies,2012,23(2):190-197.[6]㊀CHENYANGYW,LEEHF,YUANCY.Aname_retardantphosphateandcyclotriphosphazenecontainingepoxyresin:synthesisandproperties[J].JPolymSciA:PolymChem,2000,(38):972-981[7]㊀KLINKOWSKIChristoph,ZANGLin,DORINGMan⁃fred.DOPO⁃basedflameretardants:synthesisandflameretardantefficiencyinpolymers[J].MaterialsChina,2013,32(3):145-158[8]㊀王宝仁,杨连成.DOPO衍生物在阻燃环氧树脂中的应用研究进展[J].化工新型材料,2010,38(3):51-54.WANGBaorenYANGLiancheng.Theprogressintheappli⁃cationsofDOPOdirevativesinflameretarantepoxyreins[J].NewChemicalMatierials,2010,38(3):51-54.[9]㊀卢林刚,陈英辉,王舒衡等.新型磷氮膨胀性阻燃剂/OMMT协同阻燃环氧树脂的制备及阻燃性能[J].材料研究学报,2014,28(6):455.LULingang,CHENYinghui,WANGShuheng,etal.Preparationandflameretardancyofintumescentflame⁃retardantepoxyresin[J].ChineseJournalofMaterialsResearch.2014,28(6):455.[10]卢林刚,王晓,杨守生等.单组分磷-氮膨胀阻燃剂的合成及成炭性能[J].高分子材料科学与工程,2012,28(7),10-13.LULingang,WANGXiao,YANGShousheng,etal.SynthesisandcharringofarborescentmonomolecularP-Nintumescentflameretardant[J].PolymerMaterialsScienceandEngineering,2012,28(7),10-13.[11]杨守生,王学宝,陈英辉等.膨胀阻燃剂/CaCO3协效阻燃环氧树脂[J].灭火剂与阻燃材料,2013,32(2),194-196.YANGShousheng,WANGXuebao,CHENYinghuietal.Intumescentflameretardants/CaCO3synergisticflameretardantepoxyresin[J].FireExtinguishingAgentandFlameRetardantMaterial,2013,32(2),194-196.[12]杨守生.星状单分子磷氮膨胀型阻燃剂在防火涂料中的应用研究[J].涂料工业,2014,44(11),46-51.YANGShousheng.Applicationofstar⁃shapedunimolecu⁃larintumescentflameretardantinfireproofcoatings[J].PaintandCoatingIndustry,2014,44(11),46-51.[13]JAHROMIS,GABRIELSEW,BRAMA.Effectofmelaminepolyphosphateonthermaldegradationofpolyamides:acombinedX⁃raydiffractionandsolid⁃stateNMRstudy.Polymer,2003,44(l):25-37.[14]LIUMeifang,LIUYuan,WANGQi.,Flameretardedpolypropylenewithmelaminephosphateandpentaeryth⁃ritol/polyurethanecompositecharringagent.Macromo⁃lecularMaterialsandEngineering,2007,292,206-213.[15]SUZUKIK,SHISHIDOK,SHINDOM.Melaminepolymetaphosphateand.proeessforitsproduction.USPatent,6008349.1999.(编辑㊀张积宾)㊃37㊃第3期王会娅,等:环状磷腈/聚磷酸铵/三聚氰胺膨胀阻燃环氧树脂研究。
新型膨胀型阻燃剂的合成
本文介绍了一种新型膨胀型阻燃剂的合成。
该材料由多种有机物、矿物质物质以及化学试剂经合成而成,其中,有机物主要由烷基氯化铵、丁二醇组成,而矿物质物质主要是硅酸盐类物质,此外,聚苯乙烯也被用作阻燃剂,最后,利用有机变性剂集中新型膨胀型阻燃剂。
该合成过程遵循环境友好原则,材料的物化性能满足用户的使用要求,具有良好的热稳定性和高级阻燃性能,可用于制造阻火和绝缘电缆,也可用于涂料、塑料、助焊剂、橡胶制品等多个领域。
1 石墨及膨胀石墨特性石墨是一种天然层状无机材料,资源丰富且价格便宜。
我国作为石墨资源第一大国,产量和出口量均居世界第一位我国。
全国20个省(区)有石墨矿产出。
探明储量的矿区有91处,总保有储量矿物1.73亿吨,居世界第1位。
膨胀石墨是以天然鳞片石墨为原料,经化学或电化处理而得到的一种石墨产品。
石墨具有层状结构,碱金属,卤素金属卤化物,强氧化性含氧酸,都可嵌入层间。
形成层间化合物,在受到200摄氏度以上高温时,由于吸留在层形点阵中化合物的分解,石墨层间化合物急剧分解、气化、膨胀(沿层间膨胀150~250倍)后,膨胀石墨便开始膨胀,并在1100摄氏度时达到最大体积。
最终体积可以达到初始时的280倍。
而制得密度极低(0.003~0.005g/cm3)的蠕虫状石墨,它是一种结构疏松、柔软、富有韧性的物质,故通常称它为柔性石墨。
膨胀石墨材料,是近三十年来发展起来的新型碳素材料,由美国联合碳化物公司在1963年首先申请专利并于1968年进行工业化生产。
由天然鳞片石墨制得的膨胀石墨材料,即保留了石墨的耐高温、耐腐蚀、能承受中子流、β射线、γ射线的长期辐照,磨擦系数低,自润滑性好,导电导热、并呈各向异性等性能,又具备天然石墨没有的:可弯曲、可压缩、有弹性、不渗透等新特点。
疏松多孔,富有弹性。
耐温范围宽在-200~3600℃之间。
在高温,高压或辐射条件下工作,不发生分解,变形或老化,化学性质稳定。
膨胀石墨可被广泛用作:抗辐射的内衬材料,高温下杂质扩散的栅栏材料,高温炉衬热屏蔽材料,高温防热震材料,导弹进入大气层的鼻锥材料,固体烯料火箭发动机喷嘴等等,其高科技附加值极高。
膨胀石墨受热膨胀,这一特性使得膨胀石墨可以在火灾发生时通过体积的瞬间增大将火焰窒息,从而达到阻燃防火之目的,还可用于冶金工业的保温及作消防的灭火剂。
图1 处理后鳞片石墨图2 膨胀后的石墨2 制备膨胀石墨的方法2.1 化学插层法将粒度在100目~160目之间的混合细鳞片石墨(含碳量在85~96%),置于按硫酸(浓度96%):硝酸(浓度65%)=5~7.5∶1配制的主酸化液中搅拌均匀,20~30分钟后加入高锰酸钾(用量为石墨量的6~7%),间歇搅拌20~30分钟后,加入三氯化铁(用量为石墨量的5~6%),间歇搅拌2~10小时,抽滤除去酸液,用水冲洗至PH=5~7,60℃真空干燥,即可制得膨胀石墨。
膨胀石墨的阻燃机理在科学与技术领域中,膨胀石墨引起了广泛的关注。
膨胀石墨是一种特殊的材料,具有出色的阻燃性能,可以在高温环境下有效地阻止火焰蔓延。
这种材料的阻燃机理引起了科学家们的浓厚兴趣,他们通过深入研究,试图揭示其中的奥秘。
1. 膨胀石墨的基本概念和特性膨胀石墨是一种具有层状结构的材料,其分子结构中的碳元素排列成平面形式,并通过共价键与邻近的碳原子相连接。
这种特殊的结构使膨胀石墨表现出许多独特的性质。
膨胀石墨具有优异的导热性和导电性,使其在大量的工业应用中发挥重要作用。
膨胀石墨的层状结构使其可以通过插入或吸附其他分子来改变其物理和化学性质。
这种可控的结构调控为膨胀石墨的阻燃性能的实现提供了可能。
2. 膨胀石墨的阻燃机理膨胀石墨的阻燃性能源于其特殊的分子结构。
在封闭的空间中,当有害气体和烟雾产生时,膨胀石墨可以快速膨胀,形成一层密封的保护层,防止火焰和烟雾进一步蔓延。
这种膨胀过程是通过碳原子层之间的物理变化和结构扩展来实现的。
当材料遇到高温时,层状结构中的碳原子将迅速热胀冷缩,从而导致材料的膨胀。
在高温环境下,膨胀石墨中的孔隙会放大,使其可以吸附更多的有害气体和烟雾。
3. 膨胀石墨在实际应用中的意义膨胀石墨的阻燃性能使其成为一种理想的阻燃材料。
它可以被广泛应用于建筑、交通、电子、化工等领域,以提高人们的安全性能。
在建筑领域,膨胀石墨可以作为建筑材料的防火层,有效地减少火灾的发生和蔓延。
在电子领域,膨胀石墨可以用作电池隔膜材料,提高电池的安全性和稳定性。
这些实际应用证明了膨胀石墨在提高人们生活质量和促进社会发展方面的重要作用。
4. 个人观点和理解对于我个人来说,膨胀石墨的阻燃机理给我留下了深刻的印象。
这种材料的阻燃性能非常出色,通过其独特的分子结构实现了膨胀和防火的功能,为保障人们的安全提供了一种新的可能性。
我认为,膨胀石墨的研究和应用将在未来得到更广泛的关注,其进一步的研究将有助于揭示更多的性能和潜力。
阻燃剂分类及各类典型介绍⼀、⽬前常⽤的阻燃剂按不同的分类⽅法可以分成3⼤类,具体分类如下:⼆、各类典型的阻燃剂 1、氯系阻燃剂近来,氯系阻燃剂已部分为溴系阻燃剂取代,氯系在整个阻燃剂的消耗量中有所下降。
A、氯化⽯蜡(C20H24Cl18~C24H29Cl21)含氯量50%的主要⽤作PVC塑料的辅助增塑剂;含氯量70%的主要⽤作阻燃剂。
B、氯化聚⼄烯⼀类含氯35%-40%,另⼀类含氯68%,⽆毒。
可⽤于聚烯烃,ABS树脂等。
它本⾝是聚合材料,因此作为阻燃剂使⽤时和树脂体系相容性好,不影响塑料的物理机械性能,耐久性良好。
2、溴系阻燃剂 A、四溴双酚A 性质:灰⽩⾊粉末。
熔点180-184℃,沸点316℃(分解)。
⽤途:⼴泛⽤作反应型阻燃剂以制造含溴环氧树脂和含溴聚碳酸酯以及作为中间体合成其他复杂的阻燃剂,也作为添加型阻燃剂⽤于ABS、HIPS、不饱和聚酯、硬质聚氨酯泡沫塑料、胶黏剂以及涂料等。
既可作添加型阻燃剂,⼜可作为反应型阻燃剂。
关注艾邦⾼分⼦,回复“阻燃”查看更多⽂章 B、⼗溴⼆苯醚性质:⽩⾊微细粉末,溶点为304-309℃,溴含量⼤约83.3%,⼏乎不溶于所有溶剂,5%热量失重时温度⼤于320℃,热稳定性好。
⽤途:添加型阻燃剂,⽤途⼴泛;可⽤于PE、PP、ABS树脂、环氧树脂、PBT树脂、硅橡胶、三元⼄橡胶及PET、PA6等材料的阻燃剂。
其与Sb2O3并⽤阻燃效果更佳。
缺点是耐侯性差,容易黄变。
3、磷系阻燃剂磷系阻燃剂包括⽆机磷系阻燃剂和有机磷系阻燃剂。
A、⽆机磷系阻燃剂红磷、聚磷酸铵(APP)、磷酸铵盐、磷酸盐及聚磷酸盐等。
阻燃机理:燃烧时⽣成磷酸、偏磷酸、聚偏磷酸等,覆盖于树脂表⾯,可促进塑料表⾯炭化成炭膜;聚偏磷酸则呈黏稠状液态覆盖于塑料表⾯。
这种固态或液态膜能阻⽌⾃由基逸出,⼜能隔绝氧⽓。
磷系与氮系及⾦属氢氧化物等阻燃剂都有协同作⽤,并⽤可产⽣协同阻燃和消烟效果。
⽆机磷系阻燃剂的耐⽔性差,与聚烯烃的相容性差,致使制品的⼒学性能下降,所以在聚烯烃中⽤量少。
【收稿日期】2004-12-16;【修回日期】2005-06-25【作者简介】王海军(1979—),男,河南平顶山人,在读硕士,主要研究方向为环氧树脂的阻燃改性。
氮系阻燃剂的研究及应用概况王海军,陈立新,缪 桦(西北工业大学理学院应用化学系,陕西西安710072) 摘 要:氮系阻燃剂高效且本身及其分解产物低毒,成为当今阻燃剂的发展方向。
文中概述了氮系阻燃剂及氮2磷复合阻燃剂的特点、分类及其阻燃机理,归纳了该阻燃体系在环氧树脂、不饱和聚酯树脂、酚醛树脂、聚乙烯和聚氨酯等体系中的应用概况,并指出了今后的发展方向。
关键词:阻燃剂;含氮化合物;阻燃机理;应用中图分类号:TQ3141248 文献标识码:A 文章编号:1002-7432(2005)04-0036-06The study on nitrogen -Containing flame retardants and its application in plasticsWAN G Hai 2jun ,CHEN Li 2Xin ,M IAO Hua(A pplied Chemist ry Depart ment of Science School ,N orth WesternPalytechnical university ,Xi ’an 710072,Chi na )Abstract :The nitrogen compound was a novel and high efficiency flame retardant for the low toxicity of itself and its decomposer.It ’s the developing direction of flame retardants at present.The characteristic ,type and mechanism of nitrogen compound and combined nitrogen 2phosphorus used as flame retardant were summarized in the paper.The applications of this kind of flame retardant in epoxy resin ,unsaturated resin ,phenolic resin ,polyethylene and polyurethane were also reviewed and the tendency in the future was indicated.K ey w ords :flame retardant ;nitrogen compound ;mechanism ;application 0 引 言传统卤素类阻燃材料如含溴材料具有很高的阻燃性,是目前使用最多的阻燃材料。
聚磷酸铵(简称APP) 介绍和应用1、聚磷酸铵介绍聚磷酸铵(AmmoniumPolyphosphate以下简称APP)是磷系阻燃剂的主要品种,应用领域广泛。
由于它燃烧时不产生有毒物质,成为膨胀型阻燃剂的主要成份。
由于聚磷酸铵含磷量高、含氮量多,具有热稳定性好、水溶性小、近于中性、阻燃效能高等优点,该产品已成为国内外研究的热点。
磷系阻燃剂大都具有低烟、无毒的优点,具有良好的发展前景。
特别是瑞士的研究机构1986年发现了卤素阻燃剂及其阻燃的高聚物材料在高温下热分解产生有毒的多溴二苯英(pbdd)和多溴二苯并呋喃(pbdf),这就给卤系阻燃剂的发展带来严峻的挑战。
另据报导,欧洲共同体已提出限制该类阻燃剂的使用,今后将逐渐淘汰。
基于上述情况,磷系阻燃剂得到了高速增长。
1993年其消耗量仅为7.716kt,而1998年则高达57.568kt,增长了近6.5倍。
国外生产聚磷酸铵阻燃剂的公司主要有美国的孟山都(Monsanto)、日本的窒素(Chisso),俄罗斯、波兰等国也大量生产此类产品。
我国20世纪80年代开始研制该类产品,目前国内总产量约15kt,生产厂家约100家,产量达1000t的约4~5家,一般的年产量为200~300t。
主要生产单位有四川什邝市长丰化工有限公司、浙江省海宁市丰士阻燃化工厂,浙江化工研究院、天津合成材料工业研究所等。
2、聚磷酸铵性能和牌号根据聚合度不同,APP的用途不同。
一般来说,聚合度较低的产品是水溶性的,用作织物处理剂或者作为肥料、食品添加剂使用;聚合度高的水难溶性的长链APP可作为塑料和涂料的阻燃剂使用,本文主要介绍该类产品的情况。
美国Monsanto公司牌号为PHOS-CHEKP/30的聚磷酸铵,主要用于防火涂料,主要技术指标为:外观:白色粉末粘度:200目通过率99.8%325目通过率90%密度:1.79g/cm3。
登录English3G机床/金属加工| 刀具/量具/夹具/磨具| 模具制造| 塑料机械| 通用机械| 工程机械| 车辆制造| 农业机械| 食品机械| 包装机工业自动化| 激光设备| 仪器仪表| 电子产品| 家电| 电力设备| 五金工具| 锅炉/工业炉窑| 行业设备| 纺织机械| 印刷机械通用基础件| 标准件| 电子元器件/材料| 工业材料| 产品包装CAD/CAM/PLM | ERP | 管理/认证| 服务/培标/专利关键字-文章/作者材料 > 工程塑料 > 技术论文 > 聚苯醚PPO产品库会展人才帮材料料本类全部文章及相关产品龙)C)新产品最新动态技术文章企业目录资料下载视频/样本反馈技术应用 | 基础知识 | 外刊文摘 | 业内专家 | 文章点评投稿阻燃剂对PPO/HIPS合金性能的影响作者:山东省塑料树脂工程技术研究中心王少君摘要:本文研究了几种不同磷系阻燃剂对PPO/HIPS合金韧性、耐热性、阻燃等性能的影响,着重分析了阻燃剂对材料阻燃性能的影响,发现采用磷含量高的分子刚性强的环状磷酸酯阻燃剂可以减少阻燃剂用量并且对材料热变形温度影响较小。
关键词:PPO 磷系阻燃剂环状磷酸酯热变形温度韧性PPO是玻璃化转变温度高达220℃的非结晶性树脂,熔融流动性差,成型困难,价格高,实际应用受到限制。
l967年美公司成功地通过与聚苯乙烯(Ps),特别是高抗冲聚苯乙烯(HIPS)的台金化,开发出商品名为Noryl的改性PPO(nIP1 ),其为提高,且基本保留了纯PPO的原有特性。
mPPO是通用工程塑料中相对密度最小的品种,具有线胀系数小、电性能好燃等特点是办公设备、电子、电器、汽车零部件、给排水机械零部件的良好材料(1)与其他通用工程塑料不同,PPO及mS)唑EI)CP)醚酮)璃E)POM氟乙烯(POE)备度集中,2004年世界PPO和mPPO生产能力分别为180 Kt/a和457 Kt/a,其中美国GE塑料公司PPO产能占总产mPPO占世界总产能的53%,居绝对领先地位。
联枯阻燃机理
联枯阻燃机理
一、引言
阻燃剂是一种能够使可燃物质具有阻燃性能的化学物质。
联枯阻燃剂作为一种新型的绿色环保型阻燃剂,因其良好的防火性能和低毒无污染等特点,被广泛应用于塑料、橡胶、纺织品等领域。
本文将介绍联枯阻燃机理及其应用。
二、联枯阻燃机理
1. 膨胀作用
联枯阻燃剂在高温下分解放出气体,气体的膨胀作用可以使可燃物表面形成一层致密的泡沫层,从而隔离空气和可燃物之间的接触面积,减缓火焰传播速度。
2. 化学反应作用
联枯阻燃剂中含有多种元素,如氮、硅等,在高温下可以与可燃物中
的氧化物发生化学反应,生成不易挥发的无机化合物,从而降低可燃物表面温度和火焰传播速度。
3. 涂覆作用
联枯阻燃剂可以在可燃物表面形成一层涂层,从而隔离空气和可燃物之间的接触面积,减缓火焰传播速度。
三、联枯阻燃剂的应用
1. 塑料领域
联枯阻燃剂可以添加到聚丙烯、聚乙烯等塑料中,提高其阻燃性能,保护人们生命财产安全。
此外,联枯阻燃剂还可以改善塑料的机械性能和稳定性。
2. 橡胶领域
联枯阻燃剂可以添加到橡胶制品中,如轮胎、密封圈等,提高其防火性能和耐高温性能。
3. 纺织品领域
联枯阻燃剂可以添加到纺织品中,如窗帘、床单等,提高其防火性能,在火灾时减少人员伤亡和财产损失。
四、结论
联枯阻燃机理是多种因素共同作用的结果。
联枯阻燃剂具有良好的防
火性能和环保特点,在多个领域得到了广泛的应用。
未来,随着科技
的不断发展和人们对环保要求的提高,联枯阻燃剂将会得到更加广泛
的应用。
阻燃剂分类介绍以树脂和橡胶为基体的复合材料含有大量的有机化合物,具有一定的可燃性。
阻燃剂是一类能阻止聚合物材料引燃或抑制火焰传插的添加剂。
最常用的和最重要的是阻燃剂是磷、澳、氯、铢和铝的化合物。
阻燃剂根据使用方法可分为添加型和反应型两大类。
添加型阻燃剂主要包括磷酸酯、卤代烧及氧化锤等,它们是在复合材料加工过程中掺合于复合材料里而,使用方便,适应而大但对复合材料的性能有影响。
反应型阻燃剂是在聚合物制备过程中作为一种单体原料加入聚合体系,使之通过化学反应复合到聚合物分子链上,因此对复合材料的性能影响较小,且阻燃性持久。
反应型阻燃剂主要包括含磷多元醇及卤代酸肝等。
用于复合材料的阻燃剂应具备以下性能:①阻燃效率髙,能赋予复合材料良好的自熄性或难燃性:②具有良好的互容性,能与复合材料很好的相容且易分散;③具有适宜的分解温度,即在复合材料的加工温度下不分解,但是在复合材料受热分解时又能急速分解以发挥阻燃的效果;④无毒或低毒、无臭、不污染,在阻燃过程中不产生有毒气体:⑤与复合材料并用时,不降低复合材料的力学性能、电性能、耐候性及热变形温度等:⑥耐久性好,能长期保留在复合材料的制品中,发挥其阻燃作用:⑦来源广泛价格低廉。
(1)澳系阻燃剂含澳阻燃剂包括脂肪族、脂环族、芳香族及芳香-脂肪族的含浪化合物,这类阻燃剂阻燃效率高,其阻燃效果是氯阻燃剂的两倍,相对用量少,对复合材料的力学性能几乎没有影响,并能显箸降低燃气中卤化氢的含量,而且该类阻燃剂与基体树脂互容性好,即使再苛刻的条件下也无喷岀现象。
(2)氯系阻燃剂氯系阻燃剂由于英便宜,目前仍是大量使用的阻燃剂。
氯含量最高的氯化石蜡是工业上重要的阻燃剂,由于热稳泄性差,仅适用于加工温度低于200a C的复合材料,氯化脂环烧和四氯邻苯二甲酸肝热稳定性较髙,常用作不饱和树脂的阻燃剂。
(3)磷系阻燃剂、有机磷化物是添加型阻燃剂该类阻燃剂燃烧时生成的偏磷酸可形成稳定的多聚体,覆盖于复合材料表而隔绝氧和可燃物,起到阻燃作用,英阻燃效果优于浪化物,要达到同样的阻燃效果,浪化物用量为磷化物的4〜7倍。
膨胀型阻燃剂的研究与应用许晶晶,肖卫东,郝惠军,曹杰(湖北大学化学与材料科学学院,湖北武汉430062)摘要综述了两类膨胀型阻燃剂(P-N膨胀型阻燃剂和膨胀型石墨)在聚烯烃、聚氨酯、环氧树脂和丙烯酸酯中的研究与应用情况。
关键词:膨胀型石墨;P-N膨胀型阻燃剂;自膨胀型阻燃剂Study and Application of Intumescent Flame-retardantXU Jing-jing,XIAO We-i dong,HAO Hu-i jun,CAO Jie(F aculty of Chemistry and M aterial Sci.,Hubei U niversity,Wuhan430062,China)Abstract:The studies and applications of tw o kinds of intumescent flame-retardant(P-N intumescent flame retardant and expandable g raphite)in polyolefin,polyurethane,epoxy resins and polyacrylate are summarized.Keywords:Ex pandable Graphite;P-N Intumescent Flame Retardant;Sel-f intumescent Flame Retardant膨胀型阻燃剂成为近几年阻燃领域最为活跃的研究热点之一,这类阻燃剂有良好的阻燃性能,且低烟、低毒,被视为替代传统阻燃剂(特别是卤-锑体系)、实现阻燃剂无卤化的一个有效途径,符合环保的需要。
膨胀型阻燃剂包括P-N膨胀型阻燃体系和膨胀型石墨阻燃剂(EG)。
本文综述了P-N型膨胀阻燃体系和膨胀型石墨阻燃剂(EG)在聚烯烃、聚氨酯、环氧树脂和丙烯酸酯中的研究与应用情况。
1P-N型膨胀阻燃体系的应用P-N型膨胀阻燃体系研究地较早,通常又分为混合型和自膨胀型两种。
混合型膨胀型阻燃剂即酸源、碳源、气源三组分分别由三种物质承担。
自膨胀型膨胀阻燃剂,集酸源、气源、碳源多种功能为一体,是膨胀型阻燃剂中唯一防火成分,热稳定性更好、水溶性更低,是人们所期望的防火剂,因此自膨胀单体的研究也是膨胀型阻燃剂发展方向之一。
111用于聚烯烃的阻燃烯烃的阻燃过去常采用含卤阻燃剂,但是含卤阻燃剂在燃烧时产生大量烟雾及含卤的有毒有害气体造成二次危害,危及人们的生命财产安全,故现在其阻燃朝着无卤方向发展。
以聚磷酸铵(APP)为基础的P-N膨胀型阻燃体系是当前无卤阻燃聚烯烃研究的热点与方向。
Shih hsuan Chiu和Wun Ku Wang[1]研究了APP、季戊四醇(PER)、三聚氰胺组成的混合型膨胀体系填充的电线电缆用聚丙烯(PP)的阻燃动力学,通过分析不同APP、PER、三聚氰胺的配比对材料的点燃时间(TTI)、失重质量分数(BP)、失重速率(ML R)、散热速率(H RR)、氧指数(L OI)、CO的浓度等性质的影响,发现当APP、PER、三聚氰胺的份数分别为23、14、13时,与未阻燃的PP相比,TTI由24增至36,BP由100%减少为9412%,ML R由0106g# s-1减少为01024g#s-1,HR R由119kw#m-2减少为6718kw#m-2,其L OI值由纯PP的1718%增为3514%,燃烧产生的CO的平均值由4116@10-5减少为2104@10-5,表明它是提高PP耐燃性能的行之有效的无卤低烟阻燃剂。
冯建新[2]等研究还发现红磷的加入对PP/APP/ PER/三聚氰胺体系耐燃性能有很大的提高,当PP/ APP/PER/三聚氰胺/红磷为100/30/10/1/5时,材料的L OI高达4012%,比没加红磷时的L OI值增加了8%,这是由于红磷的加入,增加了膨胀型阻燃体系的酸源,促使PP加速脱水炭化所致。
#210#塑料工业CHI NA P LAST ICS IN DU ST RY第33卷增刊2005年5月作者简介:许晶晶,女,1978年生,硕士在读,主要从事塑料阻燃剂方面的研究。
xjj780626@1631com马志领等[3]研究了自膨胀阻燃剂(磷酸-季戊四醇-三聚氰酰胺聚合物)的合成条件及膨胀效果,测定了其阻燃的聚丙烯的氧指数、水平燃烧性能,实验结果说明膨胀型阻燃剂的膨胀效果与组分有关,五氧化二磷B季戊四醇B三聚氰胺为(115~210)B1B(213~217)的磷酸-季戊四醇-三聚氰酰胺聚合物应用于PP时,阻燃效果最好。
欧育湘[4]研制合成了2,4,8,10-四氧-3,9二磷螺环[5,5]十一烷-3,9二氧-3,9-二三聚氰胺盐(CN-329),将其用于PP的阻燃,发现:CN-329可适用于PP,它在PP加工温度下稳定,不迁移,所得阻燃PP 密度低(1103g/cm3),且具有良好电气性能。
用阻燃剂CN-329阻燃的PP,当添加量为1912%时,阻燃等级可达U L94V-1级,氧指数可达2910%,并有效地克服了PP的滴落现象。
以30%的CN-329阻燃PP,材料的氧指数达34%,阻燃等级达UL94V-0级,而生烟性与未阻燃PP不相上下。
金胜明[5]以季戊四醇、氧氯化磷和三聚氰胺为原料,成功地合成了季戊四醇双磷酸二氢酯三聚氰胺盐(2,2-羟甲基-1,3-丙二基双磷酸二氰酯三聚氰胺盐),并测定了该化合物对聚丙烯的阻燃性能。
研究发现:当聚丙烯/阻燃剂的质量分别为30/9时,L OI 值达3415%,在燃烧时无烟、无熔滴,说明该阻燃剂具有良好的阻燃抑烟效果。
这主要是因为该阻燃剂的含氮量增加,在燃烧时的N2的生成量增加,形成一个良好的氧气阻隔层。
另外,协效剂的加入可以有效地提高阻燃性能。
最近几年关于加入各种协效剂用于增加膨胀阻燃剂的阻燃效果的研究开展的较多,常见的协效剂有滑石, M n和Zn的混合物,硼酸锌,Fe2O3,MoO3,各种沸石和分子筛,BSil(硼硅氧烷弹性体)、SiW12(硅钨酸)等。
P Anna等[6]研究了Bsil对APP+PER的膨胀阻燃剂用于PP的阻燃时的协效作用,通过L OI值和锥形量热计实验测定了协效剂Bsil最佳浓度。
研究发现当Bsil含量为为1%~115%、其中硼酸盐在弹性体中的最佳含量为80%时,可有效地提高PP熔体的粘性和形成的膨胀炭层在高温下的可塑性,材料的L OI 值最高可达40%,有良好的耐燃性。
Q iang Wu,Baojun Qu1[7]研究了硅钨酸(SiW12)对氮磷膨胀阻燃剂NP28用于PP的阻燃时的协效作用,通过L OI值、UL-94、TGA、FTIR、LRS(激光拉曼图谱)、SEM(扫描电镜)等测试得到协效剂SiW12的最佳含量。
研究发现:FT IR谱图证明SiW12的加入,有效地促进了分解产生的炭层中P)O)P,P)O) C,和PO3的形成。
LRS和SEM证实含SiW12的PP/NP28可以形成更加致密的膨胀炭层。
TGA曲线显示SiW12的加入,使PP/NP28体系的热稳定性增加,在500e以上时PP/NP28/SiW12体系比PP/ NP28有更高的稳定性,并且成炭残渣前者(11%)比后者(4%)高。
LOI值测试发现当加入的SiW12的含量为115%时,NP28阻燃的PP耐燃性最好,L OI值高达3415%,比不含SiW12(3015%)增加了4。
韦平,王建祺[8]研究了分子筛(Zeolite4A、13X、Mordenite、ZSM25)在聚磷酸铵/季戊四醇(APP/ PER)膨胀阻燃剂中的热降解行为。
TG研究表明, APP/PER体系加入分子筛后,体系的热失重速率峰值降低,热失重速率峰发生了位移。
将APP/PER-Zeo lite作用于PP形成的膨胀阻燃体系,PP参与了成炭, 500e后残炭量显著增加,高于550e时残炭稳定。
实验证实了在高温下,分子筛可作为膨胀阻燃体系的催化剂,能促进体系交联和成炭,可使体系的阻燃行为得到改善,其中4A分子筛对PP的协同作用最大, L OI值达37%,比纯PP提高了9个单位。
112用于聚氨酯的阻燃聚氨酯-磷酸盐的结合形成了一种膨胀阻燃体系,其中磷酸盐为碳源和气源,聚氨酯本身可以充当碳源的成分。
但是由于磷酸盐的水溶性,限制了其应用,磷酸盐的微胶囊化可以解决这一问题。
Stephane Giraud等[9]研究了聚氨酯包覆的磷酸二铵(DAHP)用于织物的聚氨酯涂料的阻燃,用TGA 实验比较了微胶囊化DAHP、聚氨酯/微胶囊化DAH P涂料和涂有这种涂料的织物的热分解,发现添加聚氨酯/微胶囊化DAH P的热稳定性增加,特别是在聚氨酯与微胶囊化DAH P的比例在60/40时。
用锥形量热计测定了聚氨酯/微胶囊化DAHP涂覆的织物的燃烧行为,发现用聚氨酯膜包覆的磷酸二胺有很好的阻燃性。
这种涂料的突出的优势在于用聚氨酯作包覆材料,使得阻燃剂可以与涂料的基料很好地相容,是一种持久的、有效的膨胀阻燃涂料。
另外,以聚氨酯为基料,加入P-N膨胀型阻燃剂和其它助剂制得各种膨胀型防火涂料也是近几年研究的热点。
东华大学的Jincheng Wang等[10]研制出一种新型膨胀阻燃剂(IFR),用红外、MAS-NMR13C谱仪和元素分析表征了其性质。
并将其加入聚氨酯清漆中,用热分析、L OI值、锥形量热计和SEM分别研第33卷增刊许晶晶等:膨胀型阻燃剂的研究与应用#211#究了IFR/PU系涂料的热稳定性、阻燃性及燃烧过程中膨胀炭层的结构。
另外,还研究了IFR/PU系涂料溶液的流变学和IFR/PU系涂料干涂层的硬度、粘附力、柔韧性等力学性能。
发现膨胀阻燃剂的降解产物聚磷酸化合物可以与PU反应形成更多的相对更稳定的高温含碳物质,这种物质在600~700e分解形成高于700e温度下稳定的含碳残渣,从而增进了PU 的热稳定性、成炭能力和阻燃性。
流变学的研究发现膨胀阻燃剂加入涂料溶液中,增加了溶液的假塑性和触变性。
对干涂层的力学性能的研究发现IFR的加入后,涂层的硬度增加了,粘附力和柔韧性减少了。
曹克广[11]对透明防火涂料进行了初步的研究与探讨,主要探讨了膨胀型防火涂料的组成配方与燃烧性能的关系,从实验结果看聚氨酯、双季戊四醇、聚磷酸铵、氯化石蜡、三聚氰胺、二氧化钛等为主要原料合成的防火涂料性能较好,涂层厚度012~013mm,木板炭化时间最长可达到25~30min,防火性能达到或接近国家一级防火涂料标准。
李世荣[12]研究了装饰用聚氨酯、酚醛、醇酸型透明膨胀防火涂料的配方及性能,探讨了发泡剂、脱水成炭催化剂、成炭剂三者的配比及用量对防火涂料性能的影响。
实验发现选用聚氨酯清漆作为漆基料时,选用m(脱水成炭催化剂)B m(成炭剂)B m(发泡剂)=6B1B3、氯化石蜡作为成炭剂、m(填料)B m (漆料)=7B3的防火涂料的防火性能最佳。