《复变与积分变换》讲义笔记【高斯课堂】
- 格式:pdf
- 大小:599.38 KB
- 文档页数:45
复变函数复习重点(一)复数的概念1.复数的概念:z x iy =+,,x y 是实数, ()()Re ,Im x z y z ==.21i =-. 注:一般两个复数不比较大小,但其模(为实数)有大小.2.复数的表示1)模:z=2)幅角:在0z ≠时,矢量与x 轴正向的夹角,记为()Arg z (多值函数);主值()arg z 是位于(,]ππ-中的幅角。
3)()arg z 与arctan y x之间的关系如下:当0,x > arg arctanyz x=;当0,arg arctan 0,0,arg arctan yy z x x y y z xππ⎧≥=+⎪⎪<⎨⎪<=-⎪⎩; 4)三角表示:()cos sin z z i θθ=+,其中arg z θ=;注:中间一定是“+”号。
5)指数表示:i z z e θ=,其中arg z θ=。
(二) 复数的运算1.加减法:若111222,z x iy z x iy =+=+,则()()121212z z x x i y y ±=±+±2.乘除法:1)若111222,z x iy z x iy =+=+,则()()1212122112z z x x y y i x y x y =-++;()()()()112211112121221222222222222222x iy x iy z x iy x x y y y x y x i z x iy x iy x iy x y x y +-++-===+++-++。
2)若121122,i i z z e z z e θθ==, 则()121212i z z z z e θθ+=;()121122i z z e z z θθ-=3.乘幂与方根1) 若(cos sin )i z z i z e θθθ=+=,则(cos sin )nnn in z z n i n z e θθθ=+=。
复变函数与积分变换总结_1复变函数与积分变换总结_11.复变函数复变函数是定义在复数域上的函数。
和实变函数类似,复变函数也具有实部和虚部。
复变函数有很多重要的性质和定理,以下是其中的一些重要内容:(1)柯西-黎曼方程:对于复变函数f(z)=u(x,y)+iv(x,y),其中u和v为实变函数,它们分别表示f的实部和虚部。
如果f在局部有定义且可导,则f满足柯西-黎曼方程:∂u/∂x=∂v/∂y,∂u/∂y=-∂v/∂x。
这个方程是复变函数可导的充分必要条件。
(2)柯西积分定理:柯西积分定理是复变函数理论中的重要定理,它表示若f是一个在区域D上解析的函数,则对于D内任意闭合曲线C,有∮Cf(z)dz=0。
这个定理说明,对于解析函数来说,沿着闭合曲线的积分值为0。
(3)柯西积分公式:柯西积分公式是复变函数理论中的另一个重要定理,它给出了在解析函数上对闭合曲线上的导数的表达式。
设f是D内的解析函数,z0是D内任意一点,且C是以z0为中心的一条简单闭曲线,且完全在D内,则有f(n)(z0)=n!/2πi∮C(f(z)/(z-z0)^(n+1))dz,其中n为正整数,f(n)(z0)表示f的n次导数在z0处的值。
2.积分变换积分变换是将一个函数通过其中一种数学变换转换为另一个函数的过程,常用的积分变换有傅里叶变换、拉普拉斯变换和z变换。
(1)傅里叶变换:傅里叶变换是将一个时间域上的函数转换为频域上的函数。
对于一个函数f(t),它的傅里叶变换表示为F(ω),其中ω是频域上的变量。
傅里叶变换具有线性性、位移性、尺度性和频域去掉奇点的特性。
傅里叶变换广泛应用于信号处理、图像处理等领域。
(2)拉普拉斯变换:拉普拉斯变换是将一个时间域上的函数转换为复平面上的函数。
对于一个函数f(t),它的拉普拉斯变换表示为F(s),其中s是复平面上的变量。
拉普拉斯变换具有线性性、位移性、尺度性和频域去掉奇点的特性。
拉普拉斯变换在控制系统、信号处理等领域具有重要应用。
复变函数与积分变换第一章复数与复变函数1.任何一个复数z≠0有无穷多个辐角,如θ1是辐角,则有Arg z=θ1+2kπ(k=0,±1,±2,…)表示z的全部辐角,其中满足-π<θ0≤π的辐角θ0称为辐角Argz的主值,记为θ0=arg z.2.棣莫弗公式:(cosθ+isinθ)n=cosnθ+isinnθ第二章解析函数1.柯西–黎曼方程:∂u ∂x =∂v∂y,∂u∂y=−∂v∂x2.如果二元实函数u(x,y)在区域D内有二阶连续偏导数,并且满足拉普拉斯方程:∂2u ∂x2+∂2u∂y2=0则称u(x,y)为区域D内的调和函数。
3.共轭调和函数公式:v(x,y)=∫−∂u ∂y(x,y)(x0,y0)dx+∂u∂xdy+C其中(x0,y0)为D内一个定点,(x,y)为D内任一点,C为任意常数。
该积分与路径无关。
4.指数函数的定义e z=e x+iy=e x(cosy+isiny)5.指数函数的性质e2πi=16.lnz,称为Ln z的主值,于是有ln z=ln|z|+iargz而其他各支可由下式表达:Lnz=lnz+2kπi (k=±1,±2,…)7.余弦函数与正弦函数:cosz=e iz+e−iz2sinz=e iz−e−iz2i8.双曲正弦函数和双曲余弦函数:shz=e z−e−z2chz=e z+e−z2第三章复变函数的积分1.复积分的计算∫f(z)dz=∫f[z(t)]z′(t)dttβtαC2.计算:C为单位圆周|z|=1的上半部分从z1=1到z2=−1的弧。
C的参数方程为z=e it(0≤t≤π),dz=ie it dt.3.柯西积分公式:f(z0)=12πi∮f(z)z−z0dzC∮f(z)z−z0dzC=2πi∙f(z0) 4.高阶导数公式:f(n)(z0)=n!2πi∮f(z)(z−z0)n+1dz (n=1,2,⋯).C∮f(z)(z−z0)n+1dz=2πin!f(n)(z0)(n=1,2,⋯).C第四章级数1.幂级数∑c n z n∞n=0收敛半径公式为R=limn→∞|c n c n+1|.2.幂级数基本展开公式:11−z=1+z+z2+⋯+z n+⋯,|z|<1;1 1+z =∑(−1)n z n,|z|<1;∞n=0e z=∑z nn!,|z|<+∞;∞n=0sinz=∑(−1)nz2n+1(2n+1)!,|z|<+∞;∞n=0cosz =∑(−1)n z 2n(2n)!,|z |<+∞;∞n=03. 函数展开结果中可能不含z 的负幂项,原因在于f(z)在C 内是解析的。
复变函数与积分变换学习笔记第二章解析函数一、复变函数的导数及微分1、导数的定义2、可导与连续3、求导法则实变函数的求导法则可以不加更改地推广到复变函数中来4、微分的概念与一元实变函数的微分概念完全一致二、解析函数的概念1、解析函数的定义如果函数f(z)在z0及z0的邻域内处处可导,那么称f(z)在z0解析。
如果函数f(z)在区域D内每一点解析,则称f(z)在区域D内解析。
或称f(z)是区域D内的一个解析函数(全纯函数或正则函数)2、奇点的定义如果函数f(z)在z0不解析,那么称z0为f(z)的奇点。
根据定义可知,函数在区域内解析和区域内可导是等价的。
但是,函数在一点处解析和一点处可导是不等价的,即在一点处可导,不一定在该点处解析。
函数在一点处解析比在该点处可导的要求高得多。
定理(1)在区域D内解析的两个函数f(z)和g(z)的和、差、积、商(除去分母为零的点)在D内解析。
(2)设函数h=g(z)在z平面上的区域D内解析,函数w=f (h)在h平面上的区域G内解析。
如果对于D内的每个点z,函数g (z)的对应值h都属于G,那么复合函数w=f|g(z)|在D内解析。
根据定理可知:(1)所有多项式在复平面内是处处解析的。
(2)任何一个有理分式函数P(z)/Q(z)在不含分母为零的点的区域内是解析的,使分母为零的点是它的奇点。
注意:复变函数的导数定义与一元实变函数的导数定义在形式上是完全一样的,它们的求导公式与求导法则也一样,然而复变函数极限存在要求与z趋于零的方式无关,这表明它在一点可导的条件比实变函数严格得多。
第二节、函数解析的充要条件一、主要定理定理一:设函数f(z)=u(x,y)+iv(x,y)定义在区域D内,则f(z)在D内一点z=x+yi 可导的充要条件是:u(x,y)与v(x,y)在点(x,y)可微,并在该点满足柯西-黎曼方程:?u?v?u==-,x?y?y ?vx 。
根据定理一,可得函数f(z)=u(x,y)+iv(x,y)在点z=x+yi处的导数公式:f'(z)u =+ix ?vx1=iu?v+y?y。