桥梁支架模板计算
- 格式:doc
- 大小:258.50 KB
- 文档页数:25
一、 满堂支架验算 1、模板计算本桥实心桥面板底模、侧模均采用δ=12mm 厚竹胶板,其中底模安装于间距30cm 的10cmx10cm 方木上;侧模安装在钢筋排架上。
本次模板验算主要为底模的验算,侧模的验算将在排架验算中详述。
模板受力按单向板考虑,承受实心板自重恒载和施工荷载,取1cm 板宽按偏于保守的简支梁进行计算,计算模型如下:其中施工设备、人员等堆放荷载1P =2.5KPa ;倾倒混凝土产生的冲击荷载2P =2.0KPa ;振捣混凝土产生的荷载3P =2.0KPa ;按最厚部分实心板产生的恒荷载4P =15.3KPa 。
则模板验算总荷载P=21.8KPa ,可知q=0.218KN/m 。
则跨中最大弯矩0M =82ql =1.1N.m ;支座处最大剪力0V =21.8N 。
1cm 宽、12mm 厚竹胶板的截面特性如下:I=123bh =1.44x 610-4m ;W=62bh =2.4x 710-3m ;A=bh=1.2x 410-2m 。
查路桥施工计算手册可知:普通竹胶板E=5x 910Pa ,允许应力[σ]=80 MPa ,容许剪应力[ τ]=1.3MPa.则:max σ=W M=4.58MPa<[ σ]=80MPa ; m ax τ=AV230=0.27MPa<[ τ]=1.3MPa ;跨中最大挠度m ax f =EIql 38454=0.63x 610-m<250l =8x 410-m经验算可知选用模板满足受力要求。
2、次分配梁验算本桥现浇桥面板支架次分配梁采用10x10cm 方木,方木间距30cm ,安装于间距75cm 的双拼8#槽钢上。
方木受力按简支梁考虑,方木以上结构自重恒载和施工荷载,计算模型如下:其中施工设备、人员等堆放荷载1P =2.5KPa ;倾倒混凝土产生的冲击荷载2P =2.0KPa ;振捣混凝土产生的荷载3P =2.0KPa ;按最厚部分实心板产生的恒荷载4P =15.3KPa ;竹胶木模板产生的恒载可忽略不计。
(六)、承台施工方案及模板计算4、安装模板承台桥墩均采用大块钢模板施工,设拉杆。
面板采用δ=6mm厚钢板,[10 竖带间距0。
3m,[14 横带间距0。
5m,竖肋采用[10槽钢,间距30cm,横肋采用[14槽钢,间距100cm.横肋采用2[14a工字钢,拉杆间距150cm。
拉杆采用φ20圆钢承台尺寸:钢桁梁部分11.4×18。
4×3.5m。
模板采用分块吊装组拼就位的方法施工。
根据模板重量选择合适的起吊设备立模、拆模。
根据承台的纵、横轴线及设计几何尺寸进行立摸。
安装前在模板表面涂刷脱模油,保证拆模顺利并且不破坏砼外观。
安装模板时力求支撑稳固,以保证模板在浇筑砼过程中不致变形和移位。
由于承台几何尺寸较大,模板上口用对拉杆内拉并配合支撑方木固定。
承台模板与承台尺寸刚好一致,可能边角处容易出现漏浆,故模板设计时在一个平行方向的模板拼装后比承台实际尺寸宽出10cm,便于模板支护与加固。
模板与模板的接头处,应采用海绵条或双面胶带堵塞,以防止漏浆。
模板表面应平整,内侧线型顺直,内部尺寸符合设计要求.模板及支撑加固牢靠后,对平面位置进行检查,符合规范要求报监理工程师签证后方能浇筑砼。
5、浇注砼钢筋及模板安装好后,现场技术员进行自检,各个数据确认无误,然后报验监理,经监理工程师验收合格后方可浇筑砼。
砼浇注前,要把模板、钢筋上的污垢清理干净。
对支架、模板、钢筋和预埋件进行检查,并做好记录.砼浇注采用商品砼.浇筑的自由倾落高度不得超过2m,高于2 m时要用流槽配合浇筑,以免砼产生离析.砼应水平分层浇筑,并应边浇筑边振捣,浇筑砼分层厚度为30 cm左右,前后两层的间距在1。
5m以上。
砼的振捣使用时移动间距不得超过振捣器作用半径的1.5倍;与侧模应保持5~10cm 的距离;插入下层砼5~10cm;振捣密实后徐徐提出振捣棒;应避免振捣棒碰撞模板、钢筋及其他预埋件,造成模板变形,预埋件移位等.密实的标志是砼面停止下沉,不再冒出气泡,表面呈平坦、泛浆。
满堂支架计算碗扣式钢管支架门架式钢管支架扣件式满堂支架(后图为斜腿钢构)1立杆及底托1.1立杆强度及稳定性(通过模板下传荷载)由上例可知,腹板下单根立杆(横向步距300mm,纵向步距600mm)在最不利荷载作用下最大轴力P=31.15KN,在模板计算荷载时已考虑了恒载和活载的组合效应(未计入风压,风压力较小可不予考虑)。
可采用此值直接计算立杆的强度和稳定性。
立杆选用Ф48*3.5小钢管,由于目前的钢管壁厚均小于 3.5mm 并且厚度不均匀,可按Ф48*3.2或Ф48*3.0进行稳定计算。
以下按Ф48*3.0进行计算,截面A=424mm2。
横杆步距900mm,顶端(底部)自由长度450mm,则立杆计算长度900+450=1350mm。
立杆长细比:1350/15.95=84.64按 GB 50017--2003 第132页注1 计算得绕X轴受压稳定系数φx=φy=0.656875。
强度验算:31150/424=73.47N/mm2=73.47MPa,满足。
稳定验算:31150/(0.656875*424)=111.82MPa,满足。
1.2立杆强度及稳定性(依照《建筑施工扣件式钢管脚手架安全技术规范》)支架高度16m,腹板下面横向步距0.3m,纵向(沿桥向)步距0.6m,横杆步距0.9m。
立杆延米重3.3Kg=33N,每平方米剪刀撑的长度系数0.325。
立杆荷载计算:单根立杆自重:(16+(16/0.9)*(0.3+0.6)+0.325*16*0.9)*33=1210N=1.21KN。
单根立杆承担混凝土荷载:26*4.5*0.3*0.6=21.06KN。
单根立杆承担模板荷载:0.5*0.3*0.6=0.09KN。
单根立杆承担施工人员、机具荷载:1.5*0.3*0.6=0.27KN。
单根立杆承担倾倒、振捣混凝土荷载:(2.0+4.0)*0.3*0.6=1.08KN。
风荷载:W K=0.7u z*u s*w0风压高度变化系数u z查《建筑结构荷载规范》表7.2.1可取1.25(支架高度20m内,丘陵地区);风荷载脚手架体型系数u s 查《建筑施工扣件式钢管脚手架安全技术规范》表 4.2.4可取1.3ψ(敞开框架型,ψ为挡风系数,可查《建筑施工扣件式钢管脚手架安全技术规范》表A-3,表中无参照数据时可按下式计算);挡风系数ψ=1.2*An/Aw。
桥梁满堂支架工程量计算公式桥梁满堂支架是在桥梁施工中经常用到的一种支撑结构,要准确计算它的工程量,那可得有点小技巧和公式。
咱先来说说满堂支架的组成部分,一般包括立杆、横杆、纵杆、剪刀撑还有各种连接件啥的。
那计算工程量的时候,就得把这些部分都考虑进去。
立杆的工程量计算,咱就以长度乘以根数来算。
比如说,一根立杆长度是 3 米,一共用了 100 根,那立杆的总长度就是 3×100 = 300 米。
横杆呢,也是同样的道理,根据横杆的布置间距和长度,还有数量来计算。
假设横杆间距是 1.5 米,每根长度 2 米,一共用了 200 根,那横杆的总长度就是 2×200 = 400 米。
纵杆的计算方法和横杆类似,按照实际的布置情况来算就行。
还有剪刀撑,这个稍微有点复杂。
得根据剪刀撑的布置形式和长度来算。
比如说,剪刀撑每隔 5 米设置一道,每道长度 6 米,一共设置了 50 道,那剪刀撑的总长度就是 6×50 = 300 米。
连接件的数量,就得根据立杆、横杆、纵杆之间的连接点来数啦。
我之前在一个桥梁施工现场,就碰到过计算满堂支架工程量的事儿。
那时候,天气特别热,工人们都在辛苦地干活。
我拿着图纸,在现场一点点地核对数据。
汗水不停地流,眼镜都快滑下来了。
我特别仔细地数着立杆、横杆的数量,还时不时地用尺子量量长度,就怕算错了。
回到办公室,我又根据现场的数据,认真地用公式计算,反复核对,确保工程量的准确性。
因为这工程量算错了,那可不仅仅是数字的问题,会影响到材料的采购、施工的进度,甚至整个工程的成本和质量。
总之,计算桥梁满堂支架的工程量,虽然有点繁琐,但只要咱认真仔细,按照公式一步步来,就不会出错。
这可是保证桥梁施工顺利进行的重要一步哦!。
铁路特大桥(40+64+40)m连续梁挂篮模板和0#块托架、边跨支架计算书1、工程概况新建铁路客运专线,某特大桥100#-103#连续梁线路里程为:DK2+700.790-DK2+846.490,采用挂篮悬臂施工。
(40+64+40)m连续梁设计采用《无砟轨道预应力混凝土连续梁(双线)》通桥(2008)2368A-Ⅲ:梁体全长145.5m,梁体为单箱单室、变高度、变截面结构;箱梁顶宽12m、底宽6.7m,中支点处梁高6.05m,跨中10m直线段及边跨13.75m 直线段梁高为3.05m,梁底下缘按二次抛物线变化,边支座中心线至梁端0.75m。
根据设计图规定:①施工挂篮、机具、人群等各种施工荷载的总重量不得超过700KN。
②各中墩采取临时锚固措施,临时锚固措施应能承受中支点处最大不平衡弯矩25404KN·m及相应竖向支反力24137KN。
③悬臂施工时,理论上宜完全对称浇筑,如混凝土泵送有困难而难以实现时,应控制两端混凝土灌筑不平衡重量不超过20吨。
④铺设无砟轨道时梁体的实测线形与设计线形的偏差:上拱不大于10mm,下挠不大于20mm。
⑤竖向预应力筋采用Φ25mm高强精轧螺纹钢筋,型号为PSB785,其抗拉极限强度为785MPa,锚下张拉控制应力为700MPa。
竖向预应力筋沿梁体纵向基本按间距500mm设置。
锚具体系采用JLM-25型锚具,预留管道内径为φ35mm。
⑥在结构两侧腹板上设置直径为100mm的通风孔,通风孔距悬臂板根部距离为300mm,间距2m左右。
⑦无砟轨道箱梁桥面采用三列分区排水方式,两线承轨台间的梁体中间设泄水管,间距约8m。
2、编制依据⑴新建客运专线铁路特大桥:宁杭客专施图(桥)-03⑵无砟轨道预应力混凝土连续梁(双线)通桥(2008)2368A-Ⅲ⑶《客运专线桥涵工程施工技术指南》 TZ213-2005⑷《客运专线桥涵工程施工质量验收暂行标准》铁建设[2005]160号⑸《铁路工程施工安全技术规程》 TB10401.1、2-2003;⑹《建筑施工计算手册》中国建筑工业出版社江正荣 2006年4月⑺好易懂结构分析器和结构力学求解器软件分析、计算结果⑻宁杭铁路客运专线施工图记设计交底等设计文件⑼现场施工技术调查和我单位现有施工技术水平和资源3、挂篮设计计算荷载(40+64+40)m连续箱梁悬浇设:0#块 + 中跨15节段 + 边跨2×9节段,节段布置如下图示。
#NAME?3、涵台侧模面板验算3.1、由于跨度大于三跨,计算时按三跨连续梁考虑,计算跨度取1000mm 3.2、计算简图如右:附件:K195+025.00 通道涵模板、支架计算一、工程概况该涵洞中心桩号K195+025.00,交角120°,为单跨(跨径6.0m )钢筋砼盖板涵(暗涵)。
洞身尺寸为6.0x4.0m ;涵长47.76m ,分为8个施工节段施工。
整体式基础、涵台及梯形盖板采用立模现浇工艺,模板采用木模板。
二、涵台侧模计算1、涵台侧模布置涵台侧模采用木模。
面板采用1.5cm竹胶板;横肋采用10*10cm方木,间距30cm;竖向对拉肋为2根10*10cm方木,间距120cm;对拉杆纵向间距120cm。
布置图如下。
新浇混凝土对模板的侧压力:#NAME?#NAME?12122000.22T 15c f v γββ==+()c h γ=2/,c KN m f r h >。
2/KN m 2/,cKN m r 2/KN m 2/KN m 。
303030q A DCB#NAME?挠度满足要求5、涵台侧模对拉肋验算#NAME?5.1、强度验算:#NAME?4.1、强度验算:#NAME?#NAME?#NAME?4.2、挠度验算:#NAME?#NAME?#NAME?3.5、挠度验算:#NAME?#NAME?挠度满足要求4、涵台侧模横肋验算#NAME?3.3、荷载计算:#NAME?3.4、强度验算:#NAME?210.08M ql ==26bh W ==3mm 1M W σ==22/12/N mm fm N mm <= 强度满足要求312bh I ==4mm 120120120qA D CB 210.08M ql ==26bh W ==3mm 1M Wσ==212/fm N mm σ<= 强度满足要求2/N mm 312bh I ==4mm 210.08M ql ==4max 0.677*100ql f EI ==4max 0.677*100ql f EI ==#NAME?#NAME?2.4、强度验算:模板重量:g 2=41.5*0.02*0.6*10=4.98KN钢筋混凝土重 g 3= 41.5*0.7*26= 775.3KN施工荷载与其他荷载 g 4=20 KN2、盖板底模面板计算:2.1、由于跨度大于三跨,计算时按三跨连续梁考虑, 取1m 宽的板条作为计算单元。
桥梁临时施工结构计算目录1、满堂支架计算2、墩梁式支架计算3、挂篮设计与计算(包括三角形与菱形挂篮)4、悬臂施工0#块、现浇段及合拢段计算5、钢栈桥的设计与计算6、基坑防护措施及稳定性7、围堰与施工平台的设计与检算满堂支架计算模板为一次使用,支架可支架现浇法主要适用于浇注孔径较少、工期不太紧的桥梁,其施工较灵活,适合于一些桥墩高度较矮(10m以下)的桥梁。
支架主要采用贝雷梁、碗扣式支架、六四式军用梁等。
施工流程简单:在支架上立模板、绑扎钢筋、浇注混凝土并张拉预应力钢筋、支架需设置砂箱等特殊落梁措施。
支架可以拆卸反复使用,节省部分费用。
就地浇注是在支架上安装模板、绑扎及安装钢筋骨架、预留孔道,并在现场浇注混凝土与施加预应力的施工方法。
近年来由于临时钢构件及万能杆件的大量使用,在一些弯桥、变宽桥等异形桥梁,或是一些边远地区的中小跨径桥梁中广泛使用。
算例1-1(海口某酒店景观桥-多跨35m连续梁支架)本桥采用满堂支架法施工,通过钢管立柱、纵横梁、贝雷梁、满堂支架形成施工平台。
施工平台的支架基础管桩采用直径630mm、壁厚8mm的钢管桩,横向每排8根,钢管桩中心距为3~3.5m;垫梁采用双I40b工字钢。
P0桥台至P16桥墩支架纵梁采用贝雷梁,P16桥墩至P19桥台支架纵梁采用I56工字钢。
满堂支架算例1-1:第一联至第四联贝雷梁采用间距45cm双拼共20组,梁横截面中心线两边12组横向净间距0.8m(中心间距1.25m),翼缘两边上8组净间距为1.1m (中心间距1.55m);第五联I56工字钢横向中心间距腹板下为0.6m,空箱底板下为1.2m,翼缘板下为1.8m。
分配梁采用I20工字钢,中心距为40cm。
分配梁顶铺12cm×10cm方木,中心距60cm;方木顶搭设满堂支架为梁中部横向60cm×纵向90cm×竖向60cm,梁端部为横向60cm×纵向60cm×竖向60cm;支架顶纵向铺设10#槽钢,中心距60cm,槽钢上横向铺设10×10cm方木,中心距30cm。
桥梁支架计算书一、工程概况本桥跨越赛城湖引水渠,桥梁按正交布置。
全桥布置为24.24+56.00+24.24 米预应力砼斜腿刚构,桥面标高以50年一遇水位控制。
桥梁中心桩号为K1+410.000,桥梁起讫点桩号为K1+353.7〜K1+466.3,全长112.6米,桥梁宽度50米。
本桥为双向六车道,全桥等宽。
桥上行车道的中心线及宽度与路线一致,桥面横坡为2%,由盖梁、台帽及梁体共同调整。
桥梁上部为预应力混凝土箱梁结构,采用单箱四室断面,主梁根部梁高为5.63 米 (与斜腿相连形成拱状),跨中梁高为1.8米,端部梁高为2.0 米,箱顶宽为24.99米,底宽20 米,悬臂长为2.495 米,悬臂根部厚0.45 米。
桥面横坡为2%的双向坡,箱梁同坡度设计。
斜腿与承台拱座之间为铰接,施工完成后填充混凝土,转换为固结。
斜腿截面为矩型截面,单根肋截面宽2000cm高150〜263.1cm。
横向设置两幅桥梁,箱梁间为2cm的分隔缝,铺装层于分隔缝处浇筑整体化防水混凝土及沥青铺装层。
主桥上部构造施工采用整体支架现浇。
支架采用钢管支架,斜腿支架与上部支架形成整体。
支架结构形式详见附图。
二、设计依据1 、《九江市开发区沙阎北路延伸线桥梁工程施工设计图》;2、《九江市开发区沙阎北路延伸线桥梁工程设计说明》;3、《九江市开发区沙阎北路延伸线桥梁工程地址勘察报告》;4、《公路桥涵设计通用规范》 (JTG D60-2004 );5、《公路桥涵地基与基础设计规范》 (JTG D63-2007);6、《公路桥涵施工技术规范》(JTG/T F50-2011) ;7、《路桥施工计算手册》;8、《建筑施工碗扣式脚手架安全技术规范》 (JGJ166-2008);9、《钢结构设计规范》(GB50017-2011。
三、临时支架布置图临时支架边跨采用型材焊接,主跨采用碗口脚手架搭设而成,布置图如图1所示:图1:临时支架布置图四、边跨临时支架计算混凝土外框面积:A 41.64m 2 混凝土镂空面积:A 4 4.4 17.6 m 2混凝土实际截面面积:A A A 41.64 17.6 24.04m 24.1、荷载分析边跨支架主要荷载为桥梁本身钢筋混凝土荷载,容重取26kN/m 3,施工荷载取3kN/m 2,梁底分配量采用工钢12.6,纵向主梁采用工钢45a ,支架顶部分配梁采用工山LJ IB亠舶II"IP IIP I Pi a I ii lli IhiIII 11 IIII.■丄-钢45a。
桥梁支架设计计算一、支架简介(一)概述就地浇筑时一种传统的施工方法,由于施工需要大量的模板支架,以前一般仅在小跨径桥或交通不便的边远地区采用。
20世纪70年代以后,由于有限元法的推广和应用以及利用电子计算机进行复杂结构分析计算技术的发展,出现了越来越多的变宽桥、弯桥等复杂的预应力混凝土结构,支架现浇技术得到了广泛的应用。
支架法施工过程比较明确,易于控制,设计计算也比较简单。
该工法适用于工期紧,高度小于20m,跨度48m及以上具备支架施工条件的中小跨度连续箱梁等的施工。
(二)支架法施工的优缺点优点梁体混凝土浇筑与预应力张拉可一气呵成,连续梁整体性好,施工平稳可靠;施工中不需要体系转换,不会引起恒载、徐变二次矩;对机具和起重能力要求不高,无需大型起重设备;可以采用强大的预应力体系,施工方便。
缺点施工中需要大量的脚手架,可能影响通航和排洪;对于桥墩较高、水较深的桥梁,支架施工不方便;设备周转次数少,工期较长;施工费用高(三)支架类型及构造就地浇筑混凝土梁桥的上部结构,首先应在桥孔位置搭设支架,以支承模板、新浇筑砼等的自重及施工荷载。
1、立柱式支架立柱式支架构造简单,常用于陆地或不通航的河道,或桥墩不高的小跨径桥梁。
其特点是在桥跨下满布支架立柱,模板直接支承在立柱上的方木或者型钢上。
支架构成排架+ 纵梁等构件Φ48 ×3.5mm的钢管搭设2、梁式支架梁式支架则是在两端设立柱,上方设承重梁,模板直接支承在承重梁上。
依其跨径可采用工字钢、钢板梁、钢桁梁和贝雷梁作为承重梁,梁可以支承在墩旁支架上,也可支承在桥墩上预留的托架或在桥墩处临时设置的横梁上。
3、梁-立柱组合支架当梁式支架跨度较大时,在跨的中间增设几个立柱,梁支承在多个立柱或临时墩上而形成多跨梁柱式支架。
通常在大跨径桥上使用。
4、门式支架现浇梁上跨既有道路,当采用立柱式支架时,须设置满足道路通行(人行或车行)净空要求的门式支架以保证施工期间既有道路的通畅。
模板支架实测实量计算公式在建筑施工中,模板支架是一种常用的施工工具,用于支撑模板,确保模板的稳定性和承载能力。
在进行模板支架的实测实量时,需要根据一定的计算公式来进行计算,以确保支撑的稳定性和安全性。
本文将介绍模板支架实测实量计算公式,并对其进行详细的说明。
一、模板支架的基本原理。
模板支架是用于支撑模板的一种结构,其基本原理是根据模板的重量和承载力来确定支撑的数量和位置。
在进行模板支架的实测实量时,需要考虑模板的重量、支撑点的间距、支撑点的承载能力等因素,以确保支撑的稳定性和安全性。
二、模板支架实测实量计算公式。
1. 支撑点的间距计算公式。
支撑点的间距是指相邻支撑点之间的距离,其计算公式为:间距 = (模板长度 + 支撑间距)/ 支撑点数量。
其中,模板长度为模板的实际长度,支撑间距为支撑点之间的距离,支撑点数量为支撑点的总数量。
2. 支撑点的承载能力计算公式。
支撑点的承载能力是指支撑点能够承受的最大重量,其计算公式为:承载能力 = 模板重量 / 支撑点数量。
其中,模板重量为模板的实际重量,支撑点数量为支撑点的总数量。
3. 支撑点的数量计算公式。
支撑点的数量是根据模板的重量和承载能力来确定的,其计算公式为:支撑点数量 = 模板重量 / 支撑点的承载能力。
其中,模板重量为模板的实际重量,支撑点的承载能力为支撑点能够承受的最大重量。
三、模板支架实测实量计算公式的应用。
在进行模板支架的实测实量时,可以根据上述计算公式来确定支撑点的间距、承载能力和数量。
首先需要测量模板的实际长度和重量,然后根据计算公式来确定支撑点的间距和数量,最后根据支撑点的承载能力来选择合适的支撑点。
在实际应用中,需要根据具体的施工条件和要求来确定支撑点的数量和位置,以确保支撑的稳定性和安全性。
同时还需要考虑支撑点的材质和结构,以确保其承载能力和稳定性。
四、模板支架实测实量计算公式的注意事项。
在使用模板支架实测实量计算公式时,需要注意以下几点:1. 模板的实际长度和重量需要进行准确测量,以确保计算的准确性。
(六)、承台施工方案及模板计算4、安装模板承台桥墩均采用大块钢模板施工,设拉杆。
面板采用δ=6mm厚钢板,[10 竖带间距0.3m,[14 横带间距0.5m,竖肋采用[10槽钢,间距30cm,横肋采用[14槽钢,间距100cm。
横肋采用2[14a工字钢,拉杆间距150cm。
拉杆采用υ20圆钢承台尺寸:钢桁梁部分11.4×18.4×3.5m。
模板采用分块吊装组拼就位的方法施工。
根据模板重量选择合适的起吊设备立模、拆模。
根据承台的纵、横轴线及设计几何尺寸进行立摸。
安装前在模板表面涂刷脱模油,保证拆模顺利并且不破坏砼外观。
安装模板时力求支撑稳固,以保证模板在浇筑砼过程中不致变形和移位。
由于承台几何尺寸较大,模板上口用对拉杆内拉并配合支撑方木固定。
承台模板与承台尺寸刚好一致,可能边角处容易出现漏浆,故模板设计时在一个平行方向的模板拼装后比承台实际尺寸宽出10cm,便于模板支护与加固。
模板与模板的接头处,应采用海绵条或双面胶带堵塞,以防止漏浆。
模板表面应平整,内侧线型顺直,内部尺寸符合设计要求。
模板及支撑加固牢靠后,对平面位置进行检查,符合规范要求报监理工程师签证后方能浇筑砼。
5、浇注砼钢筋及模板安装好后,现场技术员进行自检,各个数据确认无误,然后报验监理,经监理工程师验收合格后方可浇筑砼。
砼浇注前,要把模板、钢筋上的污垢清理干净。
对支架、模板、钢筋和预埋件进行检查,并做好记录。
砼浇注采用商品砼。
浇筑的自由倾落高度不得超过2m,高于2 m时要用流槽配合浇筑,以免砼产生离析。
砼应水平分层浇筑,并应边浇筑边振捣,浇筑砼分层厚度为30 cm左右,前后两层的间距在1.5m以上。
砼的振捣使用时移动间距不得超过振捣器作用半径的1.5倍;与侧模应保持5~10cm 的距离;插入下层砼5~10cm;振捣密实后徐徐提出振捣棒;应避免振捣棒碰撞模板、钢筋及其他预埋件,造成模板变形,预埋件移位等。
密实的标志是砼面停止下沉,不再冒出气泡,表面呈平坦、泛浆。
浇筑砼期间,设专人检查支撑、模板、钢筋和预埋件的稳固情况,当发现有松动、变形、移位时,应及时进行处理。
砼浇筑完毕后,对砼面应及时进行修整、收浆抹平,待定浆后砼稍有硬度,再进行二次抹面。
对墩柱接头处进行拉毛,露出砼中的大颗粒石子,保证墩柱与承台砼连接良好。
砼浇筑完初凝后,用草毡进行覆盖养护,洒水养生。
6、养护及拆模混凝土浇注完成后,对混凝土裸露面及时进行修整、抹平,待定浆后再抹第二便并压光或拉毛。
收浆后洒水覆盖养生不少于7天,每天撒水的次数以能保持混凝土表面经常处于湿润状态为度,派专人上水养生。
混凝土达到规定强度后拆除模板,确保拆除时不损伤表面及棱角。
模板拆除后,应将模板表面灰浆、污垢清理干净,并维修整理,在模板上涂抹脱模剂,等待下次使用。
拆除后应对现场进行及时清理,模板堆放整齐。
7、基坑回填拆除侧模并经监理工程师验收合格签认后,方可进行基坑回填,回填时应分层进行8、承台模板计算承台桥墩均采用大块钢模板施工,设拉杆。
面板采用δ=6mm 厚钢板,[10 竖带间距0.3m ,[14 横带间距0.5m ,竖肋采用[10槽钢,间距30cm ,横肋采用[14槽钢,间距100cm 。
横肋采用2[14a 工字钢,拉杆间距150cm 。
拉杆采用υ20圆钢承台尺寸:钢桁梁部分11.4×18.4×3.5m 。
1)、荷载计算混凝土侧压力根据公式: P=0.2221210γv k k t 计算:P=0.22×24×5×1×1.15×221=43kpa2)、面板计算面板采用δ=6mm 厚钢板,[10 竖带间距0.3m ,[14 横带间距0.5m ,取1m 板宽按三跨连续梁进行计算。
竖肋间距30cm 。
面板荷载计算q=43×1=43m kN /有效压头高度:h=γΡ=2443=1.8m 材料力学性能参数及指标 3322100.6610006161W mm bh ⨯=⨯⨯==4433108.161000121121mm bh I ⨯=⨯⨯== Α=bh=1000×6=60002m mEI=2.1×1110× 1.8×410×12_10=3.78×2310NmEA=2.1×1110×6×310×6_10=1.26×N 910面板结构计算采用清华大学SM Solver 进行结构分析。
Mmax=0.39m kN .. Qmax=7.74kN强度计算σ=ωM =3610*610*39.0=35Mpa<[σ]=145Mpa ,合格。
τ=A Q =600010*74.73=1.29Mpa<[τ]=85Mpa ,合格。
刚度计算f=0.6mm<l/400=0.75mm ,合格。
3)、竖肋计算竖肋采用[10槽钢,间距30cm ,横肋采用[14槽钢,间距100cm 。
荷载计算按最大荷载计算:m kN p q /9.123.0433.0=⨯=⨯=。
材料力学性能参数及指标I=1.98×4610mmW=3.96×4103mmA=12742m mEI=2.1×1110× 1.9×610×12_10=4.15×2510NmEA=2.1×1110×1.274×310×6_10=2.67×N 810结构计算采用清华大学SM Solver 进行结构分析。
M max =0.323kNm Qmax=3.9kN强度计算σ=ωM =4610*96.310*323.0=8.2Mpa<[σ]=145Mpa ,合格。
τ=A Q =127410*9.33=3.1Mpa<[τ]=85Mpa ,合格。
刚度检算f=0.01mm<l/400=2.5mm ,合格。
最大支反力R max =2R =3R =7.1kN 。
4)、横肋计算横肋采用2[14a 工字钢,拉杆间距150cm 。
荷载计算将竖肋槽钢支反力作为集中荷载计算,P =7.1kN 。
材料力学性能参数及指标I=2×5.63×610=1.12×7104m mW=2×8.05×410=1.61×3510mm Α=bh=2×1851=37022m m EI=2.1×1110× 1.1×710×12_10=2.35×2610NmEA=2.1×1110×3.702×310×6_10=7.77×N 810结构计算采用清华大学SM Solver 进行结构分析。
M max =6.4kNm Qmax=18.5kN强度计算[]MPa MPa w M 145401061.1104.656max =<=⨯⨯==σσ,合格。
[]MPa MPa A Q 8553702105.183=<=⨯==ττ,合格。
刚度计算mm l mm f 75.34003.0=<=,合格。
最大支反力:R =37kN 。
5)、拉杆计算拉杆采用υ20圆钢,按最大拉力计算。
[]MPa MPa 14511831410373=<=⨯=σσ,合格。
(七)、桥墩施工方案及模板计算桥墩采用柱式桥墩,桥墩采用矩形台状形式,横桥向布置3个桥墩,中墩根部横向宽8.8m ,纵桥向长3.5m .顶部横向宽6m ,纵桥向长2.5m ;两侧边墩根部横向宽6 5m ,纵桥向长3.5m .顶部横向宽3.7m ,纵桥向长2.5m 。
1、测量放线:在承台顶面准确放出墩柱中线并标注十字和钢模板外边线,以利于钢模板吊装就位;经驻地监理检查合格后并约请总监办进行验收,合格后方可进行钢模板安装。
2、凿毛处理:墩柱、肋板钢筋绑扎前要将墩柱范围内的承台进行凿毛处理,以利于承台砼与墩柱砼的良好结合。
3、钢筋:当钢筋进场时,向监理工程师提供钢筋的出厂质量证书,并分批取样进行试验,每60吨作为一批进行取样,一次进料不够也作为一批取样,所用钢筋直径大于Φ12 mm 时应作机械性能和可焊性试验。
经试验符合规定的钢筋,必须按品种、规格、牌号分别设置标志牌,垫好方木、码放整齐,上盖苫布。
钢筋使用前进行调直、除锈、去污。
焊接接头同规格、同品种、同一厂家的钢筋每300个接头取样1组(3根)进行力学性能检测或每加工批进行抽样检测。
直螺纹接头每加工批或500个接头进行抽样检测,取样数量不少于75个接头,检测其外观和拧紧力矩,并取3根接头进行抗拉强度检验。
直螺纹接头检验:套筒进场检验有保护端盖、套筒内无杂物;套筒外观螺纹牙型饱满,表面无裂纹,表面及内螺纹不得有严重锈蚀及其他肉眼可见的缺陷。
4、钢模板:绑扎完钢筋笼后即可吊装墩柱钢模板。
采用16T吊车吊装对位。
吊车必须设专人指挥,并特别注意安全。
对位时,下口先对准测量标注的钢模板外线,用木楔子和定位钢筋固定钢模板下口;在钢模板上十字方向拉出四根带导链的钢丝绳和地锚连接,然后调整导链长度用全站仪校正钢模板上口,确保钢模板上口中心与墩柱在承台上的投影中心(即测量放线的墩柱中心)吻合;吻合后固定导链以保证钢模板的稳定性、位置准确,然后用全站仪或经纬仪检测钢模板的竖直度。
5、混凝土浇筑:混凝土采用商品砼,坍落度为10-14厘米,进场后严格检查坍落度、和易性,不合格产品严禁使用。
浇筑前应将钢模板内杂物、已浇承台上的泥土清理干净。
钢模板、钢筋自检和现场监理验收合格后,方可进行混凝土的浇筑。
混凝土浇筑采用泵车进行,分层浇筑混凝土,每层浇筑厚度不大于30cm,采用插入式50型振捣棒分层振捣,振捣间距为40cm,插入下层砼5cm,振捣至混凝土表面泛浆、平坦无明显下降、无气泡溢出时为止。
砼浇注过程中随时监控墩柱的竖直度,发现偏差较大的情况后,及时用导链进行调整纠正。
6、养生:在墩柱外围包裹两层土工布,进行洒水养生。
7、基坑回填:回填要分层进行,每层厚度为15厘米,可设置立杆划线标注;回填压实可采用小型震动夯,但要注意保护墩柱成品,墩柱周围的回填采用人工木夯夯实。
8、施工过程中应急处理措施(1)、施工时遇断电时,迅速启动备用发电机保证墩柱施工顺利进行。
(2)、施工中,注意对易发生的质量问题采取有针对性的事前、事中、事后控制措施,避免发生质量问题和事故。
9、桥墩模板计算(1)、水平荷载统计:根据路桥混凝土的施工条件计算混凝土侧压力如下:1)、新混凝土对模板的水平侧压力标准值按照《建筑工程大模板技术规程》(JGJ74-2003)附录B ,模板荷载及荷载效应组合B.0.2规定,可按下列二式计算,并取其最小值:2/121022.0V t F c ββγ= H F c γ=式中 F------新浇筑混凝土对模板的最大侧压力(KN/m2)。