第四章 岩体的力学特性
- 格式:ppt
- 大小:18.15 MB
- 文档页数:17
第二章 岩体的基本物理力学性质10、一个5510cm cm cm ⨯⨯试样,其质量为678g ,用球磨机磨成岩粉并进行风干,天平秤称得其质量为650g ,取其中岩粉60g 作颗粒密度试验,岩粉装入李氏瓶前,煤油的度数为0.53cm ,装入岩粉后静置半小时,得读数为20.33cm ,求:该岩石的天然密度、干密度、颗粒密度、岩石天然空隙率。
解:天然密度3678 2.71/5510m g cm V ρ===⨯⨯ 干密度36502.6/5510s d m g cm V ρ===⨯⨯颗粒密度360 3.03/20.30.5s s s m g cm V ρ===- 天然孔隙率 2.6110.143.03V d s V n V ρρ==-=-=12、已知岩石单元体A —E 的应力状态如图所示,并已知岩石的4c MPa =,35ϕ=︒,试求:(1)各单元的主应力的大小、方向,并作出莫尔应力图。
(2)判断在此应力下,岩石单元体按莫尔-库伦理论是否会破坏? 解:(1)A 单元:主应力大小:135.00 5.0022x yMPa σσσσ++===方向:与x σ的夹角20tan 200 5.0xyx yτθσσ===--,0θ=︒ 莫尔应力图:圆心:135.002.522σσ++==半径:13 5.002.522σσ--==B单元:主应力大小:1222234.00000()() 4.04.02222x y x yxyMPa σσσσστσ+-+-=±+=±+=-方向:与xσ的夹角2 4.0tan2xyx yτθσσ===∞-,45θ=︒莫尔应力图:圆心:134.0 4.022σσ+-==半径:134.0( 4.0)4.022σσ---==C单元:主应力大小:1222235.705.00 5.00()() 2.00.702222x y x yxyMPa σσσσστσ+-+-=±+=±+=-方向:与xσ的夹角22 2.0tan20.85.00xyx yτθσσ⨯===--莫尔应力图:圆心:135.70.72.522σσ+-==半径:135.7(0.7)3.222σσ---==D单元:主应力大小:1222236.06.0 6.0 6.0 6.0()()06.02222x y x yxyMPa σσσσστσ+-+-=+=±+=方向:与xσ的夹角20tan206.0 6.0xyx yτθσσ===--,0θ=︒莫尔应力图:圆心:136.0 6.06.022σσ++==半径:136.0 6.022σσ--==E单元:主应力大小:12222310.9110.0 1.010.0 1.0()() 3.00.092222x y x yxyMPa σσσσστσ+-+-=±+=±+=方向:与xσ的夹角22 3.0tan20.6710.0 1.0xyx yτθσσ⨯===--莫尔应力图:圆心:1310.910.095.522σσ++==半径:1310.910.095.4122σσ--==(2)A单元:21335tan(45)2tan(45)24tan(45)15.37 5.0222c MPa MPaϕϕσσ︒=︒++︒+=⨯︒+=>不破坏; B 单元:2135354.0tan (45)24tan(45)0.61 4.022MPa MPa σ︒︒=-⨯︒++⨯︒+=< 破坏; C 单元:2135350.7tan (45)24tan(45)12.78 5.722MPa MPa σ︒︒=-⨯︒++⨯︒+=> 不破坏; D 单元:2135356.0tan (45)24tan(45)37.51 6.022MPa MPa σ︒︒=⨯︒++⨯︒+=> 不破坏; E 单元:2135350.09tan (45)24tan(45)15.7010.9122MPa MPa σ︒︒=⨯︒++⨯︒+=> 不破坏;13、对某种砂岩做一组三轴压缩实验得到的如表所示峰值应力。
第四章岩石的强度岩石强度是岩石的一种重要的力学特性。
是指岩石抵抗载荷(外力)而不受屈服或破裂的能力,是岩石承受外力的极限应力值。
岩石受力后会发生变形,一旦应力达到岩石的极限应力值,岩石就会发生破坏。
在岩石强度应力值之前,存在屈服点(应变明显增大,而应力不再需要明显增大时的应力),超过屈服点和达到极限强度(岩石破裂要达到的最大应力值)前,一般仍有一些抵抗应变而恢复原形的能力,但达到极限强度后岩石破裂,就完全失去恢复能力。
通常所讲的岩石强度,一般是指岩石样件的测量强度,它仅代表岩体内岩块的强度,不能代表整个岩体的强度。
但在涉及岩石强度的工程问题中,一般是针对岩体的强度,而岩体往往包含一些软弱的结构面。
几组软弱结构面可以将岩体分割成各种形状和大小不同的岩块。
因此,岩体的强度取决于这些岩块强度和结构面的强度,岩块内微结构面的作用将直接反映到岩石的力学性质上。
岩石受力方式的不同,表现出的强度特性不尽相同。
如在张力、压力和剪切力的作用下,同种岩石会呈现出不同的强度特性。
因此岩石具有抗张、抗压和抗剪切强度等之分。
岩石受力条件的不同,可表现出变形、破裂、蠕变等现象,这些现象有着一定的规律性。
岩石的强度是衡量岩石基本力学性质的重要指标,是建立岩石破坏判据的重要指标,还可估计其他力学参数。
岩石的这些力学特性广泛用于建筑行业、水利水电工程、地质灾害研究与预防、断裂构造研究等方面。
4.1影响岩石强度的主要因素1)岩石成分和结构组成岩石的矿物种类及含量、矿物颗粒大小、固结程度、胶结物种类、矿物形态与分布等均影响到岩石的各种强度。
固结程度高、硅质胶结、细粒、交错结构的强度大。
2)岩石中不连续面和间断面岩石中微裂缝、微小断裂、节理层理等的发育程度和分布情况直接影响到岩石的强度,这些不连续或间断面会降低岩石在不同方向上的强度。
3)岩石孔隙度及流体性状岩石的孔隙度以及其中所含流体种类、饱和度、渗透率等因素以较复杂的关系影响着岩石强度。
第二章 岩体的基本物理力学性质10、一个5510cm cm cm ⨯⨯试样,其质量为678g ,用球磨机磨成岩粉并进行风干,天平秤称得其质量为650g ,取其中岩粉60g 作颗粒密度试验,岩粉装入李氏瓶前,煤油的度数为0.53cm ,装入岩粉后静置半小时,得读数为20.33cm ,求:该岩石的天然密度、干密度、颗粒密度、岩石天然空隙率。
解:天然密度36782.71/5510m g cm V ρ===⨯⨯干密度36502.6/5510s d m g cm V ρ===⨯⨯颗粒密度360 3.03/20.30.5s s s m g cm V ρ===- 天然孔隙率 2.6110.143.03V d s V n V ρρ==-=-=12、已知岩石单元体A —E 的应力状态如图所示,并已知岩石的4c MPa =,35ϕ=︒,试求:(1)各单元的主应力的大小、方向,并作出莫尔应力图。
(2)判断在此应力下,岩石单元体按莫尔-库伦理论是否会破坏? 解:(1)A 单元:主应力大小:135.00 5.0022x yMPa σσσσ++===方向:与x σ的夹角20tan 200 5.0xyx yτθσσ===--,0θ=︒ 莫尔应力图:圆心:135.002.522σσ++==半径:13 5.002.522σσ--==B 单元:主应力大小:13 4.000 4.022x y MPa σσσσ++=±==- 方向:与x σ的夹角2 4.0tan 20xyx yτθσσ===∞-,45θ=︒ 莫尔应力图:圆心:134.0 4.0022σσ+-==半径:13 4.0( 4.0)4.022σσ---==C 单元:主应力大小:13 5.705.000.7022x y MPa σσσσ++=±==-方向:与x σ的夹角22 2.0tan 20.85.00xyx yτθσσ⨯===-- 莫尔应力图:圆心:135.70.72.522σσ+-==半径:13 5.7(0.7)3.222σσ---==D 单元:主应力大小:13 6.06.0 6.0 6.022x y MPa σσσσ++==±= 方向:与x σ的夹角20tan 206.0 6.0xyx yτθσσ===--,0θ=︒莫尔应力图:圆心:136.0 6.06.022σσ++==半径:13 6.0 6.0022σσ--==E 单元:主应力大小:1310.9110.0 1.00.0922x y MPa σσσσ++=±=±= 方向:与x σ的夹角22 3.0tan 20.6710.0 1.0xyx yτθσσ⨯===--莫尔应力图:圆心:1310.910.095.522σσ++==半径:1310.910.095.4122σσ--==(2)A 单元:21335tan (45)2tan(45)24tan(45)15.37 5.0222c MPa MPa ϕϕσσ︒=︒++︒+=⨯︒+=>不破坏; B 单元:2135354.0tan (45)24tan(45)0.61 4.022MPa MPa σ︒︒=-⨯︒++⨯︒+=< 破坏; C 单元:2135350.7tan (45)24tan(45)12.78 5.722MPa MPa σ︒︒=-⨯︒++⨯︒+=> 不破坏; D 单元:2135356.0tan (45)24tan(45)37.51 6.022MPa MPa σ︒︒=⨯︒++⨯︒+=> 不破坏; E 单元:2135350.09tan (45)24tan(45)15.7010.9122MPa MPa σ︒︒=⨯︒++⨯︒+=> 不破坏;13、对某种砂岩做一组三轴压缩实验得到的如表所示峰值应力。
岩石的力学特性及强度准则岩石力学性质主要是指岩石的变形特征及岩石的强度。
由于在石油工程中,并壁稳定、出砂分析、水力压裂、储层物性变化等都与岩石力学性质亲密相关,因此有必要讨论岩石的力学性质及其在物理环境下应力场中的反映。
影响岩石力学性质的因素许多,例如岩石的类型、组构、围压、温度、应变率、含水量、载荷时间以及载荷性质等。
要讨论这些简单因素对岩石力学性质的影响,只能在试验艾博希室内严格掌握某些因素的状况下进行。
岩石的变形特性,最直观的表达方法是通过应力一应变关系曲线及应变随时间变化的曲线来表示。
通常首先讨论在常温、常压(即室温与通常大气压)条件下岩石的力学性质,然后再考虑其他影响因素下岩石的力学性质。
这样才能渐渐弄清在地质条件下,综合因素对岩石力学性质的影响。
岩石在常温、常压下一般产生脆性破坏,但深埋地下的岩石却表现为明显的延性。
,岩石这一性质的变化是由于所处物理环境的转变造成的。
所谓脆性与延性至今尚无非常明确的定义。
一'般所谓脆性破坏是指由弹性变形发生急剧破坏,破坏后塑性变形较小。
延性是指弹性变形之后产生较大的塑性变形而导致破坏,或直接进展为延性流淌。
所谓延性流淌IC现货商是指有大量的永久变形而不至于破坏的性质* 对于岩石而言,破坏前的应变或永久应变在3%以下可作为脆性破坏,5%以上作为延性破坏,3% 一5%为过渡状况。
由于地下的岩体和井壁围岩均处于三向应力状态,所以对岩石力学性态的测定不能靠简单的单轴压缩试验方法,而必需在肯定的围压作用厂(必要时还要考虑温度的作用)进行试验测定。
真三轴试验(岩石上三个主方向的作用力均不等)非常简单,一般均不采纳。
普退采纳的是常规三轴压缩试验方法,一般用圆柱形岩样,在其横向施加液体围压,即在水平的两个主方向上的应力相等且等于围压久,如图1—1所示。
假如上下垫块是带孔可渗透的,亦可通入孔隙流体压力以讨论孔隙压力的影响。
在试验过程中把岩样放在高压室中先对岩样四周用围压油加压至所需的值9c(需要时亦可加孔隙压至所需的夕。