岩石力学-岩体的变形特性
- 格式:pdf
- 大小:295.61 KB
- 文档页数:4
图6.1 岩体的压力--变形曲线第六章 岩体的力学性质岩体的力学性质包括岩体的变形性质、强度性质、动力学性质和水力学性质等方面。
岩体在外力作用下的力学属性表现出非均质性、非连续、各向异性和非弹性。
岩体的力学性质取决于两个方面: 1)受力条件;2)岩体的地质特征及其赋存环境条件。
其中地质特征包括岩石材料性质、结构面的发育情况及性质(影响岩体的力学性质不同于岩块的本质原因);赋存环境条件包括天然应力和地下水。
第一节 岩体的变形性质一、 岩体变形试验及其变形参数确定变形参数包括变形模量和弹性模量。
按静力法得到静E ,动力法得到动E 。
⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎩⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧法波地震声波法动力法轴压缩试验法双单水压洞室法钻孔变形法扁千斤顶法狭缝法承压板法静力法按原理和方法分原位岩体变形试验)()()( )(1.承压板法刚性承压板法和柔性承压板法 各级压力P -W (岩体变形值)曲线 按布西涅斯克公式计算岩体的变形模量E m (Mpa )和弹性模量E me (Mpa )。
⎪⎪⎩⎪⎪⎨⎧-=-=e m mem m W W PD E W W PD E )1()1(22μμ式中:P —承压板单位面积上的压力(Mpa ); D —承压板的直径或边长(cm );W,W e—为相应P下的总变形和弹性变形;ω—与承压板形状、刚度有关系数,圆形板ω=0.785,方形板ω=0.886。
μm—岩体的泊松比。
★定义:岩体变形模量(E m):岩体在无侧限受压条件下的应力与总应变之比值。
岩体弹性模量(E me):岩体在无侧限受压条件下的应力与弹性应变之比值。
图6.2 钻孔变形试验装置示意图②可以在地下水位以下笔图6.3 狭缝法试验装置如图6.3所示。
二、岩体变形参数估算现场原位试验费用昂贵,周期长,一般只在重要的或大型工程中进行,因此,岩体变形参数的很多情况下必须进行估算。
两种方法:① 现场地质调查→建立适当的岩体地质力学模型→室内小试件试验资料→进行估算; ② 岩体质量评价和大量试验资料→建立岩体分类指标与变形参数间的经验关系→进行估算。
岩石峰后的变形特征与强度特征一、岩石变形定义、研究方法、研究现状与研究意义石在外力或其他物理因素(如温度、湿度)作用下发生形状或体积的变化。
不仅小的岩块,就是整个地壳岩体在力的作用下也会不断变形,地壳目前的蠕变速率一般为10-16/秒,西藏高原和喜马拉雅山以每年几厘米的速率上升。
地壳变形急剧的地方会产生断层、褶皱等。
工程岩体往往因为变形过大,导致失稳。
因此岩石变形特性是岩石力学研究的重要内容之一。
研究的重点是岩石的应力-应变-时间关系。
中国学者在岩石变形,尤其是岩石流变研究方面起步较早,占有重要地位。
包括单向和三向条件下的变形曲线特性、弹性和塑性变形、流变(应力-应变-时间关系)和扩容。
岩石流变主要包括蠕变和松弛。
在应力不等时岩石的变形随时间不断增长的现象称为蠕变。
在应变不变时岩石中的应力随时间减少的现象称为松弛。
岩石扩容是指在偏应力作用下,当应力达到某一定值时岩石的体积随着偏应力的增大而增大的现象。
研究岩石变形在室内常用单轴或三轴压缩方法、多数试验往往结合强度研究进行。
为了测定岩石应力达到峰值后的应力与应变关系,必须应用伺服控制刚性压力机。
野外试验有承压板法、水压法、钻孔膨胀计法和动力法等。
根据室内外试验可获得应力与应变关系和应力-应变-时间关系以及相应的变形参数,如弹性模量、变形模量、泊松比、弹性抗力系数、流变常数等。
将岩块置于单轴压缩条件下进行试验,以获得它的变形性质。
图1是粉砂岩的试验结果。
用普通压力机,只能得到岩样破坏以前的应力-应变(或变形)关系曲线,用近年研制成的“刚性压力机”还可得到破坏后的资料。
利用这些试验结果,可以研究岩样的应力-应变全过程,阐明破坏机理和变形特性。
天然岩体常处于三向应力状态,因此也常在室内用三轴试验来研究周围压力对岩石变形的影响。
试验表明,在围压较低的情况下,岩石往往呈脆性破坏,变形较小。
围压超过一定程度以后,岩石表现出塑性流动性质,变形较大。
一般岩块由于包含的裂隙少,在同样受力条件下,所得变形远较裂隙岩块的变形小。
第二章岩石的基本物理力学性质第一节概述第二节岩石的基本物理性质一岩石的密度指标1 岩石的密度:岩石试件的质量与试件的体积之比,即单位体积内岩石的质量。
(1)天然密度:是指岩石在自然条件下,单位体积的质量,即(2)饱和密度:是指岩石中的孔隙全部被水充填时单位体积的质量,即(3)干密度:是指岩石孔隙中液体全部被蒸发,试件中只有固体和气体的状态下,单位体积的质量,即(4)重力密度:单位体积中岩石的重量,简称重度。
2 岩石的颗粒密度:是指岩石固体物质的质量与固体的体积之比值。
公式二岩石的孔隙性1 岩石的孔隙比:是指岩石的孔隙体积与固体体积之比,公式2 岩石的孔隙率:是指岩石的孔隙体积与试件总体积的比值,以百分率表示,公式孔隙比和孔隙率的关系式:三岩体的水理性质1 岩石的含水性质(1)岩石的含水率:是指岩石孔隙中含水的质量与固体质量之比的百分数,即(2)岩石的吸水率:是指岩石吸入水的质量与试件固体的质量之比。
2 岩石的渗透性:是指岩石在一定的水力梯度作用下,水穿透岩石的能力。
它间接地反映了岩石中裂隙间相互连通的程度。
四岩体的抗风化指标1 软化系数:是指岩石饱和单轴抗压强度与干燥状态下的单轴抗压强度的比值。
它是岩石抗风化能力的一个指标,反映了岩石遇水强度降低的一个参数:2 岩石耐崩解性:岩石与水相互作用时失去粘结性并变成完全丧失强度的松散物质的性能。
岩石耐崩解性指数:是通过对岩石试件进行烘干,浸水循环试验所得的指数。
它直接反映了岩石在浸水和温度变化的环境下抵抗风化作用的能力。
3 岩石的膨胀性:岩石浸水后体积增大的性质。
(1)岩石的自由膨胀率:是指岩石试件在无任何约束的条件下浸水后所产生膨胀变形与试件原尺寸的比值。
(2)岩石的侧向约束膨胀率:是将具有侧向约束的试件浸入水中,使岩石试件仅产生轴向膨胀变形而求得膨胀率。
(3)膨胀压力:岩石试件浸水后,使试件保持原有体积所施加的最大压力。
五岩体的其他特性1 岩石的抗冻性:岩石抵抗冻融破坏的性能。
工程岩体试验方法标准工程岩体试验方法标准是指在工程岩体勘察、设计和施工过程中,为了获取准确的岩体力学参数和岩体工程性质,以及评价岩体的稳定性和承载能力,所制定的一系列规范的试验方法和标准。
这些标准的制定和实施,对于保障工程建设的安全和可靠性具有重要意义。
一、岩体勘察。
在进行工程岩体试验前,首先需要进行岩体的勘察工作。
岩体的勘察内容包括岩石的种类、岩体的结构、岩体的变形特征、岩体的强度参数等。
常用的岩体勘察方法包括现场观测、岩芯取样、地质雷达探测等。
通过岩体勘察,可以为后续的试验工作提供必要的数据支撑。
二、岩石力学参数试验。
岩石的力学参数是评价岩体工程性质的重要依据。
常用的岩石力学参数试验包括抗压强度试验、抗拉强度试验、剪切强度试验等。
这些试验方法可以通过岩石试样的实验数据,来确定岩石的力学参数,如弹性模量、泊松比、抗压强度、抗拉强度、剪切强度等。
这些参数对于岩体的稳定性评价和工程设计具有重要的指导作用。
三、岩体变形特性试验。
岩体的变形特性是评价岩体稳定性和变形特征的重要依据。
常用的岩体变形特性试验包括岩石压缩试验、岩石拉伸试验、岩石弯曲试验等。
通过这些试验可以获取岩体的变形模量、抗拉强度、抗压强度等参数,从而对岩体的变形特性有所了解。
四、岩体稳定性评价。
岩体的稳定性评价是工程岩体试验的重要内容之一。
通过对岩体的力学参数、变形特性等试验数据的分析,可以对岩体的稳定性进行评价。
在评价岩体稳定性时,需要考虑岩体的地质构造、岩层倾角、岩体裂隙等因素,综合分析岩体的稳定性。
五、岩体承载能力试验。
岩体的承载能力是评价岩体工程性质的重要指标之一。
常用的岩体承载能力试验包括岩石轴向抗压试验、岩石轴向抗拉试验等。
通过这些试验可以获取岩体的承载能力参数,为工程设计提供重要的参考依据。
六、结论。
工程岩体试验方法标准的制定和实施,对于保障工程建设的安全和可靠性具有重要的意义。
通过对岩体的勘察、力学参数试验、变形特性试验、稳定性评价和承载能力试验等工作的实施,可以为工程设计和施工提供重要的数据支撑,保证工程岩体的安全可靠性。
岩体力学参数确定的方法岩体力学参数的确定方法在岩石工程实践中,首先需要了解作为研究对象的工程岩体的力学性质,并确定其特征参数。
岩石力学参数的合理确定一直是岩石力学研究和发展的难点之一。
在应用工程力学领域,如果完整地使用经典理论力学的连续性假设和定义,就会存在理解上的问题。
必须考虑假设的合理使用范围和每个物理量的适用定义。
本文讨论了地下岩体工程中根据不同的重点确定岩体参数的方法。
1、确定岩体参数的传统方法地下巷道、硐室开挖后,围岩产生应力重分异作用,径向应力减少,切向应力增加,并且随着工程不断推进,岩体应力状态不断改变。
巷道、硐室围岩处于“三高一扰动”条件下,岩体表现的力学特性是破坏条件下的稳定失稳再平衡过程。
围岩体处于一种拉压相间出现的复杂应力状态。
该类工程岩体的力学参数的确定要进行岩体的卸荷试验研究,且要依据现场工程实际条件进行卸荷条件下的应力、渗流与温度三场耦合试验研究。
需要进行循环加卸载条件下的岩体力学特性研究,进而获得岩体的力学参数特征。
地下巷道和硐室工程岩体力学参数的确定方法如下:(1)三轴应力状态下的卸荷三场耦合力学试验,获得有关参数;(2)进行岩体流变特性试验研究,获得有关岩体的流变参数。
目前在该领域要进行大量的工作,包括设备仪器的研制等,同时还要利用新的计算机技术才会实现。
二.建立力学模型确定岩体力学参数建立工程岩体力学参数模型主要是解决复杂岩体力学参数的确定问题。
为了确定复杂岩体的力学参数,需要将工程岩体视为一个连续模型。
采用确定岩体力学参数的新方法,建立了层状斜节理岩体的力学模型,并进行了力学试验,确定了岩体的基本力学参数。
1.工程岩体力学参数模型目前,关于岩石的力学性质和划分基本上有两种观点:一种观点认为岩石本身是一种连续的非各向异性材料,另一种观点认为岩石是由多晶系统组成的,存在空洞和裂缝等缺陷,这使得岩石本身的结构表现出各向异性和不连续性。
岩体一般被视为不连续介质,但在一定条件下仍满足连续介质力学的基本假设。
岩石的地质力学特征岩石是地球上最常见的物质之一,其地质力学特征对于了解地球内部的构造和地质活动具有重要的意义。
在本文中,我将介绍岩石的地质力学特征,包括岩石的类型、力学性质、破裂与变形等方面。
首先,让我们来了解一下岩石的类型。
岩石可以分为三种主要类型:火成岩、沉积岩和变质岩。
火成岩是由地壳或地幔中的熔融岩浆冷却所形成的,例如花岗岩和玄武岩。
沉积岩是由岩屑、有机物或溶解物质在地表沉积并经过压实而形成的,例如砂岩和石灰岩。
变质岩是由原有岩石在高温和高压下发生变化而形成的,例如片麻岩和云母片岩。
接下来,我们来了解一下岩石的力学性质。
岩石的力学性质可以通过一些实验来测试。
其中,最常用的是强度测试和弹性模量测试。
强度测试可以用来评估岩石的破裂和破坏的能力。
弹性模量测试则可以用来评估岩石的变形和回弹能力。
这些测试结果可以帮助我们对岩石的力学性质有更深入的了解。
岩石在地质过程中会发生各种破裂和变形。
其中,最常见的是岩石的断裂和褶皱。
断裂是指岩石在外力作用下发生断裂并形成断层。
断层可以是平行于地层的走向、顺层倾向或垂直于地层的倾角。
褶皱则是指岩石在外力作用下发生挤压并形成褶皱。
褶皱可以是正褶皱或逆褶皱,取决于褶皱的折叠方向。
除了断裂和褶皱,岩石还可以发生岩浆侵入和岩石变形等现象。
岩浆侵入是指岩浆从地壳或地幔中向上运动并进入岩石中的过程。
岩浆侵入的形式有很多,常见的有岩浆柱、岩浆包裹体和岩浆岩等。
岩石变形是指岩石在外力作用下发生形状和体积的变化。
岩石变形可以是弹性变形或塑性变形,取决于岩石的力学性质和外力的大小。
总结起来,岩石的地质力学特征包括其类型、力学性质、破裂和变形等方面。
了解和掌握这些特征对于地质研究和工程建设具有重要的意义。
我们可以通过实验和观察来深入了解岩石的地质力学特征,并将其应用于实际的工程项目中。
随着科技的不断发展,我们对岩石的了解也会越来越深入,为地球科学的进一步发展提供更多的支持。