微生物的分离和培养(终稿)
- 格式:ppt
- 大小:2.56 MB
- 文档页数:56
病原物的分离与培养病原物的分离与培养在植物病害的研究中具有重要意义,分离、培养病原菌的方法是植物病理学研究工作中最常应用的实验技术。
一方面,在一个新的病害研究中,通过分离与培养获得病原物的纯培养,完成柯氏法则,以明确该病病原;研究病原物的生物学特性和病害循环(侵染、病程等等)。
所谓病原物的分离,即把该病原菌从发病组织上与其他微生物分开;所谓病原物的培养,即将分离的病原菌移到可以让这种病原菌正常生长的营养基质即培养基上,从而获得其纯培养。
病原物的分离与培养,需经以以几个步骤:1.有关器皿的灭菌和消毒;2.制作培养基;3.病原菌的分离4.病原菌的培养。
-、灭菌与消毒灭菌与消毒是两个不同的概念。
灭菌则是指杀死一切微生物的营养体和孢子。
消毒一般是指消灭病原菌和有害微生物的营养体,在植物病理学实验中,需要进行纯培养,不能有任何杂菌污染,因此对所用器材、培养基和工作场所都要进行严格的消毒和灭菌。
消毒与灭菌的方法很多,一般可分为加热、过滤、辐射和使用化学药品等方法。
(一) 热力灭菌热力灭菌分干热灭菌和湿热灭菌两类。
1.干热灭菌干热灭菌是利用高温使微生物细胞内的蛋白质凝固变性而达到灭菌的目的。
细胞内的蛋白质疑固性与其本身的含水量有关。
在菌体受热时,当环境和细胞内含水量越大,则蛋白质凝固就越快,反之含水量越小,凝固越慢。
因此,与湿热灭菌相比,干热灭菌所需温度高(160~170℃),时间长1~2 h。
但干热灭菌温度不能超过180 ℃,否则包器皿的纸或棉塞就会烧焦,甚至引起燃烧。
干热灭菌使用的仪器是烘箱。
干热灭菌有火焰烧灼灭菌和热空气灭菌两种。
火焰烧灼灭菌适用于接种环、接种针和金属用具如镊子等,无菌操作时酌试管口和瓶口也在火焰上作短暂烧灼灭菌。
涂布平板用的三角玻棒也可在蘸有乙醇后进行灼烧灭菌。
通常所说的干热灭菌是在烘箱内利用高温干燥空气(160~170℃)进行灭菌。
此法适用于玻璃器皿如吸管和培养皿等的灭菌。
进行干热灭菌要注意以下问题:物品不要摆得太挤,以免妨碍空气流通;灭菌物品不要接触烘箱内壁的铁板,以防包装纸烤焦起火;在升温过程中,如果红灯熄灭,绿灯亮,表示箱内停止加温;电烘箱内温度未降到70℃以前,切勿自行打开箱门以免骤然降温导致玻璃器皿炸裂。
微生物的分离与培养实验原理:一、培养基的制备培养基通过人工加入微生物的生长所必需的各种成分,包括水,碳源,单元,无机盐和生长因子各种营养物质配置而成的养料。
二、微生物的接种微生物接种技术是生物科学研究中最基本的操作技术。
由于实验目的,培养基种类及容器等不同,所以接种方法不同。
用不同的接种方法以获得生长良好的纯种微生物。
三、微生物的培养不同的微生物对营养需求不同,根据这点可以通过培养基对微生物的做初步分离。
四、质粒的提取碱变性提取质粒DNA是基于染色体DNA和质粒DNA的变性与复性的差异而达到分离目的的。
在PH值高达12.6的碱性条件下,染色体DNA的氢键断链,双螺旋结构解开而变性,质粒DNA的大部分氢键也断链,但超螺旋共价闭合环状的两条互补链不会完全分离,当以PH4.8D的NaAc高盐缓冲液冲击去调节其PH值至中性时,变性的质粒DNA又恢复原来的构型,保存在溶液中,而染色体DNA不能复性而形成缠连的网状结构,通过离心,染色体DNA 与不稳定的大分子RNA,蛋白质—SDS的复合物等一起沉淀下来而被除去。
五、PCR技术DNA的半保留复制时生物进化和传代的重要途径。
双链DNA在多种酶的作用下可以变性解旋或单链。
在DNA聚合酶的参与下,根据碱基互补配对原则复制或同样的两分子拷贝。
在实验中发现,DNA在高温时也可以发生变性解链,当温度降低后可以复性成为双链。
因此,通过温度变化控制DNA的变性和复性,加入设计引物,DNA聚合酶,dNTP就可以完成特定基因的体外复制。
六、琼脂糖凝胶电泳许多重要的生物,如蛋白质,核酸等都具有可电离的基因,在某一特定的PH下他们可以电离正电荷或负电荷,当加上电均后,这些带点分子就会向着与其所带电荷极性相反的电极方向移动。
而电泳技术就是利用在电均的作用下,由于待分离样品中各种分子带点性质,分子大小形状等的差异,从而产生不同的迁就率,对样品进行分离,鉴定或纯化的技术。
PCR产物的回收将含有质粒DNA的荧光色带切下,溶解后填充到硅胶柱中,利用硅胶在高盐低PH下吸附DNA,在低盐和高PH条件下DNA可在被洗脱的原理,进行DNA的回收和纯化。
微生物的分离与培养技术原理及其应用-文档资料
微生物的分离与培养技术是微生物学实验室中最基本、最重要的实验技术之一。
其主要原理是将混合微生物群落分离为单一的微生物菌落,并在适宜的环境条件下使其生长繁殖形成单一菌种培养物,以便进行鉴定和研究。
1.微生物的分离技术
(1)稀释涂布法:将微生物混合液逐渐稀释,然后取一定量的稀释液涂布在富养基平板上,待菌落形成后,挑取单一菌落进行培养和研究。
(2)过滤法:利用微孔膜或滤纸将混合液过滤,将过滤后留在微孔膜或滤纸上的微生物进行培养和研究。
(1)液体培养:将微生物接种在富足的液体富养基中,置于适当的温度、光照和通气条件下进行培养。
(3)混合培养:将两种或以上的微生物同时接种在同一富养基上进行培养,这一技术可同时培养多种微生物,缩短实验时间。
3.技术应用
微生物的分离与培养技术在微生物学研究、医学诊断、生物工程和食品工业等领域都得到广泛应用。
(1)微生物学研究:分离单一菌种进行研究,为微生物学研究提供基础。
(2)医学诊断:从临床样品中分离出致病微生物进行培养与鉴定,有助于快速准确地诊断、鉴定和治疗病原微生物感染。
(3)生物工程:在微生物培养基中添加营养物质,用微生物进行合成、代谢和分泌等反应。
(4)食品工业:将微生物培养在富有营养的富养基中进行发酵,生产出发酵食品。
实验微生物菌种的分离纯化、培养、鉴定及保藏一、实验目的和要求1。
了解微生物的分离纯化方法。
2.学习检测水中大肠菌群的方法。
3。
学习微生物的保藏及鉴定方法。
4。
熟悉革兰氏染二、实验原理多管发酵法多管发酵法包括初发酵试验、平板分离和复发酵试验三个部分。
发酵管内装有乳糖蛋白胨液体培养基,并倒置一德汉氏小套管.乳糖能起选择作用,因为很多细菌不能发酵乳糖,而大肠菌群能发酵乳糖而产酸产气.1.初发酵试验水样接种于发酵管内,37℃下培养,24小时内小套管中有气体形成,并且培养基混浊,颜色改变,说明水中存在大肠菌群,为阳性结果。
48小时后仍不产气的为阴性结果。
2。
平板分离初发酵管24至48小时内产酸产气的均需在复红亚硫酸钠琼脂(远藤氏培养基)或伊红美蓝琼脂,平板上划线分离菌落。
3.复发酵试验以上大肠菌群阳性菌落,经涂片染色为革兰氏阴性无芽孢杆菌者,通过此试验再进一步证实。
原理与初发酵试验相同,经24小时培养产酸产气的,最后确定为大肠菌群阳性结果。
三、实验器材及试剂1。
水样污水样本2、培养基及试剂:二甲苯、苯酚、琼脂粉、香柏油、乳糖胆盐液体培养基、伊红美蓝琼脂(EMB)、营养琼脂培养基、革兰氏一液、革兰氏二液、革兰氏三液、革兰氏四液。
3、器材及耗材:双目显微镜、恒温培养箱、恒温干燥箱、洁净工作台、紫外线灯管、紫外线灭菌手推车、接种环、试管、酒精灯、滤纸、擦镜纸、载玻片、打火机、棉花、滴瓶、长塑料篓、纱布、吸耳球、产气管、培养皿、移液管等四、实验方法及步骤1。
第一天实验前的准备1)配制3支乳糖胆盐液体培养基,每支10mL,并加入产气管.配置营养琼脂培养基,灌装进2支试管中,配置200mL伊红美兰培养基150mL,于121℃高温高压灭菌20分钟,后放进恒温干燥箱。
2)包扎5套培养皿,包扎6根1mL、1根10mL移液管和3支滴管。
于121℃高压灭菌锅中灭菌20分钟。
3)称取一定量的液体石蜡,约为锥形瓶的三分之一。
于121℃高温高压灭菌20分钟。
微生物的培养与分离方法接种与分离方法根据待检标本的性质、培养目的和所用培养基的种类,采用不同的接种方法。
1.平板划线分离培养法对混有多种细菌,采用划线分离和培养,使原来混杂在一起的细菌沿划线在琼脂平板表面分离,得到分散的单个菌落,以获得纯种。
平板划线分离法通常有两种方法:①分区划线分离法:此法常用于含菌量较多的细菌的分离。
先用接种环挑取标本涂布于琼脂平板1区(占培养基总面积的¼)并作数条划线,再于2、3、4区依次划线。
每划完一个区域,均将接种环烧灼灭菌1次,冷后再划下一区域,每一区域的划线均与上一区域的划线交接1~3次。
一个成功分区划线的平板,培养后分别观察1区形成菌苔,2区菌落连成线,3区和4区可分离到单个菌落。
①连续划线分离法:此法常用于含菌量不多的标本或培养物中的细菌分离培养。
方法是先将接种物在琼脂平板上1/5处轻轻涂抹,然后再用接种环或拭子在平板表面曲线连续划线接种,直至划满琼脂平板表面。
2.琼脂斜面接种法主要用于菌落的移种,以获得纯种进行鉴定和保存菌种等。
用接种环(针)挑取单个菌落或培养物,从培养基斜面底部向上划一条直线,然后再从底部沿直线向上曲折连续划线,直至斜面近顶端处止。
生化鉴定培养基斜面接种,用接种针挑取待鉴定细菌的菌落,从斜面中央垂直刺入底部,抽出后在斜面上由下至上曲折划线接种。
3.穿刺接种法此法多用于半固体培养基或双糖铁、明胶等具有高层的培养基接种,半固体培养基的穿刺接种可用于观察细菌的动力。
接种时用接种针挑取菌落,由培养基中央垂直刺入至距管底0.4cm处,再沿穿刺线退出接种针。
双糖铁等有高层及斜面之分的培养基,穿刺高层部分,退出接种针后直接划线接种斜面部分。
4.液体培养基接种法用于各种液体培养基如肉汤、蛋白胨水、糖发酵管等的接种。
用接种环挑取单个菌落,倾斜液体培养管,在液面与管壁交界处研磨接种物(以试管直立后液体淹没接种物为准)。
此接种法应避免接种环与液体过多接触,更不应在液体中混匀、搅拌,以免形成气溶胶,造成实验室污染。
微生物的培养和分离第三章微生物的培养和分离本章重点:1.微生物的营养物质、营养类型;2.如何配制培养基;3.如何培养与分离微生物;4.微生物的生长(规律、测定)。
3.1微生物的营养物质和营养类型3.1.1营养物质的类型和水平微生物的营养物质具体可划分为碳源、氮源、能源、无机盐、生长因子和水六大类。
一、碳源质碳源source of carbon是指在微生物生长过程中可为微生物提供所需碳元素的物质。
微生物可利用的碳源从大范围来分可分为有机碳源和无机碳源。
对于异养微生物来说,最适碳源只是“C?H?O”型。
其中糖类是最广泛利用的碳源。
二、氮源质氮源source of nitrogen即能提供微生物生长繁殖所需氮元素的营养源物质。
这类物质主要用来合成细胞中的含氮物质。
微生物对氮源的利用也是具有选择性的。
微生物吸收利用铵盐和硝酸盐的能力较强。
一部分微生物不需要氨基酸作为氮源,它们能把非氨基酸类的简单氮源如尿素,铵盐等自行合成所需要的一切氨基酸,这一类生物可称其为“氨基酸自养型生物”;反之,另一部分微生物则需要从外界吸收现成的氨基酸作为氮源物质,则可将其归属为“氨基酸异养型生物”。
所有的动物和大量的异养微生物均是氨基酸异养型生物,而所有的绿色植物和很多的微生物都是氨基酸自养型生物。
三、能源微生物能源energy source是指能为微生物的生命活动提供能量来源的营养物质或辐射能。
能转化能源的微生物即化能微生物可分为自养型和异养型。
其中化能异养型微生物所利用的能源即碳源;化能自养型微生物,它们所利用的能源则都是还原态的无机物。
四、无机盐无机盐可为微生物提供除碳源、氮源以外的各种重要元素。
凡是微生物生长所需浓度在10-3~10-4mol/L范围内元素,可称为大量元素;凡微生物生长所需浓度在10-6~10-8mol/L范围内元素,则称为微量元素。
主要生理功能:①构成细胞的组成成分;②作为酶活性中心的组成部分;③维持生物大分子和细胞结构的稳定性、维持酶的活性;④调节细胞渗透压、氢离子浓度和氧化还原电位;⑤作为某些自养菌的能源。