第2讲 直角三角形(基础)
- 格式:docx
- 大小:172.17 KB
- 文档页数:10
第1章直角三角形§1.1直角三角形的性质和判定(Ⅰ)一、复习提问:(1)什么叫直角三角形?(2)直角三角形是一类特殊的三角形,除了具备三角形的性质外,还具备哪些性质? (一)直角三角形性质定理1:直角三角形的两个锐角互余。
练习1(1)在直角三角形中,有一个锐角为520,那么另一个锐角度数(2)在Rt△ABC中,∠C=900,∠A -∠B =300,那么∠A= ,∠B= 。
练习2 在△ABC中,∠ACB=900,CD是斜边AB上的高,那么,(1)与∠B互余的角有(2)与∠A相等的角有。
(3)与∠B相等的角有。
(二)直角三角形的判定定理1提问:“在△ABC中,∠A +∠B =900那么△ABC是直角三角形吗?”归纳:有两个锐角互余的三角形是直角三角形练习3:若∠A= 600,∠B =300,那么△ABC是三角形。
(三)直角三角形性质定理2直角三角形斜边上的中线等于斜边的一半。
三、巩固训练:练习4:在△ABC中,∠ACB=90 °,CE是AB边上的中线,那么与CE相等的线段有_________,与∠A相等的角有_________,若∠A=35°,那么∠ECB= _________。
练习5:已知:∠ABC=∠ADC=90O,E是AC中点。
求证:(1)ED=EB(2)∠EBD=∠EDB(3)图中有哪些等腰三角形?练习6 已知:在△ABC中,BD、CE分别是边AC、AB上的高, M是BC的中点。
如果连接DE,取DE的中点 O,那么MO 与DE有什么样的关系存在?§1.1直角三角形的性质和判定(Ⅰ)EDCBA提出命题:直角三角形斜边上的中线等于斜边的一半 证明命题:(教师引导,学生讨论,共同完成证明过程)推理证明思路: ①作点D 1 ②证明所作点D 1 具有的性质 ③ 证明点D 1 与点D 重合 应用定理:例1、已知:如图,在△ABC 中,∠B=∠C ,AD 是∠BAC 的平分线,E 、F 分别AB 、AC 的中点。
2.8 直角三角形全等的判定学习目标1.探索两个直角三角形全等的条件。
2.掌握两个直角三角形全等的条件(HL )。
知识详解1.直角三角形全等的判定定理(Ⅰ)文字语言:斜边和一条直角边对应相等的两个直角三角形全等。
(角写为“HL ”) (Ⅱ)数学语言:在Rt △ABC 和Rt △A'B'C'''''AB AC AB C A ⎧=⎪⎨=⎪⎩∴Rt △ABC ≌Rt △A'B'C'(HL )说明:证明两个直角三角形全等时,一定要分清用判定定理“HL ”,还是用一般三角形全等的判定定理。
书写证明的格式也要注意区分,不要混淆。
2.定理的运用:“HL ”是直角三角形独有的判定定理,对于一般三角形不成立,“HL ”定理是直角三角形全等判定的补充。
3.角平分线的性质定理(Ⅰ)文字语言:角平分线上的点到这个角的两边的距离相等。
(Ⅱ)数学语言:∵OP 是∠AOB 的平分线PE ⊥OA 于E ,PD ⊥OB 于D∴PD =PE (角平分线性质)(Ⅲ)定理的作用:证明线段相等4.角平分线的判定定理(性质定理的逆命题)(Ⅰ)文字语言:在一个角的内部,且到角的两边距离相等的点,在这个角的平分线上。
(Ⅱ)数学语言:∵点P 在∠AOB 的内部PD ⊥OA 于DPE ⊥OB 于E∴点P 在∠AOB 的平分线上(角平分线的判定定理)(Ⅲ)定理的作用:证明角相等【典型例题】例1:1.已知:如图,A 、E 、F 、B 四点在一条直线上,AC ⊥CE ,BD ⊥DF ,AE =BF ,AC =BD 求证:CF =DE 。
【答案】证明:因为AC ⊥CE ,BD ⊥DF所以∠ACE =∠BDF =90°在Rt △ACE 和Rt △BDF 中AE =BF (已知)AC =BD (已知)∴Rt △ACE ≌Rt △BDF (HL )∴∠A =∠B∵AE =BF∴AE+EF =BF+EF即AF =BE在△ACF 和△BDE 中AF BE A B AC BD =∠=∠=⎧⎨⎪⎩⎪()()()已证已证已知∴△ACF ≌△BDE (SAS )∴CF =DE【解析】证线段相等,通常利用三角形全等的性质证明,但往往证一次全等不能解决问题,本题利用两次全等实现了最终目的,第一次全等为第二次全等创造条件。
学校县定都市金山库镇敦煌钟中心学校教师龙去燕燕班级活跃1班第2课时含30°角的直角三角形的性质【知识与技能】1.熟练掌握含30°角的直角三角形的性质.2.会利用性质解题.【过程与方法】通过直尺量取得到直观结论,然后加以证明。
【情感态度】本节课使学生经历了“实验——猜想——证明”的过程,使同学们初步体验了自然科学的一般研究方法,提高了学生研究和学习的兴趣.【教学重点】在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.【教学难点】巧妙运用性质解题.一、情境导入,初步认识用两个全等的含30°角的直角三角尺,试着把它们拼在一起,看能否拼成一个等边三角形,然后以小组为单位一起讨论可从中发现什么结论,并予以证明.老师指导拼图,得出结论,并一起证明结论.(1)在直角三角形中,30°的角所对的直角边等于斜边的一半.(2)在三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的锐角为30°.【教学说明】教师讲课前,先让学生完成“自主预习”.二、思考探究,获取新知例1在Rt△ABC中,∠C=90°,∠BAC=60°,∠BAC的平分线AM的长为15cm,求BC的长.【分析】要求BC的长,可分别求出BM和CM的长.利用等腰三角形的判定得出BM=AM,利用含30°角的直角三角形的性质得CM=12AM,将所求线段转化为已知线段进行求解.解:∵在Rt△ABC中,∠C=90°,∠BAC=60°,∴∠B=30°.∵AM平分∠BAC,∴∠CAM=∠BAM=30°.∴∠B=∠BAM,∴AM=BM=15cm.∴在Rt△ACM中,∠CAM=30°.∵CM=12AM=7.5cm.∴BC=CM+BM=7.5+15=22.5cm.【教学说明】在直接求一条线段不易求的情况下,可以将其转化为求易求的两条线段的和或差进行计算.例 2 在Rt△ABD中,∠ADB=90°,∠A=60°,作DC∥AB,且∠DBC=∠BDC,DC与BC交于点C,已知CD=4cm.(1)求∠CBD的度数;(2)求AB的长.【分析】(1)根据直角三角形的两个锐角互余,可知∠DBA的度数,再由DC ∥AB及等腰三角形的性质即可计算∠CBD的度数;(2)可作等腰三角形CBD 底边上的高,延长交AB于点E.根据等腰三角形“三线合一”,可以得出CE平分BD且平分∠DCB,由此可知△BCE是等边三角形,所以BE=4,则DE=BE=4.再证明△ADE是等边三角形即可.解:(1)在Rt△ADB中,∵∠A=60°,∠ADB=90°,∴∠ABD=30°.又∵AB∥CD,∴∠CDB=∠ABD=30°.∴∠CBD=∠CDB=30°.(2)过点C作CM⊥BD于点M,交AB于点E,连接DE,则DE=EB, ∴∠EDB=∠EBD=30°.∵∠CDM=30°,∠CMD=90°,∴CM=12CD=2.又∵∠EBM=∠CBM=30°,BM=BM,∠EMB=∠CMB=90°,∴△CBM≌△EBM(ASA),∴EM=CM=2.∴DE=2EM=4.∵∠DEA=∠EDB+∠EBD=60°,∠A=60°,∴AD=DE=4.又∵∠ADB=90°,∠ABD=30°,∴AB=2AD=8.【教学说明】直角三角形30°角的性质常与直角三角形的两个锐角互余同时运用,此性质是求线段长度和证明线段间倍分问题的重要依据.例3 如图所示,在△ABC中,AB=AC,D为BC边上的点,DE⊥AB,DF⊥AC,垂足分别为E、F,∠BAC=120°.求证:DE+DF=12 BC.【分析】∵AB=AC,∠BAC=120°,∴∠B=∠C=30°.又DE⊥AB,DF⊥AC,可以构造两个含30°角的直角三角形.【证明】∵AB=AC,∠BAC=120°,∴∠B=∠C=12(180°-120°)=30°.又∵DE⊥AB,DF⊥AC,∴∠BED=∠CFD=90°.在Rt△BDE中,∵∠B=30°,∴DE=12 BD.同理,在Rt△CDF中,DF=12 CD.∴DE+DF=12BD+12CD=12(BD+CD)=12BC.例4 如图所示,在四边形ABCD中,AD=4,BC=1,∠A=30°,∠ADC=120°,试求CD的长.【分析】由于CD不是特殊三角形的边长,所以无法利用已知条件直接求出,延长AD、BC,将题中已知条件集中在两个特殊的三角形中.解:延长AD、BC交于点E,在Rt△ABE中,∠E=180°-90°-30°=60°,又∵∠CDE=180°-120°=60°,∴∠DCE=60°.∴△CED是等边三角形.设CD=x,则BE=1+x,AE=4+x,在Rt△ABE中,∵∠A=30°,∴AE=2BE.即4+x=2(1+x),解得x=2,即CD的长为2.三、运用新知,深化理解1.若三角形的三个内角的比为1∶2∶3,则它的最短边与最长边的比为().A.1∶3B.1∶2C.2∶3D.1∶42.如果一个三角形是轴对称图形,且有一个角是60°,那么这个三角形是____.【答案】1.B 2.等边三角形四、师生互动,课堂小结特殊直角三角形,运用性质先判断,30°所对的直角边,长度恰为斜边一半.1.布置作业:从教材“习题13.3”中选取.2.完成练习册中本课时的练习.教学过程中,强调学生自主探索和合作交流,经历观察、实验、归纳等思维过程,从中获得数学知识与技能,体验教学活动的方法,同时升华学生的情感、态度和价值观.。
直角三角形全等的判定【知识点总结】直角三角形全等的判定定理:斜边和一条直角边对应相等的两个直角三角形全等(HL)【典型例题讲解】例1:已知:如图△ABC中,BD⊥AC,CE⊥AB,BD、CE交于O点,且BD=CE 求证:OB=OC.例2:已知:Rt△ABC中,∠ACB是直角,D是AB上一点,BD=BC,过D作AB的垂线交AC于E,求证:CD⊥BE:例3:已知△ABC中,CD⊥AB于D,过D作DE⊥AC,F为BC中点,过F作FG⊥DC求证:DG=EG。
【随堂练习】1.选择:(1)两个三角形的两条边及其中一条边的对角对应相等,则下列四个命题中,真命题的个数是()个①这两个三角形全等; ②相等的角为锐角时全等③相等的角为钝角对全等; ④相等的角为直角时全等A.0 B.1 C.2 D.3(2)在下列定理中假命题是()A.一个等腰三角形必能分成两个全等的直角三角形B.一个直角三角形必能分成两个等腰三角形C.两个全等的直角三角形必能拼成一个等腰三角形D.两个等腰三角形必能拼成一个直角三角形(3)如图,Rt△ABC中,∠B=90°,∠ACB=60°,延长BC到D,使CD=AC则AC:BD=()A.1:1 B.3:1 C.4:1 D.2:3(4)如图,在Rt△ABC中,∠ACB=90°,CD、CE,分别是斜边AB上的高与中线,CF 是∠ACB的平分线。
则∠1与∠2的关系是()A.∠1<∠2 B.∠1=∠2; C.∠1>∠2 D.不能确定(5)在直角三角形ABC中,若∠C=90°,D是BC边上的一点,且AD=2CD,则∠ADB 的度数是()A.30°B.60°C.120°D.150°2.解答:(1已知:如图AB⊥BD,CD⊥BD,AB=DC求证:AD//BC.(2)如图,AC⊥BC,AD⊥BD,AD=BC,CE⊥AB,DF⊥AB,垂足分别是E、F 求证:CE=DF.B MC【课后习题】一、填空题:(每题5分,共20分)1.有________和一条________对应相等的两个直角三角形全等,简写成“斜边直角边”或用字母表示为“___________”. 2.如图,△ABC 中,∠C=90°,AM 平分∠CAB,CM= 20cm, 那么M 到AB 的距离是____cm.3.已知△ABC 和△A ′B ′C ′,∠C=∠C ′=90°,AC=A ′C ′,要判定△ABC ≌△A ′B ′C ′,必须添加条件为①________或②________或③________或④_________. 4.如图,B 、E 、F 、C 在同一直线上,AF ⊥BC 于F,DE ⊥BC 于E,AB=DC,BE=CF, 若要说明AB ∥CD,理由如下:∵AF ⊥BC 于F,DE ⊥BC 于E(已知)∴△ABF,△DCE 是直角三角形∵BE=CF(已知)∴BE+_____=CF+_______(等式性质) 即_______=___________(已证)∴Rt △ABF ≌Rt △DCE( )二、选择题:(每题5分,共25分) 5.两个直角三角形全等的条件是( )A.一锐角对应相等;B.两锐角对应相等;C.一条边对应相等;D.两条边对应相等 6.要判定两个直角三角形全等,需要满足下列条件中的()①有两条直角边对应相等; ②有两个锐角对应相等; ③有斜边和一条直角边对应相等; ④有一条直角边和一个锐角相等; ⑤有斜边和一个锐角对应相等; ⑥有两条边相等. A.6个 B.5个 C.4个 D.3个7.如图,AB ∥EF ∥DC,∠ABC=90°,AB=DC,那么图中有全等三角形( ) A.5对; B.4对; C.3对; D.2对8.已知在△ABC 和△DEF 中,∠A=∠D=90°,则下列条件中不能判定△ABC 和△DEF 全等的是( )A.AB=DE,AC=DFB.AC=EF,BC=DFC.AB=DE,BC=EFD.∠C=∠F,BC=EF9.如果两个直角三角形的两条直角边对应相等,那么两个直角三角形全等的依据是( )A.AASB.SASC.HLD.SSS三、解答题:(共55分)10.如图,△ABC 中,∠C=90°,AB=2AC,M 是AB 的中点,点N 在BC 上,MN ⊥AB.求证:AN 平分∠BAC.(7分)BA21N MCB A E FC B AEF C D11已知:如图,AB=AE,BC=ED,∠B=∠E,AF⊥CD,F为垂足,求证:CF=DF.(8分)B AE F D12知如图,AB=AC,∠BAC=90°,AE是过A点的一条直线,且B、C在DE的异侧,BD⊥AE于D,CE ⊥AE于E,求证:BD=DE+CE.(8分)BAE CD13已知如图,在△ABC中,∠BAC=2∠B,AB=2AC,求证:△ABC是直角三角形?( 8分)C14已知如图,在△ABC中,以AB、AC为直角边, 分别向外作等腰直角三角形ABE、ACF,连结EF,过点A作AD⊥BC,垂足为D,反向延长DA交EF于点M.(1)用圆规比较EM与FM的大小.(2)你能说明由(1)中所得结论的道理吗?(8分)B AE MFC D直角三角形的性质【知识点精讲】直角三角形的性质定理及其推论:①直角三角形的性质,在直角三角形中,斜边上的中线等于斜边的一半; ②推论:(1)在直角三角形中,如果一个锐角等于30°,则它所对的直角边等于斜边的一半;(2)在直角三角形中,如果一条直角边等于斜边的一半,则这条直角边所对的角为30°.【典型例题讲解】例1:已知,Rt △ABC 中,∠ACB=90°,AB=8cm ,D 为AB 中点,DE ⊥AC 于E ,∠A=30°,求BC ,CD 和DE 的长例2:已知:△ABC 中,AB=AC=BC (△ABC 为等边三角形)D 为BC 边上的中点, DE ⊥AC 于E.求证:AC CE 41.例3:已知:如图AD ∥BC ,且BD ⊥CD ,BD=CD ,AC=BC. 求证:AB=BO.【随堂练习】1.△ABC 中,∠BAC=2∠B ,AB=2AC ,AE 平分∠CAB 。
2017—2018学年寒假辅导第1讲直角萨娇新的边角关系一、知识清单梳理知识点一:锐角三角函数的定义关键点拨与对应举例1.锐角三角函数正弦: sin A=∠A的对边斜边=ac余弦: cos A=∠A的邻边斜边=bc正切: tan A=∠A的对边∠A的邻边=ab.根据定义求三角函数值时,一定根据题目图形来理解,严格按照三角函数的定义求解,有时需要通过辅助线来构造直角三角形.2.特殊角的三角函数值度数三角函数30°45°60°sinA 122232cosA 322212tanA 331 3知识点二:解直角三角形3.解直角三角形的概念在直角三角形中,除直角外,一共有五个元素,即三条边和两个锐角,由直角三角形中除直角外的已知元素求出所有未知元素的过程叫做解直角三角形.科学选择解直角三角形的方法口诀:已知斜边求直边,正弦、余弦很方便;已知直边求直边,理所当然用正切;已知两边求一边,勾股定理最方便;已知两边求一角,函数关系要记牢;已知锐角求锐角,互余关系不能少;已知直边求斜边,用除还需正余弦.例:在Rt△ABC中,已知a=5,∠A=30°,则c=,b=.4.解直角三角形的常用关系(1)三边之间的关系:a2+b2=c2;(2)锐角之间的关系:∠A+∠B=90°;(3)边角之间的关系:sinA==cosB=ac,cosA=sinB=bc,tanA=ab.(4)相等的角①商的关系:tanA= ;②平方关系:sin2A+cos2A=1.(5)互余的两角:若∠A+∠B=90°,则sinA=cosB, cosA=sinB.知识点三:解直角三角形的应用5.仰角、俯角、坡度、坡角和方向角(1)仰、俯角:视线在水平线上方的角叫做仰角.视线在水平线下方的角叫做俯角.(如图①)(2)坡度:坡面的铅直高度和水平宽度的比叫做坡度(或者叫做坡比),用字母i表示.坡角:坡面与水平面的夹角叫做坡角,用α表示,则有i=tanα. (如图②)(3)方向角:平面上,通过观察点Ο作一条水平线(向右为东向)和一条铅垂线(向上为北向),则从点O出发的视线与水平线或铅垂线所夹的角,叫做观测的方向角.(如图③)解直角三角形中“双直角三角形”的基本模型:(1)叠合式(2)背靠式解题方法:这两种模型种都有一条公共的直角边,解题时,往往通过这条边为中介在两个三角形中依次求边,或通过公共边相等,列方程求解.6.解直角三角形实际应用的一般步骤(1)弄清题中名词、术语,根据题意画出图形,建立数学模型;(2)将条件转化为几何图形中的边、角或它们之间的关系,把实际问题转化为解直角三角形问题;(3)选择合适的边角关系式,使运算简便、准确;(4)得出数学问题的答案并检验答案是否符合实际意义,从而得到问题的解.二、 专题讲座专题一:锐角三角函数的概念注意:1.sinA 、∠cosA 、tanA 表示的是一个整体,是两条线段的比,没有 ,这些比值只与 有关,与直角三角形的 无关2.取值范围 <sinA< ; < cosA< ; tanA> 例1.如图所示,在Rt △ABC 中,∠C =90°.①斜边)(sin =A =______, 斜边)(sin =B =______;②斜边)(cos =A =______, 斜边)(cos =B =______;③的邻边A A ∠=)(tan =______,)(tan 的对边B B ∠==______.例2. 锐角三角函数求值:在Rt △ABC 中,∠C =90°,若a =9,b =12,则c =______,sin A =__ ___,cos A =___ ___,tan A =____ __, sin B =___ ___,cos B =_____ _,tan B =___ ___.例3.已知:如图,Rt △TNM 中,∠TMN =90°,MR ⊥TN 于R 点,TN =4,MN =3.求:sin ∠TMR 、cos ∠TMR 、tan ∠TMR .类型一:直角三角形求值例4.已知Rt △ABC 中,,12,43tan ,90==︒=∠BC A C 求AC 、AB 和cos B .例5.已知A ∠是锐角,178sin =A ,求A cos ,A tan 的值类型二. 利用角度转化求值:例6.已知:如图,Rt △ABC 中,∠C =90°.D 是AC 边上一点,DE ⊥AB 于E 点.DE ∶AE =1∶2. 求:sinB 、cosB 、tanB .例7.如图,角α的顶点为O ,它的一边在x 轴的正半轴上,另一边OA 上有一点P (3,4),则 sin α= .A D ECBF例7图 例8图 例9图 例13图例8.如图,菱形ABCD 的边长为10cm ,DE ⊥AB ,3sin 5A =,则这个菱形的面积= cm 2. 例9.如图,沿AE 折叠矩形纸片ABCD ,使点D 落在BC 边的点F 处.已知8AB =,10BC =,AB=8,则tan EFC ∠的值为 ( ) A.34 B.43 C.35 D.45类型三. 化斜三角形为直角三角形例10.如图,在△ABC 中,∠A=30°,∠B=45°,AC=23,求AB 的长.例11.已知:如图,△ABC 中,AC =12cm ,AB =16cm ,⋅=31sin A (1)求AB 边上的高CD ;(2)求△ABC 的面积S ;(3)求tan B .例12.已知:如图,在△ABC 中,∠BAC =120°,AB =10,AC =5.求:sin ∠ABC 的值.类型四:利用网格构造直角三角形例13如图所示,△ABC 的顶点是正方形网格的格点,则sinA 的值为( ) A .12 B .55 C .1010D .255对应训练:1.在Rt △ABC 中,∠ C =90°,若BC =1,AB =5,则tan A 的值为( )A .55 B .255 C .12D .2 2.在△ABC 中,∠C =90°,sin A=53,那么tan A 的值等于( ) A .35 B. 45 C. 34 D. 433. 如图,在等腰直角三角形ABC ∆中,90C ∠=︒,6AC =,D 为AC 上一点,若1tan 5DBA ∠= ,则AD 的长为( ) A .2 B .2 C .1 D .224. 如图,在Rt △ABC 中,∠C =90°,AC =8,∠A 的平分线AD =3316;求∠B 的度数及边BC 、AB 的长.DABC5.如图,在Rt △ABC 中,∠BAC=90°,点D 在BC 边上,且△ABD 是等边三角形.若AB=2,求△ABC 的周长.(结果保留根号)6.已知:如图,△ABC 中,AB =9,BC =6,△ABC 的面积等于9,求sin B .7. 在△ABC 中,∠A=60°,AB=6 cm ,AC=4 cm ,则△ABC 的面积是 ( )A.23 cm 2B.43 cm 2C.63 cm 2D.12 cm 28.如图,△ABC 的顶点都在方格纸的格点上,则sin A =_______.9.如图,A 、B 、C 三点在正方形网络线的交点处,若将ABC ∆绕着点A 逆时针旋转得到''B AC ∆,则'tan B 的值为( ) A.41 B. 31 C.21D. 110.正方形网格中,AOB ∠如图放置,则tan AOB ∠的值是( )A .5 5 B. 2 5 5 C.12D. 2CB A ABO专题二:特殊角的三角函数值当 时,正弦和正切值随着角度的增大而 余弦值随着角度的增大而例1.求下列各式的值.(1)︒-︒+︒60tan 45sin 230cos 2 (2)︒-︒+︒30cos 245sin 60tan 2(3)3-1+(2π-1)0-33tan30°-tan45°(4)30tan 2345sin 60cos 221⎪⎪⎭⎫ ⎝⎛︒-︒+︒+ (5) tan 45sin 301cos 60︒+︒-︒;例2.求适合下列条件的锐角α . (1)21cos =α (2)33tan =α (3)222sin =α(4)33)16cos(6=- α (5)已知α 为锐角,且3)30tan(0=+α,求αtan 的值(6)在ABC ∆中,若0)22(sin 21cos 2=-+-B A ,B A ∠∠,都是锐角,求C ∠的度数.例3. 三角函数的增减性 1.已知∠A 为锐角,且sin A <21,那么∠A 的取值范围是( ) A. 0°< ∠A < 30° B. 30°< ∠A <60° C. 60°< ∠A < 90° D. 30°< ∠A < 90° 2. 已知∠A 为锐角,且030sin cos <A ,则 ( )A. 0°<∠ A < 60°B. 30°<∠ A < 60°C. 60°< ∠A < 90°D. 30°<∠ A < 90°例4. (三角函数在几何中的应用)已知:如图,在菱形ABCD 中,DE ⊥AB 于E ,BE =16cm ,⋅=1312sin A 求此菱形的周长.对应练习:1.计算:10123tan 45(2 1.41)3-⎛⎫--++- ⎪⎝⎭2.计算:1201314.330sin 21)()(-++---π3.计算:212322cos602°. 4计算:(2014-5)0-(cos60°)-2+38-3tan30°;5.计算:6.计算:|1﹣|﹣()﹣1﹣4cos30°+(π﹣3.14)0.7.已知α是锐角,且sin(α+15°)=32. 计算10184cos ( 3.14)tan 3απα-⎛⎫---++ ⎪⎝⎭的值.8.已知:如图,Rt △ABC 中,∠C =90°,3==BC AC ,作∠DAC =30°,AD 交CB 于D 点,求: (1)∠BAD ; (2)sin ∠BAD 、cos ∠BAD 和tan ∠BAD .9. 已知:如图△ABC 中,D 为BC 中点,且∠BAD =90°,31tan =∠B ,求:sin ∠CAD 、cos ∠CAD 、tan ∠CAD .10. 如图,在Rt △ABC 中,∠C=90°,53sin =B ,点D 在BC 边上,DC= AC = 6,求tan ∠BAD 的值.11.(本小题5分)如图,△ABC 中,∠A=30°,3tan 2B =,43AC =.求AB 的长.DCBAACB专题三:解直角三角形的应用例1.(2012•福州)如图,从热气球C处测得地面A、B两点的俯角分别是30°、45°,如果此时热气球C处的高度CD为100米,点A、D、B在同一直线上,则AB两点的距离是()例1图例2图A.200米B.200米C.220米D.100()米例2.如图,某水库堤坝横断面迎水坡AB的坡比是1:3,堤坝高BC=50m,则应水坡面AB的长度是()A.100m B.1003m C.150m D.503m例3. “兰州中山桥”位于兰州滨河路中段白搭山下、金城关前,是黄河上第一座真正意义上的桥梁,有“天下黄河第一桥”之美誉。
第2讲解直角三角形解直角三角形为中考必考内容,至少有一道是解答题,常是利用解直角三角形的相关知识来解决实际问题。
在解直角三角形的综合题中,常与非特殊角结合在一起考,这种题几乎是中考数学的必考题。
在教学中,一要注意强调书写格式问题;二是要给学生储备典型的直角三角形模型(如:背靠背型和母子型等)。
知识点一、解直角三角形在直角三角形中,由已知元素(直角除外)求未知元素的过程,叫做解直角三角形.在直角三角形中,除直角外,一共有5个元素,即三条边和两个锐角.设在Rt△ABC中,∠C=90°,∠A、∠B、∠C所对的边分别为a、b、c,则有:①三边之间的关系:a2+b2=c2(勾股定理).②锐角之间的关系:∠A+∠B=90°.③边角之间的关系:,,,,,.④,h为斜边上的高.要点诠释:(1)直角三角形中有一个元素为定值(直角为90°),是已知值.(2)这里讲的直角三角形的边角关系指的是等式,没有包括其他关系(如不等关系).(3)对这些式子的理解和记忆要结合图形,可以更加清楚、直观地理解.二、解直角三角形的常见类型及解法已知条件解法步骤Rt△ABC两边两直角边(a,b)由求∠A,∠B=90°-∠A,斜边,一直角边(如c,a)由求∠A,∠B=90°-∠A,一边一直角边和一锐角锐角、邻边(如∠A,b)∠B=90°-∠A,,知识精讲目标导航一角锐角、对边(如∠A,a)∠B=90°-∠A,,斜边、锐角(如c,∠A)∠B=90°-∠A,,要点诠释:1.在遇到解直角三角形的实际问题时,最好是先画出一个直角三角形的草图,按题意标明哪些元素是已知的,哪些元素是未知的,然后按先确定锐角、再确定它的对边和邻边的顺序进行计算.2.若题中无特殊说明,“解直角三角形”即要求出所有的未知元素,已知条件中至少有一个条件为边.【知识拓展1】如图,已知一商场自动扶梯的长l为10米,该自动扶梯到达的高度h为6米,自动扶梯与地面所成的角为α,则tanα的值为()。
第二节解直角三角形第二节解直角三角形知识要点已知三角形的某些元素求其它元素的问题称为解三角形,解一般的三角形至少需要已知三个元素(其中至少要有一条边)在直角三角形中,一个元素(直角)是已知的,只需要知道其他两个元素(其中至少要有一条边),就可以求出该三角形的其他元素(边长和角)及面积,这类问题称为“解直角三角形”.一、直角三角形中的边角关系解直角三角形包括“已知一边一角”和“已知两边”两类情况,都可以利用三角比的边角关系或勾股定理来解.例题精讲例1△中,∠C=°,AC=BC,点D在BC上,∠DAC=°已知AD=6,求BD的长.举一反三1-1旗杆上的绳子从顶端垂到地面还多8米.当把绳子下端沿地面拉直后,绳子与地面成45°角,则与绳子长度最接近的整数值是()A.27;B.28;C.29;D.301-2在△中,∠C=°,点D在BC上,BD=4,AD=BC,cos∠ADC =(2)求sinB的值.点评在直角三角形中,已知某锐角的三角比但相关的两条线段都不知道,则必需引入比例系数k,再按题意根据等量关系列出方程求k.注意不可直接写DC=3,AD=5,因为比例系数k并不一定等于1(在本题中比例系数k=2).1-3△中,AD是边BC上的高,E为边AC的中点,BC=14,AD=12,sinB=0.8(1)求线段DC的长;(2)求tan∠EDC的值.点评在斜三角形中,要求某锐角内角的三角比,可通过作垂线构造直角三角形,或通过相等角的代换将该角转移到直角三角形中,寻找新的关系.二、等腰三角形中的边角关系根据三线合一定理,作底边上的高线可以把等腰三角形分成两个全等的直角三角形,从而把解等腰三角形的问题化为解直角三角形的问题例2△ABC中,AB=AC,BC=6,(1)求边AB的长;(2)求边AC上的高.求三角形的面积也是解三角形的内容之一,下面看一道利用三角比计算三角形面积的问题.举一反三2-1在△中,AB=AC=10,∠B=°,求△的面积.点评由本题中的方法二可归纳出新的面积公式:,其中为AB、AC的夹角2-2已知△中,AB=AC=10,△的面积为,求顶角A的大小.点评在已知三角形面积的问题中,经常要按照以上两种情况进行分类讨论.2-3在△中,AB=AC=10,BC=12.(1)求∠B的正切值;(2)求∠A的正弦值.三、一般三角形的边角关系例3在△ABC中,∠A=°,∠C=°,AB=12. (1)求边AC的长;(2)求sinC.点评(1)对于一般三角形,通过作一条高可以把它分成两个直角三角形,如果原三角形中含特殊角,那么尽量不要把特殊角分开,在本例中,如果一上来就作AE⊥BC,固然在Rt△ABE中由AB=12,∠B=60°可以求出AE和BE,接着在Rt△ACE中都是非特殊角,计算无法进行下去了.(2)本题的计算结果使我们又获得了一个“扩大的特殊角”的三角比:sin75°=.举一反三3-1已知在△中,∠B、∠C都是锐角,BC=20,,,求AC的长.3-2在△中,D在边BC上,BD=2CD,且AD⊥AB,若,求∠B的度数.点评本题中的两个条件“∠BAD=90°和“tan∠CAD=”不在同一个三角形中,添辅助线的目的就是要把这两个条件集中到同一个直角三角形中.3—3在上海旅游节期间举办了彩车巡回展览活动.上海锦江集团制作的彩车上有一副钢制的三脚架安置在一辆平板车上,如图2—2一15所示,平板车底板离地面为1.6米,三脚架为△ABC,其中BC长20米,∠B和∠C分别为45°和30°.彩车要穿过南北高架路驶往外滩,已知南京路成都路道口的高架路离地面高8米,延安路成都路道口的高架路离地面高10米.这辆彩车在这两处道口是否都能安全通过?(参考数据:≈1.732)点评抛开题目的实际背景,本题的数学含义是:“在△ABC中,已知BC=20,∠B=45°,∠C=30°,求高AD.”解题中以AD=x为中间量,根据BD+DC=BC建立方程求解.四、复合图形中的边角关系在这里,“复合图形”是指由有两个三角形拼合或叠合而成的图形°四边形被它的一条对角线分成两个三角形,因此解四边形的问题可以化归为解三角形的问题.例4已知四边形ABCD中,BC=CD=DB,∠ADB=°,,求S△ABD:S△BCD.举一反三4-1将两块三角板如图放置,其中∠C=∠EDB=°,∠A=45°,∠E=30°,AB=DE=6求重叠部分四边形DBCF的面积.点评用“割补法”求四边影DBCF的面积可以有两种方法:一是由点C作垂线CG上AB于G,把四边形DBCF分成Rt△BCG和梯形DGCF;二是如本题中的解法,看作是两个等腰直角三角形(△ABC和△ADF)的面积之羞.后者只需要求出AD和AC’的长,是同一种图形的面积相减,因此后一种解法比前者顺畅.将两块三角板换一种叠法得到下面的问题.4-2将一副三角板如图放置,其中∠A=∠BCD=°,AB=AC,∠DBC=°,已知BC=6,求它们重叠部分△EBC的面积.4-3已知△ABC是边长为a的等边三角形,△DBC是以BC为斜边的等腰直角三角形,求线段AD的长.点评不给图形的题目,往往藏有玄机.在自己画图的过程中要仔细考虑:这个图有没有不同的画法?要不要进行分类讨论?内容提炼1.解直角三角形时,除了“已知两边求第三边”用勾股定理、“已知一个锐角求另一个锐角”用“两锐角互余”之外,其它各种情况都可以用三角比的定义求解;2.解斜三角形时,我们把它化为直角三角形来解,经常遇到的题目有两类:①已知两边夹角解三角形.如图2—2—22,△ABC中,已知AC=b,AB=c,∠A=a,可作高CD⊥AB,则CD=b·sina,AD=b·cosb,BD=c—bcosa,再在Rt△BCD中用勾股定理求,利用三角比定义tanB=,最后求出∠C=180°一∠A一∠B·②已知两角一边解三角形.如图2—2—23,△ABC中,已知∠A=a,∠B=,AB=c,作高CD,设CD=x,列方程xcota+xcot=c,得x=求出CD后计算习题精炼1.△ABC中,∠C=°,已知以下边或角的大小不能解该三角形的是()A.∠A、a;B.∠B、c;C.∠A、∠B;D.a、c2.△ABC中,∠A=90°,若AB=c,∠B=;B.;C.;D.3.若△ABC的两条边长分别为AB=20cm,AC=30cm,S△ABC=150cm2,则∠A的度数为()A.30°;B.60°;C.30°或150°;D.60°或120°4.Rt△中,∠C=°,若AC=6,,则AB=.5.△中,∠A=°,若∠B=θ,AC=b,则AB=(用θ和b的三角比表示)6.△AB中,若AB=AC=10cm,BC=12cm,则tanB=.7.如图,△ABC中,若AB=AC,∠A=90°,BD是角平分线,则tanDBC=.8.△中,若AB=AC=,BC=6,则∠BAC=度9.在ABC中,=0°,B=AC,将ABC绕着点B旋转使点落在直线B上C','C'=________.中,∠C=°,CD是边AB上的中线,,BC=6.(1)求CD的长;(2)求sin∠BCD.11.如图,在△中,已知∠A、∠B都是锐角,,BC=20,,AB=29,求△ABC的面积.12.如图,梯形ABCD中,AB∥CD,∠B=°,点F在BC上,∠AFD =°,已知AB=8,DC=3,tan∠BAD=2.(1)求AD的长;(2)求tan∠FAD.互动探究如图,Rt△中,AB=AC,∠BAC=°,D、E分别为AB、AC上的点,AE=BD,联结DE、BE.(1)当AD=2DB时,分别计算tan∠ADE和tan∠EBC的值.从这个计算结果你能得出什么结论?(2)以第(1)小题中的探究结论为条件,求的值.2014/11/29第8页共8页74-84。
直角三角形一、直角三角形的性质1. 直角三角形的两个锐角互余。
2. 在直角三角形中,30°角所对的直角边等于斜边的一半。
3. 直角三角形斜边上的中线等于斜边的一半4. 勾股定理直角三角形两直角边a,b的平方和等于斜边c的平方。
5. 射影定理在直角三角形中,斜边上的高线是两直角边在斜边上的射影的比例中项,每条直角边是它们在斜边上的射影和斜边的比例中项。
6. 常用关系式AB×CD=AC×BC二、直角三角形的判定1. 有一个角是直角的三角形是直角三角形。
2. 如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。
3. 勾股定理的逆定理如果三角形两直角边a,b的平方和等于斜边c的平方,那么这个三角形是直角三角形。
1.下列条件中,能判定两个直角三角形全等的是()A.一锐角对应相等B.两锐角对应相等C.一条边对应相等D.两条直角边对应相等解:两直角三角形隐含一个条件是两直角相等,要判定两直角三角形全等,起码还要两个条件,故可排除A、C;而B构成了AAA,不能判定全等;D构成了SAS,可以判定两个直角三角形全等.故选:D.2.不能使两个直角三角形全等的条件()A.一条直角边及其对角对应相等B.斜边和一条直角边对应相等C.斜边和一锐角对应相等 D.两个锐角对应相等解:A、符合AAS,正确;B、符合HL,正确;C、符合ASA,正确;D、因为判定三角形全等必须有边的参与,错误.故选D.3.下列说法中正确的是()A.斜边相等的两个直角三角形全等B.腰相等的两个等腰三角形全等C.有一边相等的两个等边三角形全等D.两条边相等的两个直角三角形全等解:A、全等的两个直角三角形的判定只有一条边对应相等不行,故本选项错误;B、只有两条边对应相等,找不出第三个相等的条件,即两三角形不全等,故本选项错误;C、有一边相等的两个等边三角形全等,根据SSS均能判定它们全等,故此选项正确;D、有两条边对应相等的两个直角三角形,不能判定两直角三角形全,故选项错误;故选:C.4.下列说法中,正确的个数是()①斜边和一直角边对应相等的两个直角三角形全等;②有两边和它们的对应夹角相等的两个直角三角形全等;③一锐角和斜边对应相等的两个直角三角形全等;④两个锐角对应相等的两个直角三角形全等.A.1个B.2个C.3个D.4个解:①斜边和一直角边对应相等的两个直角三角形全等,正确;②有两边和它们的夹角对应相等的两个直角三角形全等,正确;③一锐角和斜边对应相等的两个直角三角形全等,正确;④两个锐角对应相等的两个直角三角形全等,错误;故选C.5.如图,∠A=∠D=90°,AB=DE,BF=EC.求证:Rt△ABC≌Rt△DEF.证明:∵BF=EC,∴BF+FC=FC+EC,即BC=EF,∵∠A=∠D=90°,∴△ABC和△DEF都是直角三角形,在Rt△ABC和Rt△DEF中,,∴Rt△ABC≌Rt△DEF(HL).6.如图,已知∠A=∠D=90°,E、F在线段BC上,DE与AF交于点O,且AB=CD,BE=CF.求证:Rt △ABF≌Rt△DCE.证明:∵BE=CF,∴BE+EF=CF+EF,即BF=CE,∵∠A=∠D=90°,∴△ABF与△DCE都为直角三角形,在Rt△ABF和Rt△DCE中,,∴Rt△ABF≌Rt△DCE(HL).7.在四边形ABCD中,∠ABC=∠ADC=90°,BE⊥AC于E,DF⊥AC于F,CF=AE,BC=DA.求证:Rt△ABE≌Rt△CDF.解:如图,在Rt△ADC与Rt△CBA中,,∴Rt△ADC≌Rt△CBA(HL),∴DC=BA.又∵BE⊥AC于E,DF⊥AC于F,∴∠AEB=∠CFD=90°,在Rt△ABE与Rt△CDF中,,∴Rt△ABE≌Rt△CDF(HL).8.如图,在△ABC和△DCB中,∠A=∠D=90°,AC=BD,AC与BD相交于点O.(1)求证:△ABC≌△DCB;(2)△OBC是何种三角形?证明你的结论.证明:(1)在△ABC和△DCB中,∠A=∠D=90°AC=BD,BC为公共边,∴Rt△ABC≌Rt△DCB(HL);(2)△OBC是等腰三角形∵Rt△ABC≌Rt△DCB∴∠ACB=∠DCB∴OB=OC∴△OBC是等腰三角形9.如图所示,在△ABC中,AB=CB,∠ABC=90°,F为AB延长线上一点,点E在BC上,且AE=CF.求证:Rt△ABE≌Rt△CBF.证明:在Rt△ABE和Rt△CBF中,∵,∴Rt△ABE≌Rt△CBF(HL).基础演练1.如图,BD平分∠ABC,CD⊥BD,D为垂足,∠C=55°,则∠ABC的度数是()A.35° B.55° C.60° D.70°解:∵CD⊥BD,∠C=55°,∴∠CBD=90°﹣55°=35°,∵BD平分∠ABC,∴∠ABC=2∠CBD=2×35°=70°.故选D.2.如图,∠ACB=90°,CD⊥AB,垂足为D,下列结论错误的是()A.图中有三个直角三角形 B.∠1=∠2C.∠1和∠B都是∠A的余角 D.∠2=∠A解:∵∠ACB=90°,CD⊥AB,垂足为D,∴△ACD∽△CBD∽△ABC.A、∵图中有三个直角三角形Rt△ACD、Rt△CBD、Rt△ABC;故本选项正确;B、应为∠1=∠B、∠2=∠A;故本选项错误;C、∵∠1=∠B、∠2=∠A,而∠B是∠A的余角,∴∠1和∠B都是∠A的余角;故本选项正确;D、∵∠2=∠A;故本选项正确.故选B.3.直角三角形的一个锐角是另一个锐角的4倍,那么这个锐角的度数是()A.18° B.36° C.54° D.72°解:设这个锐角度数是x,则另一个锐角度数是(90﹣x)°,由题意得,x=4(90﹣x),解得x=72°,所以,这个锐角的度数是72°.故选D.4.在△ABC中,若∠B与∠C互余,则△ABC是()三角形.A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形解:∵∠B与∠C互余,∴∠B+∠C=90°,在△ABC中,∠A=180°﹣(∠B+∠C)=180°﹣90°=90°,∴△ABC是直角三角形.故选B.5.如图所示,已知AC⊥BC,CD⊥AB,∠2与∠A有什么关系?请说明理由.解:∵AC⊥BC,CD⊥AB,∴∠ACB=∠CDB=90°,∴∠2+∠ACD=90°,∠A+∠ACD=90°,∴∠2=∠A.巩固提高6.如图,在△ABC中,∠ACB=90°,F是AC延长线上一点,FD⊥AB,垂足为D,FD与BC相交于点E,∠BED=55°.求∠A的度数.解:∵FD⊥AB于D,∴∠BED+∠B=90°,∵∠ACB=90°,∴∠A+∠B=90°,∴∠A=∠BED=55°.7.如图,在Rt△ABC中,∠BAC=90°,D是BC上一点,且∠BAD=2∠C.求证:∠ABD=∠ADB.证明:∵在Rt△ABC中,∠BAC=90°,∴∠B+∠C=90°(直角三角形的两个锐角互余);又∠BAD=2∠C(已知),∴∠BAD+∠DAC=2∠C+∠DAC=∠B+∠C,即∠B=∠C+∠DAC,∵∠ADB=∠C+∠DAC(三角形外角性质),∴∠ABD=∠ADB(等量代换).8.已知:如图,△ABC中,∠C=90°,∠A=30°,ED垂直平分AB交AB于点D,交AC于点E,EC=2.求AE的长.解:如图,连接BE,,∵ED垂直平分AB,∴AE=BE,∴∠ABE=∠A=30°,∵∠ABC=90°﹣30°=60°,∴∠EBC=60°﹣30°=30°,∴BE=2CE=2×2=4,∴AE=4.9.如图,△ABC中,AB=AC,D点在BC上,∠BAD=30°,且∠ADC=60°.请完整说明为何AD=BD与CD=2BD的理由.解:∵∠4=60°,∠1=30°,根据三角形外角定理可得:∠ABD=∠4﹣∠1=60°﹣30°=30°=∠1.∴BD=AD.∵∠ABD=30°,又∵AB=AC,∴∠C=∠ABD=30°,∴∠2=180°﹣∠4﹣∠C=180°﹣60°﹣30°=90°,∵∠C=30°,∴CD=2AD=2BD.1.已知直角三角形中30°角所对的直角边为2cm,则斜边的长为()A.2cm B.4cm C.6cm D.8cm解:∵直角三角形中30°角所对的直角边为2cm,∴斜边的长为2×2=4cm.故选B.2.如图,在等边三角形ABC中,BD⊥BC,过A作AD⊥BD于D,已知△ABC周长为M,则AD=()A.B.C.D.解:∵△ABC周长为M,在等边三角形ABC中,∴AB=,∵BD⊥BC,过A作AD⊥BD于D,∴∠ABD=30°,∴AD=.故选B.3.如图,在Rt△ABC中,∠C=90°,∠ABC=60°,AB的垂直平分线分别交AB与AC于点D和点E.若CE=2,则AB的长是()A.4 B.4 C.8 D.8解:∵在Rt△ABC中,∠C=90°,∠ABC=60°,∴∠A=30°,∵DE是线段AB的垂直平分线,∴EA=EB,ED⊥AB,∴∠A=∠EBA=30°,∴∠EBC=∠ABC﹣∠EBA=30°,又∵BC⊥AC,ED⊥AB,∴DE=CE=2.在直角三角形ADE中,DE=2,∠A=30°,∴AE=2DE=4,∴AD==2,∴AB=2AD=4.故选B.4.某商场一楼与二楼之间的手扶电梯如图所示.其中AB、CD分别表示一楼、二楼地面的水平线,∠ABC=150°,BC的长是8m,则乘电梯从点B到点C上升的高度h是()A.4m B.8m C.m D.4m解:作CE⊥AB交AB 的延长线于E,∵∠ABC=150°,∴∠CBE=30°,∴CE=BC=4cm,故选:D.5.如图,在Rt△ABC中,∠ACB=90°,∠B=60°,CD是△ABC的高,且BD=1,求AD的长.解:∵∠ACB=90°,∠B=60°,CD是△ABC的高,∴∠BCD=∠A=30°,∵BD=1,∴BC=2,∴AB=4,∴AD=AB﹣BD=3.6.如图,△ABC中,AB=AC,点D是BC上一点,DE⊥AB于E,FD⊥BC于D,G是FC的中点,连接GD.求证:GD⊥DE.证明:∵AB=AC,∴∠B=∠C,∵DE⊥AB,FD⊥BC,∴∠BED=∠FDC=90°,∴∠1+∠B=90°,∠3+∠C=90°,∴∠1=∠3,∵G是直角三角形FDC的斜边中点,∴GD=GF,∴∠2=∠3,∴∠1=∠2,∵∠FDC=∠2+∠4=90°,∴∠1+∠4=90°,∴∠2+∠FDE=90°,∴GD⊥DE.1.如图,在△ABC中,D是BC上一点,AB=AD,E、F分别是AC、BD的中点,EF=2,则AC的长是()A.3 B.4 C.5 D.6解:如图,连结AF.∵AB=AD,F是BD的中点,∴AF⊥BD.∵在Rt△ACF中,∠AFC=90°,E是AC的中点,EF=2,∴AC=2EF=4.故选B.2.如图,△ABC中,∠ACB=90°,∠B=55°,点D是斜边AB的中点,那么∠ACD的度数为()A.15° B.25° C.35° D.45°解:∵△ABC中,∠ACB=90°,点D是斜边AB的中点,∴CD=BD=AB,∴∠B=∠DCB=55°,又∵∠ACB=90°,∴∠ACD=90°﹣55°=35°,故选:C.3.如图,△ABD是以BD为斜边的等腰直角三角形,△BCD中,∠DBC=90°,∠BCD=60°,DC中点为E,AD与BE的延长线交于点F,则∠AFB的度数为()A.30° B.15° C.45° D.25°解:∵∠DBC=90°,E为DC中点,∴BE=CE,∵∠BCD=60°,∴∠CBE=60°,∴∠DBF=30°,∵△ABD是等腰直角三角形,∴∠ABD=45°,∴∠ABF=75°,∴∠AFB=180°﹣90°﹣75°=15°,故选B.4.如图,在△ABC中,∠ACB=90°,CD⊥AB,垂足为D,点E是AB的中点,CD=DE=a,则AB的长为()A.2a B.2 a C.3a D.解:∵CD⊥AB,CD=DE=a,∴CE=a,∵在△ABC中,∠ACB=90°,点E是AB的中点,∴AB=2CE=2a,故选B.5.如图,△ABC中,AB=AC,∠C=30°,AB⊥AD,AD=2cm,求BC的长.解:∵AB=AC,∠C=30°,∴∠B=∠C=30°,∠BAC=180°﹣30°﹣30°=120°,∵AB⊥AD,∴∠BAD=90°,∴∠DAC=120°﹣90°=30°=∠C,∴AD=DC=2cm,∵∠BAD=90°,∠B=30°,AD=2cm,∴BD=2AD=4cm,∴BC=4cm+2cm=6cm.6.如图,△ABC中,AD是高,CE是中线,点G是CE的中点,DG⊥CE,点G为垂足.(1)求证:DC=BE;(2)若∠AEC=66°,求∠BCE的度数.解:(1)如图,∵G是CE的中点,DG⊥CE,∴DG是CE的垂直平分线,∴DE=DC,∵AD是高,CE是中线,∴DE是Rt△ADB的斜边AB上的中线,∴DE=BE=AB,∴DC=BE;(2)∵DE=DC,∴∠DEC=∠BCE,∴∠EDB=∠DEC+∠BCE=2∠BCE,∵DE=BE,∴∠B=∠EDB,∴∠B=2∠BCE,∴∠AEC=3∠BCE=66°,则∠BCE=22°.7.已知,∠BAC=∠BDC=90°,点E在BC上,且BE=EC,P点为AD外一点,且PA=PD,求证:PE垂直平分AD.证明:连接AE和DE,∵∠BAC=∠BDC=90°,点E在BC上,BE=EC,∴AE=BC,DE=BC,∴AE=DE,即E在AD的垂直平分线上,∵PA=PD,∴P在AD的垂直平分线上,∴PE垂直平分AD.8.已知:如图,四边形ABCD中,∠ABC=90°,∠ADC=90°,点E为AC中点,点F为BD中点.求证:EF⊥BD.证明:如图,连接BE、DE,∵∠ABC=90°,∠ADC=90°,点E是AC的中点,∴BE=DE=AC,∵点F是BD的中点,∴EF⊥BD.。
与三角形有关的角1.掌握三角形的内角及内角和、外角及外角和的性质,并能够进行相关的计算;2.掌握直角三角形的各个角的特点,并能够进行相关的角度计算;3.掌握折叠的规律,并能够在几何计算中熟练应用;4.会根据角的特点判断三角形的形状.1.三角形中,角的度数的综合计算问题;2.三角形形状的判断;3.几何找规律问题的理解.三角形的内角及其内角和1、三角形内角的概念三角形内角是三角形三边的夹角.每个三角形都有三个内角,且每个内角均大于0°且小于180°.2、三角形内角和定理:三角形内角和是180°.3、三角形内角和定理的证明证明方法不唯一,但其思路都是设法将三角形的三个内角移到一起,组合成一个平角.在转化中一般需要借助平行线.4、三角形内角和定理的应用:主要用在求三角形中角的度数.(1)直接根据两已知角求第三个角;(2)依据三角形中角的关系,用代数方法求三个角.例1.如图,△ABC中,△A=60°,△B=40°,则△C等于()A.100°B.80°C.60°D.40°【答案】B【解析】解:由三角形内角和定理得,△C=180°﹣△A﹣△B=80°,故选:B.练习1.已知在△ABC中,∠A=40°,∠B-∠C=40°,则∠B=____,∠C=____.【答案】90°;50°【解析】解:由∠B-∠C=40°得∠B=40°+∠C.根据三角形内角和是180°,列出等式∠A+∠B+∠C=∠A+40°+∠C+∠C=180°,把∠A=40°代入,求得∠C=50°,进而求得∠B=90°.练习2.在△ABC中,△A+△B=134°,△B+△C=136°,则△ABC的形状是()【答案】B【解析】解:△在△ABC中,△A+△B=134°,△B+△C=136°,△△A+△B+△B+△C=134°+136°=270°△,△△A+△B+△C=180° △,△﹣△得,△B=90°,△△ABC的形状是直角三角形,故选:B.已知一个三角形其中某两个角或者某一个角及其另外两个角的关系即可利用三角形内角和等于180°求解各个角的具体度数,其核心思想是三角形内角和等于180°为求解角度提供了一个等量关系.例2.一个三角形的三个内角的度数之比为1:2:3,则这个三角形一定是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰直角三角形【答案】B【解析】解:设三角形的三个内角的度数之比为x、2x、3x,则x+2x+3x=180°,解得,x=30°,则3x=90°,△这个三角形一定是直角三角形,故选:B.练习1.在△ABC中,△A,△B,△C的度数之比为2:3:4,则△B的度数为()A.120°B.80°C.60°D.40°【答案】C【解析】解:△△A:△B:△C=2:3:4,△设△A=2x,△B=3x,△C=4x,△△A+△B+△C=180°,△2x+3x+4x=180°,解得:x=20°,△△B的度数为:60°.故选C.练习2.如果三角形的三个内角的度数比是2:3:4,则它是()A.锐角三角形B.钝角三角形C.直角三角形D.钝角或直角三角形【答案】A【解析】解:设三个内角分别为2k、3k、4k,则2k+3k+4k=180°,解得k=20°,所以,最大的角为4×20°=80°,所以,三角形是锐角三角形.故选A.已知三角形三个内角之间的比例关系,即可设出三个内角的度数(用未知数表示),体现了“见比设参”的思想,再利用三角形内角和等于180°,即可解出相应的未知数,从而求出各个内角的具体度数.例3.下列说法正确的是()A.三角形的内角中最多有一个锐角B.三角形的内角中最多有两个锐角C.三角形的内角中最多有一个直角D.三角形的内角都大于60°【答案】C【解析】解:A、直角三角形中有两个锐角,故本选项错误;B、等边三角形的三个角都是锐角,故本选项错误;C、三角形的内角中最多有一个直角,故本选项正确;D、若三角形的内角都大于60°,则三个内角的和大于180°,这样的三角形不存在,故本选项错误.故选C.练习1.任何一个三角形的三个内角中至少有()A.一个角大于60°B.两个锐角C.一个钝角D.一个直角【答案】B【解析】解:根据三角形的内角和是180°,知:三个内角可以都是60°,排除A;三个内角可以都是锐角,排除C和D;三角形的三个内角中至少有两个锐角,不可能有两个钝角或两个直角.故选B.考查三角形各个内角的特点及限定,需要根据三角形内角和对三个内角之间的影响进行分析推理,重点考查分析推理能力.三角形的外角及其外角和1、三角形外角的定义三角形的一边与另一边的延长线组成的角,叫做三角形的外角.三角形共有六个外角,其中有公共顶点的两个相等,因此共有三对.在计算三角形外角和时,只计算其中的三个,即每个顶点取一个.2、三角形的外角性质(1)三角形的外角和为360°.(2)三角形的一个外角等于和它不相邻的两个内角的和.(3)三角形的一个外角大于和它不相邻的任何一个内角.3、若研究的角比较多,要设法利用三角形的外角性质(2)将它们转化到一个三角形中去.4、探究角度之间的不等关系,多用外角的性质(3),先从最大角开始,观察它是哪个三角形的外角.例1.如图所示,在△ABC中,下列说法正确的是()A.△ADB>△ADE B.△ADB>△1+△2+△3C.△ADB>△1+△2D.以上都对【答案】C【解析】解:A错误,△ADB+△ADE=180°,无法判断其大小关系;B错误,△ADB=△1+△2+△3;C正确,△△ADB=△1+△2+△3,△ADB>△1+△2;D错误.故选C.练习1.下列图形中一定能说明△1>△2的是()A.B.C.D.【答案】C【解析】解:A中△1=△2,故错误;B中△1和△2的关系不能确定,故错误;C中△1>△2,故正确;D中△1和△2的关系不能确定,故错误;故选:C.练习2.已知△2是△ABC的一个外角,那么△2与△B+△1的大小关系是()A.△2>△B+△1B.△2=△B+△1C.△2<△B+△1D.无法确定【答案】A【解析】解:△△2>△ADC,△ADC=△B+△1,△△2>△B+△1,故选A.在判断角的不等关系时,常会用到“三角形的外角大于任意一个与它不相邻的内角”这一性质.例2.知,如图,△ABC中,△B=△DAC,则△BAC和△ADC的关系是()A.△BAC<△ADC B.△BAC=△ADC C.△BAC>△ADC D.不能确定【答案】B【解析】解:由三角形的外角性质,△ADC=△B+△BAD,△△BAC=△BAD+△DAC,△B=△DAC,△△BAC=△ADC.故选B.练习1.如图,在△ABC中△A=80°.点D是BC延长线上一点,△ACD=150°,则△B=()A.60°B.50°C.70°D.165°【答案】C【解析】解:由三角形的外角的性质可知,△B=△ACD﹣△A=70°,故选:C.练习2.如图,在△ABC中,AB=AC,△A=140°,延长BC至点D,则△ACD等于()A.130°B.140°C.150°D.160°【答案】D【解析】解:△AB=AC,△A=140°,△△B=△ACB=(180°﹣140°)=20°,△△ACD=180°﹣△ACB=180°﹣20°=160°.故选D.在三角形中“三角形的外角等于与它不相邻的两个内角之和”这一性质是计算角的度数中比较常用的一个典型知识,只要三角形中有外角出现,都有可能会用到这一性质.例3.如果三角形三个外角度数之比是3:4:5,则此三角形一定是()A.锐角三角形B.直角三角形C.钝角三角形D.不能确定【答案】B【解析】解:△三角形三个外角度数之比是3:4:5,设三个外角分别是α,β,γ,则α=360°×=90°,△此三角形一定是直角三角形.故选:B.练习1.如果一个三角形的三个外角的度数之比是2:3:4,那么与之对应的三个内角的度数之比是()A.1:3:5B.2:3:4 C.4:3:2D.5:3:1【答案】D【解析】解:设三个外角的度数分别是2x°,3x°,4x°,由题意得:2x+3x+4x=360,解得:x=40,则2x=80,3x=120,4x=160,故三个内角分别为:100°,60°,20°,而100°:60°:20°=5:3:1,故选:D.练习2.如图所示:△1=110°,△2=125°,那么△3=()A.55°B.65°C.75°D.85°【答案】A【解析】解:根据三角形的外角和可得,∠3的邻补角等于125°,所以∠3=55°,故选A.在三角形的角度计算中,如果涉及到的外角比较多时,常会考虑用“三角形的外角和等于360°”这一性质.直角三角形的性质1、有一个角为90°的三角形,叫做直角三角形.2、在直角三角形中,两个锐角互余.注:在进行角度的计算时,直角三角形锐角互余的性质也是一个常用的倒角方法.反之,我们也常用“两锐角互余”的性质来判定一个三角形是否是直角三角形.3、目前通用的三角板是最典型的直角三角形,同时两个三角板的四个锐角的度数是固定的,分别为:45°、45°、30°、60°,在三角板中的角度计算类问题中要将以上度数当成已知度数来使用.例1.在Rt△ABC中,△C=90°,△A﹣△B=70°,则△A的度数为()A.80°B.70°C.60°D.50°【答案】A【解析】解:△△C=90°,△△A+△B=90°,又△A﹣△B=70°,△△A=(90°+70°)=80°.故选A.练习1.AD、BE为△ABC的高,AD、BE相交于H点,△C=50°,求△BHD.【答案】解:△AD是△ABC的高,△△BHD+△HBD=90°,△BE是△ABC的高,△△HBD+△C=90°,△△BHD=△C,△△C=50°,△△BHD=50°.练习2.如图,在△ABC中,△BAC=90°,AC≠AB,AD是斜边BC上的高,DE△AC,DF△AB,垂足分别为E、F,则图中与△C(△C除外)相等的角的个数是()A.3个B.4个C.5个D.6个【答案】A【解析】解:△AD是斜边BC上的高,DE△AC,DF△AB,△△C+△B=90°,△BDF+△B=90°,△BAD+△B=90°,△△C=△BDF=△BAD,△△DAC+△C=90°,△DAC+△ADE=90°,△△C=△ADE,△图中与△C(除之C外)相等的角的个数是3,故选:A.在进行角度的计算时,直角三角形锐角互余的性质也是一个常用的倒角方法.例2.在下列条件中,△△A+△B=△C;△△A:△B:△C=1:2:3;△△A=△B=△C;△△A=△B=2△C;△△A=2△B=3△C,能确定△ABC为直角三角形的条件有()A.2个B.3个C.4个D.5个【答案】B【解析】解:△、△△A+△B=△C=90°,△△ABC是直角三角形,故小题正确;△、△△A:△B:△C=1:2:3,△△A=30°,△B=60°,△C=90°,△ABC是直角三角形,故本小题正确;△、设△A=x,△B=2x,△C=3x,则x+2x+3x=180°,解得x=30°,故3x=90°,△ABC是直角三角形,故本小题正确;△△设△C=x,则△A=△B=2x,△2x+2x+x=180°,解得x=36°,△2x=72°,故本小题错误;△△A=2△B=3△C,△△A+△B+△C=△A+△A+A=180°,△△A=°,故本小题错误.综上所述,是直角三角形的是△△△共3个.故选B.练习1.给定下列条件,不能判定△ABC是直角三角形的是()A.△A=△B=2△C B.△A+△B=△CC.△A:△B:△C=1:4:5D.△A=37°,△B=53°【答案】A【解析】解:A、△△A=△B=2△C,△A+△B+△C=180°,△△A=△B=72°,△C=36°,△此时△ABC为锐角三角形;B、△△A+△B=△C,△A+△B+△C=180°,△△C=90°,△此时△ABC为直角三角形;C、△△A:△B:△C=1:4:5,△A+△B+△C=180°,△△A=18°,△B=72°,△C=90°,△此时△ABC为直角三角形;D、△△A=37°,△B=53°,△A+△B+△C=180°,△△C=90°,△此时△ABC为直角三角形.故选A.判断一个三角形是不是直角三角形的方法很多,就现学的知识而言,主要有:(1)两个内角之和为90°;(2)其中两个内角的和等于第三个内角;(3)其中某一个角等于90°;(4)三个内角的比例关系中,两个内角比例之和等于第三个内角所占的比例等.例3.将一副三角尺按如图所示的方式叠放(两条直角边重合),则△α的度数是.【答案】75°【解析】解:△△DAC+△ACB=180°,△AD△BC,△△B=△DAE=30°,△△DEB=△D+△DAE=45°+30°=75°,即△α的度数是75°.故答案为:75°.练习1.一副三角板有两个直角三角形,如图叠放在一起,则△α的度数是()A.165°B.120°C.150°D.135°【答案】A【解析】解:给图中标上△1、△2,如图所示.△△1+45°+90°=180°,△△1=45°,△△1=△2+30°,△△2=15°.又△△2+△α=180°,△△α=165°.故选A.练习2.将一副直角三角板如图放置,使含30°角的三角板的直角边和含45°角的三角板的一条直角边重合,则△1的度数为()A.60°B.75°C.65°D.70°【答案】B【解析】解:△△2=90°﹣45°=45°(直角三角形两锐角互余),△△3=△2=45°,△△1=△3+30°=45°+30°=75°.故选B.目前通用的三角板是最典型的直角三角形,同时两个三角板的四个锐角的度数是固定的,分别为:45°、45°、30°、60°,在三角板中的角度计算类问题中要将以上度数当成已知度数来使用.三角形倒角计算综合在三角形中计算角的度数是非常重要的一种题型,其中涉及到的知识点主要包括:角平分线的性质、两直线平行的性质、对顶角的性质、邻补角的性质、三角形的外角及其外角和、三角形的内角和等一系列倒角相关的知识,在分析此类几何题时,要首先从这些知识入手.通过倒角,可以计算角的度数,从而判断三角形的形状.折叠问题,也是倒角中常会考到的一个典型知识,其本质特征是:折叠前后的边和角的大小是完全相同的.例1.已知△ABC中,△A=20°,△B=△C,那么三角形△ABC是()A.锐角三角形B.直角三角形C.钝角三角形D.正三角形【答案】A【解析】解:△△A=20°,△△B=△C=(180°﹣20°)=80°,△三角形△ABC是锐角三角形.故选A.练习1.若一个三角形三个内角度数的比为2:7:4,那么这个三角形是()A.直角三角形B.锐角三角形C.钝角三角形D.等边三角形【答案】C【解析】解:依题意,设三角形的三个内角分别为:2x,7x,4x,△2x+7x+4x=180°,△7x≈97°,x=13.85°,7x=97°,△这个三角形是钝角三角形.故选:C.练习2.三角形的外角大于和它相邻的这个内角,这个三角形为()A.锐角三角形B.钝角三角形C.直角三角形D.无法确定【答案】D【解析】解:△三角形的一个内角和相邻的外角互补,三角形的外角大于和它相邻的这个内角,△这个三角形是锐角三角形,但是无法确定其他内角大小,故此三角形形状无法确定.故选:D.按照角度的大小来分类,三角形分为:锐角三角形、直角三角形和钝角三角形三种类型.要判断三角形的具体形状,只需要找到三角形中最大的角是哪种类型的角(锐角、直角、钝角)即可.例2.如图,把△ABC纸片沿DE折叠,当点A落在四边形BCDE内部时,则△A与△1+△2之间有一种数量关系始终保持不变.请试着找一找这个规律,你发现的规律是()A.△A=△1+△2B.2△A=△1+△2C.3△A=2△1+△2D.3△A=2(△1+△2)【答案】B【解析】解:2△A=△1+△2,理由:△在四边形ADA′E中,△A+△A′+△ADA′+△AEA′=360°,则2△A+180°﹣△2+180°﹣△1=360°,△可得2△A=△1+△2.故选:B.练习1.如图,在△ACB中,△ACB=100°,△A=20°,D是AB上一点.将△ABC沿CD折叠,使B点落在AC边上的B′处,则△ADB′等于()A.25°B.30°C.35°D.40°【答案】D【解析】解:△△ACB=100°,△A=20°,△△B=60°,由折叠的性质可知,△ACD=△BCD=50°,△△B′DC=△BDC=70°,△△ADB′=180°﹣70°﹣70°=40°,故选:D.练习2.如图,将△ABC纸片沿DE折叠,使点A落在点A'处,且A'B平分△ABC,A'C平分△ACB,若△BA'C=110°,则△1+△2的度数为()A.80°B.90°C.100°D.110°【答案】A【解析】解:连接AA′.△A'B平分△ABC,A'C平分△ACB,△BA'C=110°,△△A′BC+△A′CB=70°,△△ABC+△ACB=140°,△△BAC=180°﹣140°=40°,△△1=△DAA′+△DA′A,△2=△EAA′+△EA′A,△△DAA′=△DA′A,△EAA′=△EA′A,△△1+△2=2(△DAA′+△EAA′)=2△BAC=80°,故选A.折叠问题是初中几何中最典型的一种几何变换类型,折叠问题的典型特点是折叠前后的边和角的大小是完全相同的,而本节中只涉及到“折叠前后角的大小相同”这一性质的应用.例3.如图,在△ABC中,△BAC=56°,△ABC=74°,BP、CP分别平分△ABC和△ACB,则△BPC=()A.102°B.112°C.115°D.118°【答案】D【解析】解:△在△ABC中,△BAC=56°,△ABC=74°,△△ACB=180°﹣△BAC﹣△ABC=50°,△BP、CP分别平分△ABC和△ACB,△△PBC=37°,△PCB=25°,△△BCP中,△P=180°﹣△PBC﹣△PCB=118°,故选:D.练习1.在△ABC中,△B,△C的平分线相交于点P,设△A=x°,用x的代数式表示△BPC的度数,正确的是()A.B.C.90+2x D.90+x【答案】A【解析】解:△△A=x°,△△ABC+△ACB=180°﹣x°,△△B,△C的平分线相交于点P,△△PBC+△PCB=(180°﹣x°),△△BPC=180°﹣(180°﹣x°)=90°+x°,故选A.练习2.如图,在△ABC中,△A=40°,△B=60°,CD△AB于点D,CE平分△ACD,DF△CE 于点F,则△CDF的度数为()A.70°B.80°C.85°D.78°【答案】B【解析】解:△△A=40°,△B=60°,△△ACB=180°﹣△A﹣△B=80°,△CE平分△ACB,△△ACE=△ACB=40°,△CD△AB于D,△△CDA=90°,△ACD=180°﹣△A﹣△CDA=50°,△△ECD=△ACD﹣△ACE=10°,△DF△CE,△△CFD=90°,△△CDF=180°﹣△CFD﹣△DCE=80°.故选B.练习3.如图,△ABC=△ACB,AD、BD、CD分别平分△ABC的外角△EAC、内角△ABC、外角△ACF.以下结论:△AD△BC;△△ACB=2△ADB;△△ADC=90°﹣△ABD;△△BDC=△BAC.其中正确的结论有()A.1个B.2个C.3个D.4个【答案】C【解析】解:△△AD平分△ABC的外角△EAC,△△EAD=△DAC,△△EAC=△ACB+△ABC,且△ABC=△ACB,△△EAD=△ABC,△AD△BC,故△正确.△由(1)可知AD△BC,△△ADB=△DBC,△BD平分△ABC,△△ABD=△DBC,△△ABC=2△ADB,△△ABC=△ACB,△△ACB=2△ADB,故△正确.△在△ADC中,△ADC+△CAD+△ACD=180°,△CD平分△ABC的外角△ACF,△△ACD=△DCF,△AD△BC,△△ADC=△DCF,△ADB=△DBC,△CAD=△ACB,△△ACD=△ADC,△CAD=△ACB=△ABC=2△ABD,△△ADC+△CAD+△ACD=△ADC+2△ABD+△ADC=2△ADC+2△ABD=180°,△△ADC+△ABD=90°,△△ADC=90°﹣△ABD,故△正确;△△△BAC+△ABC=△ACF,△△BAC+△ABC=△ACF,△△BDC+△DBC=△ACF,△△BAC+△ABC=△BDC+△DBC,△△DBC=△ABC,△△BAC=△BDC,即△BDC=△BAC.故△错误.故选C.三角形中角的度数的计算是本节中的一个重要题型,其中涉及到角的大小的计算问题常会用到的知识有:角平分线的性质、两直线平行的性质、三角形内角和、三角形的外角的性质、三角形的外角和、互余与互补、对顶角的性质等与角的大小相关的性质及定理.较难的题型会涉及到多个知识的结合考查,需要在平时的练习中逐步建立几何分析能力.例4.如图,在△ABC中,△A=m°,△ABC和△ACD的平分线交于点A1,得△A1;△A1BC 和△A1CD的平分线交于点A2,得△A2;…△A2016BC和△A20l6CD的平分线交于点A2017,则△A2017=°.【答案】【解析】解:△A1B平分△ABC,A1C平分△ACD,△△A1BC=△ABC,△A1CA=△ACD,△△A1CD=△A1+△A1BC,即△ACD=△A1+△ABC,△△A1=(△ACD﹣△ABC),△△A+△ABC=△ACD,△△A=△ACD﹣△ABC,△△A1=△A,△A2=△A1=△A,…,以此类推可知△A2017=△A=()°,故答案为:.练习1.(1)如图1,在△ABC中,点O是△ABC和△ACB平分线的交点,若△A=α,则△BOC=90°+;如图2,△CBO=△ABC,△BCO=△ACB,△A=α,则△BOC=(用α表示)(2)如图3,△CBO=△DBC,△BCO=△ECB,△A=α,请猜想△BOC=(用α表示).【答案】120°+α 120°﹣α【解析】解:(1)如图2,在△OBC中,△BOC=180°﹣(△OBC+△OCB)=180°﹣(△ABC+△ACB)=180°﹣(180°﹣△A)=120°+△A=120°+α;(2)如图△,在△OBC中,△BOC=180°﹣(△OBC+△OCB)=180°﹣(△DBC+△ECB)=180°﹣(△A+△ACB+△A+ABC)=180°﹣(△A+180°)=120°﹣α;故答案为:120°+α;120°﹣α.练习2.如图,在△ABC中,△A=64°,△ABC与△ACD的平分线交于点A1,则△A1=;△A1BC与△A1CD的平分线相交于点A2,得△A2;…;△A n﹣1BC与△A n﹣1CD的平分线相交于点A n,要使△A n的度数为整数,则n的值最大为.【答案】32°6【解析】解:由三角形的外角性质得,△ACD=△A+△ABC,△A1CD=△A1+△A1BC,△△ABC的平分线与△ACD的平分线交于点A1,△△A1BC=△ABC,△A1CD=△ACD,△△A1+△A1BC=(△A+△ABC)=△A+△A1BC,△△A1=△A=64°=32°;△A1B、A1C分别平分△ABC和△ACD,△△ACD=2△A1CD,△ABC=2△A1BC,而△A1CD=△A1+△A1BC,△ACD=△ABC+△A,△△A=2△A1,△△A1=△A,同理可得△A1=2△A2,△△A2=△A,△△A=2n△A n,△△A n=()n△A=,△△A n的度数为整数,△n=6.故答案为:32°,6.几何找规律问题,除了要从代数的角度理解数列的变化规律、找到通项公式,还需要能够从几何的角度发现几何图形的变化特点,找到几何变化规律,所以几何规律问题是初中找规律问题的重点,也是难点问题.本节主要的考查重点是与三角形相关的角度计算,其中倒角的常用方法是重中之重,倒角的技巧贯穿在整个初中的几何证明及计算中,是非常重要的几何知识.。
FEDCBAFEDCBA第2讲 三角形全等判定(上)一、专项练习1. 在△ABC 中,∠ACB =90°,AC =BC ,AE 是BC 边的中线,过C 作CF ⊥AE ,垂足为F ,过B 作BD ⊥BC ,交CF 的延长线于D . ①求证:AE =CD ;②若AC =12cm ,求BD 的长.2. 如图,OP 是∠AOC 和∠BOD 的平分线,OA =OC ,OB =OD ,那么AB =CD 吗?试说明理由.证:(1)△ABC ≌△DEF ;(2)∠CBF =∠FEC .FEDCBA4. 如图所示,△ABC 是等腰直角三角形,即AB =AC ,∠ABC =∠C =45°,∠BAC =90°.BD 是AC 边上的中线,过A 作BD 的垂线,交BC 于点E ,交BD 于点F .试判断∠ADB 与∠CDE 的大小关系.5. 如图1,一等腰直角三角尺GEF 的两条直角边与正方形ABCD 的两条边分别重合在一起,现正方形ABCD 将三角尺GEF 绕斜边EF 的中点O (点O 也是BD 中点)按顺时针方向旋转.(1)如图2,当EF 与AB 相交于点M ,GF 与BD 相交于N 点,通过观察或测量BM ,FN 的长度,猜想BM ,FN 满足的数量关系,并证明你的猜想; (2)若三角尺GEF 旋转到如图3所示的位置时,线段FE 的延长线与AB 的延长线相交于点M ,线段BD 的延长线与GF 的延长线相交于点N ,此时,(1)中的猜想还成立吗?若成立,请证明; 若不成立,请说明理由.图1 图2 图3FEDCB A6. 如图△ABC 中,∠ACB =90°,AD ⊥AB ,AD=AB ,BE ⊥DC 于点E ,CA 的垂线AF 交EB 的延长线于点F ,连接CF ,求∠ACF 的度数.FED AEDCBA第3讲 三角形全等判定(下)一、专项练习1. △ABC 是等腰直角三角形,∠BAC =90°,BE 是∠ABC 的角平分线,ED ⊥BC .求证:BC=AB +AE .2. 如图,△ABC 的边BC 的中垂线DF 交△BAC 的外角平分线AD 于D ,F 为垂足, DE ⊥AB 于E ,且AB >AC .求证:BE =AC + AE .PDCB AFEDCB A3. 如图,等边△ABC 中,在顶点A 、C 处各有一只蚂蚁,他们同时出发,分别以1cm /s 由A 向B 和由C 向A 爬行,经过t 秒后,他们分别到达D 、E 处.请问两只蚂蚁在爬行过程中,(1)BE 与CD 有何数量关系,为什么? (2)BE 与CD 所成的∠BFC 的大小是否发生变化?若有变化,请说明理由,若没有变化,求出∠BFC .4. 已知,△ABC 中,AB =3,∠BAC =120°,AC =1,D 为AB 延长线上一点,BD =1,点P 在∠BAC 的平分线上,且满足△P AD 是等边三角形.求证:BC=BP .FEDCBA5. 已知:如图,△ABC 中,AB =AC ,D 是AB 上一点,E 是 AC 延长线上一点,且DB =EC ,连接DE ,交BC 于F 点. 求证:DF =EF .。
【精品】小学数学几何精讲精析专题2 平面图形-类型2三角形专题2 平面图形类型2 三角形【知识讲解】1.三角形的特征(1)由三条线段围成的封闭图形。
(2)三角形的内角和是180度。
(3)三角形具有稳定性。
(4)三角形有三条高。
2. 三角形的三边关系任意两边之和大于第三边,任意两边之差小于第三边。
3. 三角形的分类锐角三角形:三个角都小于90度(都是锐角)按角分直角三角形:有一个角等于90度(一个直角,两个锐角)三钝角三角形:有一个角大于90度(一个钝角,两个锐角)角等边三角形:三条边全相等(三个角也相等,都是60度)形按边分等腰三角形:只有两条边相等(两个底角相等)不等边三角形:三条边都不相等4.三角形的面积公式三角形的面积=底×高÷2【典例精讲】看图计算下列各角的度数。
【答案】15°;55°.【解析】因为三角形的内角和是180°,知道两个角的度数求另一个角的度数,用180度分别减去知道的两个角的度数即可。
解:180°﹣40°﹣125°=140°﹣125°=15°180°﹣90°﹣35°=90°﹣35°=55°【点评】知道三角形内角和为180度,是解答此题的关键。
【巩固练习】一、选择题1.小猴要给一块地围上篱笆,你认为()的围法更牢固些。
2.下面三组小棒,不能围成三角形的是()3.画△ABC中AB边上的高,下列画法中正确的是()。
4.只看三角形的一个角,()判断出它是什么三角形。
A. 能B. 不能C. 不一定能D. 肯定不能5.不管是什么三角形,至少有()个锐角。
A.1 B.2 C.36.把一个三角形纸片剪成两个小三角形,每个小三角形的内角和()180度。
A.大于 B.小于 C.等于7.下面三组线段能围成三角形的是()。
A. 0.5cm,1cm,1.8cmB. 1dm,ldm,ldmC. 2cm,2cm,4cm8.三角形中最小的一个角是50°,按角分类这是一个()三角形。
第2讲 直角三角形的性质知识要点--直角三角形的性质(1)(2) 一、普通直角三角形的性质: 性质一:直角三角形两锐角互余. 数学语言: ∵∠C=90°∵∠A+∠B=90°(直角三角形两锐角互余)性质二:直角三角形斜边上的中线等于斜边的一半。
数学语言:∵∠BCA=90°,D 是AB 的中点 ∵AB CD 21=(直角三角形斜边上的中线等于斜边的一半)二、基本图形:(定理的实质)1、直角三角形斜边上的中线把直角三角形分成两个等腰三角形。
∵∠BCA=90°,D 是AB 的中点∵BD=CD DA=DC ((直角三角形斜边上的中线等于斜边的一半。
) ∵∠B=∠DCB ∠A=∠DCA (等边对等角)2、直角三角形斜边上的中线等于斜边的一半的两个逆命题都是真命题,但不是定理,不可以直接使用。
(1)已知:BD=CD=AD ,我们怎么证明∠BCA=90°?(2)已知:BD=CD ,∠BCA=90°,我们怎么证明DA=DC ?【例1】(1)直角三角形的两个锐角(2)直角三角形斜边上的中线等于 (3)ABC Rt ∆中,︒=∠90ACB ,︒=∠48A ,则=∠B(4)ABC Rt ∆中,︒=∠90ACB ,D 为斜边AB 的中点,若10=AB ,则CD =【例2】(1)ABC Rt ∆中,︒=∠90C ,︒=∠20A ,D 为BC 边中点,则BCD ∠的度数是 度 (2)ABC Rt ∆中,CD 是斜边AB 上的高,︒=∠25A ,那么BCD ∠= 度(3)如果直角三角形的面积是12,斜边上的高是2,那么斜边上的中线长是 (4)等腰直角三角形斜边上的中线为5cm ,则这个三角形的面积为 2cm【例3】如图,在△ABC 中,AD 平分∠BAC ,交BC 于点D ,BE ⊥AD ,交AD 的延长线于点E ,BF =EF .求证:EF ∥AC .【例4】如图,ABC ∆中,︒=∠90ACB ,D 为AB 的中点,CD BE ⊥于F ,交AC 于E ,求证:CBE A ∠=∠【例5】已知:如图,ABC Rt ∆和ADC Rt ∆,∠ABC =∠ADC =90°,点E 是AC 的中点.求证:∠EBD =∠EDB .【例6】已知,如图BCD ∆中,BD CE ⊥于点E ,点A 是边CD 的中点,EF 垂直平分线段AB (1)求证:CD BE 21=(2)当BC AB =,︒=∠25ABD 时,求ACB ∠的度数第22题图EDCBA【例7】已知,如图,在ABC ∆中,︒=∠45ACB ,AD 是边BC 上的高,G 是AD 上一点,联结CG 点E 、F 分别是AB 、CG 的中点,且DF DE =,求证:GD BD =【例8】已知:如图,在ABC ∆中,BD 、CE 分别是边AC 、AB 上的高,点M 是BC 的中点,且DE MN ⊥,垂足为点N 。
直角三角形【学习目标】1. 掌握勾股定理的内容及证明方法、勾股定理的逆定理及其应用.理解原命题与其逆命题,原定理与其逆定理的概念及它们之间的关系.2. 能够运用勾股定理解决简单的实际问题,会运用方程思想解决问题;能利用勾股定理的逆定理,由三边之长判断一个三角形是否是直角三角形.3. 能够熟练地掌握直角三角形的全等判定方法(HL )及其应用. 【要点梳理】要点一、勾股定理直角三角形两直角边的平方和等于斜边的平方.如果直角三角形的两直角边长分别为,斜边长为,那么.要点诠释:(1)勾股定理揭示了一个直角三角形三边之间的数量关系.(2)利用勾股定理,当设定一条直角边长为未知数后,根据题目中的已知线段的长可以建立方程求解,这样就将数与形有机地结合起来,达到了解决问题的目的. (3)理解勾股定理的一些变式:,, .(4)勾股数:满足不定方程的三个正整数,称为勾股数(又称为高数或毕达哥拉斯数),显然,以为三边长的三角形一定是直角三角形.熟悉下列勾股数,对解题会很有帮助:① 3、4、5; 5、12、13; 8、15、17; 7、24、25; 9、40、41……②如果是勾股数,当为正整数时,以为三角形的三边长,此三角形必为直角三角形.③(是自然数)是直角三角形的三条边长; ④(是自然数)是直角三角形的三条边长; ⑤ (是自然数)是直角三角形的三条边长. 要点二、勾股定理的证明方法一:将四个全等的直角三角形拼成如图(1)所示的正方形.图(1)中,所以.方法二:将四个全等的直角三角形拼成如图(2)所示的正方形.a b ,c 222a b c +=222a cb =-222b c a =-()222c a b ab =+-222x y z +=x y z 、、a b c 、、t at bt ct 、、22121n n n -+,,1,n n >2222,21,221n n n n n ++++n 2222,,2m n m n mn -+,m n m n >、图(2)中,所以.方法三:如图(3)所示,将两个直角三角形拼成直角梯形.,所以.要点三、勾股定理的逆定理如果三角形的三条边长,满足,那么这个三角形是直角三角形. 要点诠释:(1)勾股定理的逆定理的作用是判定某一个三角形是否是直角三角形. (2)勾股定理的逆定理是把“数”转为“形”,是通过计算来判定一个三角形是否为直角三角形.要点四、如何判定一个三角形是否是直角三角形(1) 首先确定最大边(如).(2) 验证与是否具有相等关系.若,则△ABC 是∠C =90°的直角三角形;若,则△ABC 不是直角三角形.要点诠释:当时,此三角形为钝角三角形;当时,此三角形为锐角三角形,其中为三角形的最大边. 要点五、互逆命题与互逆定理如果两个命题的题设与结论正好相反,则称它们为互逆命题.如果把其中一个叫原命题,则另一个叫做它的逆命题.如果一个定理的逆命题经过证明是真命题,那么它也是一个定理,这两个定理称为互逆定理,其中一个定理称为另一个定理的逆定理. 要点诠释:原命题正确,逆命题未必正确;原命题不正确,其逆命题也不一定错误;正确的命题我们称为真命题,错误的命题我们称它为假命题.一个定理是真命题,每一个定理不一定有逆定理,如果这个定理存在着逆定理,则一定是真命题.a b c ,,222a b c +=c 2c 22a b +222c a b =+222c a b ≠+222a b c +<222a b c +>c要点六、直角三角形全等的判定(HL )在两个直角三角形中,有斜边和一条直角边对应相等的两个直角三角形全等(可以简 称“斜边、直角边”或“HL ”).这个判定方法是直角三角形所独有的,一般三角形不具备. 要点诠释: (1)“HL ”从顺序上讲是“边边角”对应相等,由于其中含有直角这个特殊条件,所以三角形的形状和大小就确定了.(2)判定两个直角三角形全等的方法共有5种:SAS 、ASA 、AAS 、SSS 、HL.证明两个直角三角形全等,首先考虑用斜边、直角边定理,再考虑用一般三角形全等的证明方法. (3)应用“斜边、直角边”判定两个直角三角形全等的过程中要突出直角三角形这个条件,书写时必须在两个三角形前加上“Rt ”.【典型例题】 类型一、勾股定理1、在△ABC 中,∠C =90°,∠A 、∠B 、∠C 的对边分别为、、. (1)若=5,=12,求; (2)若=26,=24,求.举一反三:【变式】在△ABC 中,∠C =90°,∠A 、∠B 、∠C 的对边分别为、、.(1)已知=2,=3,求;(2)已知,=32,求、.2、一圆形饭盒,底面半径为8,高为12,若往里面放双筷子(粗细不计),那么筷子最长不超过多少,可正好盖上盒盖?a b c a b c c b a a b c b c a :3:5a c b a c cmcm举一反三:【变式】如图所示,一旗杆在离地面5处断裂,旗杆顶部落在离底部12处,则旗杆折断前有多高?类型二、勾股定理的逆定理3、判断由线段组成的三角形是不是直角三角形. (1)=7,=24,=25; (2)=,=1,=; (3),,();举一反三:【变式1】判断以线段为边的△ABC 是不是直角三角形,其中.【变式2】一个三角形的三边之比是3:4:5 则这个三角形三边上的高之比是( ) A .20:15:12 B .3:4:5 C .5:4:3 D .10:8:2m m a b c ,,a b c a 43b c 3422a m n =-22b m n =+2c mn =0m n >>a b c ,,a =b =2c =4、已知a、b、c满足|a﹣|++(c﹣4)2=0.(1)求a、b、c的值;(2)判断以a、b、c为边能否构成三角形?若能构成三角形,此三角形是什么形状?并求出三角形的面积;若不能,请说明理由.类型三、勾股定理、逆定理的实际应用5、“中华人民共和国道路交通管理条例”规定:小汽车在城街路上行驶速度不得超过70km/h.如图,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路对面车速检测仪A处的正前方30m的C处,过了2s后,测得小汽车与车速检测仪间距离为50m,这辆小汽车超速了吗?(参考数据转换:1m/s=3.6km/h)类型四、原命题与逆命题6、写出下列原命题的逆命题并判断是否正确1.原命题:猫有四只脚.2.原命题:对顶角相等.3.原命题:线段垂直平分线上的点,到这条线段两端点的距离相等.4.原命题:角平分线上的点,到这个角的两边距离相等.举一反三:【变式1】下列命题中,其逆.命题成立的是______________.(只填写序号) ①同旁内角互补,两直线平行; ②如果两个角是直角,那么它们相等; ③如果两个实数相等,那么它们的平方相等;④如果三角形的三边长满足,那么这个三角形是直角三角形.【变式2】根据命题“两直线平行,内错角相等.”解决下列问题: (1)写出逆命题;(2)判断逆命题是真命题还是假命题;(3)根据逆命题画出图形,写出已知,求证.类型五、直角三角形全等的判定——“HL”7、 已知:如图,AB ⊥BD ,CD ⊥BD ,AD =BC .求证:(1)AB =CD :(2)AD ∥BC .举一反三:【变式】已知:如图,AE ⊥AB ,BC ⊥AB ,AE =AB ,ED =AC .求证:ED ⊥AC .a b c ,,222a b c +=8、如图,AD 平分∠BAC,DE⊥AB 于E ,DF⊥AC 于F ,且DB=DC ,求证:EB=FC .【巩固练习】 一.选择题1.如图,Rt △ABC 中,∠C =90°,若AB =15,则正方形ADEC 和正方形BCFG 的面积和为( )A.150B.200C.225D.无法计算2.下列各组数中,以a ,b ,c 为边的三角形不是直角三角形的是( ) A .a=1.5,b=2,c=3B .a=7,b=24,c=25C .a=6,b=8,c=10D .a=3,b=4,c=53.三角形的三边长分别为 、、(都是正整数),则这个三角形是( )A .直角三角形B . 钝角三角形C .锐角三角形D .不能确定4.如图,有两棵树,一棵高10米,另一棵树高4米,两树相距8米.一只鸟从一棵树的树梢飞到另一棵树的树梢,问小鸟至少飞行( )cm 2cm2cm 2cm 22a b +2ab 22a b -a b、A .8米B .10米C .12米D .14米 5.下列各命题的逆命题成立的是( )A .全等三角形的对应角相等B .如果两个数相等,那么它们的绝对值相等C .两直线平行,同位角相等D .如果两个角都是45°,那么这两个角相等 6. 在两个直角三角形中,若有一对角对应相等,一对边对应相等,则两个直角三角形( ) A.一定全等 B.一定不全等 C.可能全等 D.以上都不是二.填空题7.命题“锐角与钝角互为补角”的逆命题是 .8. 如图,在矩形纸片ABCD 中,AB =2,点E 在BC 上,且AE =EC.若将纸片沿AE 折叠,点B 恰好与AC 上的点重合,则AC = .9. 已知两条线段的长分别为11和60,当第三条线段的长为 时,这3条线段能组成一个直角三角形.10. 如图,AB =5,AC =3,BC 边上的中线AD =2,则△ABC 的面积为______.11. 如图,已知AB ⊥BD 于B ,ED ⊥BD 于D ,EC ⊥AC ,AC =EC ,若DE =2,AB =4,则DB =______.12. 如图,已知AD 是△ABC 的高,E 为AC 上一点,BE 交AD 于F ,且BF =AC ,FD =CD.则∠BAD =_______.cm 'Bcm cm cmcm三.解答题13. 已知在三角形ABC中,∠C=90°,AD平分∠BAC交BC于D,CD=3,BD=5,求AC的长.14.如图,将矩形ABCD沿EF折叠,使点D与点B重合,已知AB=3,AD=9,求BE的长.15.如图,在B港有甲、乙两艘渔船,若甲船沿北偏东60°方向以每小时8海里速度前进,乙船沿南偏东某方向以每小时15海里速度全速前进,2小时后甲船到M岛,乙船到P岛,两岛相距34海里,你知道乙船沿那个方向航行吗?16. 如图,已知AB=AC,AE=AF,AE⊥EC,AF⊥BF,垂足分别是点E、F.求证:∠1=∠2.。