SPSS聚类分析--用于筛选聚类变量的一套方法
- 格式:docx
- 大小:242.41 KB
- 文档页数:8
SPSS聚类分析方法选择引言在数据分析中,聚类分析是一种常用的技术,用于将一组数据点分成不同的类别或群组。
聚类分析有助于揭示数据中的模式和结构,并帮助我们理解数据集中的关联性。
SPSS是一个流行的统计软件,提供了多种聚类分析方法供用户选择。
本文将介绍SPSS中常用的聚类分析方法,并讨论如何选择适合的方法。
聚类分析方法SPSS提供了多种聚类分析方法,包括K-means聚类、层次聚类和模糊聚类。
下面将对这些方法进行简要介绍:K-means聚类K-means聚类是一种基于距离的聚类方法,将数据点分为K个不同的类别。
该方法的主要优点是计算效率高,适用于大规模数据集。
K-means聚类的基本步骤包括选择初始聚类中心、计算每个数据点到聚类中心的距离、将数据点分配到最近的聚类中心,并重新计算聚类中心的位置。
K-means聚类的结果可以用于发现类别之间的差异和相似性。
层次聚类层次聚类是一种自下而上或自上而下的聚类方法,通过构建一个层次化的聚类结构来组织数据。
在层次聚类中,数据点被逐步合并形成更大的聚类,直到所有数据点都被合并为一个聚类或达到预定的停止条件。
层次聚类方法的优点是可以自动确定聚类的个数,并提供了一个可视化的聚类结构。
模糊聚类模糊聚类是一种基于隶属度的聚类方法,将数据点分配到多个不同的聚类中心,并为每个数据点计算其属于不同聚类的隶属度。
与传统的硬聚类方法不同,模糊聚类允许数据点属于多个不同的聚类,反映了数据的不确定性和模糊性。
模糊聚类的结果可以用于描述数据点在不同类别之间的相似性。
方法选择在选择聚类分析方法时,需要考虑以下几个因素:数据类型首先需要考虑数据的类型。
如果数据是连续变量,则可以使用K-means聚类或层次聚类方法。
如果数据是分类变量,则可以使用层次聚类方法。
如果数据既包含连续变量又包含分类变量,则可以使用模糊聚类方法。
聚类个数另一个需要考虑的因素是聚类的个数。
K-means聚类和模糊聚类需要在分析之前确定聚类的个数。
SPSS聚类分析--用于筛选聚类变量的一套方法SPSS聚类分析:用于筛选聚类变量的一套方法来源:数据小兵聚类分析是常见的数据分析方法之一,主要用于市场细分、用户细分等领域。
利用SPSS进行聚类分析时,用于参与聚类的变量决定了聚类的结果,无关变量有时会引起严重的错分,因此,筛选有效的聚类变量至关重要。
案例数据源:在SPSS自带数据文件plastic.sav中记录了20中塑料的三个特征,分别是tear_res(抗拉力)、gloss(光滑度)、opacity(透明度),相关经验表面这20中塑料可以分为3个种类,如果用这三个变量进行聚类,请判断和筛选有效聚类变量。
一套筛选聚类变量的方法一、盲选将根据经验得到的、现有的备选聚类变量全部纳入模型,暂时不考虑某些变量是否不合适。
本案例采用SPSS系统聚类方法。
对话框如下:统计量选项卡:聚类成员选择单一方案,聚类数输入数字3;绘制选项卡:勾选树状图;方法选项卡:默认选项,不进行标准化;保存选项卡:聚类成员选择单一方案,聚类数输入数字3;二、初步聚类这是盲选得到的初步聚类结果,并且在数据视图我们可以看到已经自动生成了一个聚类结果变量,这个变量非常有用。
三、方差分析是不是每一个纳入模型的聚类变量都对聚类过程有贡献?利用已经生成的初步聚类结果,我们可以用一个单因素方差分析来判断分类结果在三个变量上的差异是否显著,进而判断哪些变量对聚类是没有贡献的。
分析——比较均值——单因素方差分析:选项选项卡:勾选均值图由方差分析我们很明确的得知,纳入模型的三个聚类变量,其中只有“透明度”指标在各个分类上有显著的差异,也就是说分类有效果,让每个分类的差异很大,而两外两个变量则在三个分类上没有显著差异,没有很好的类别区分度,所以,我们可以认为,这两个变量对聚类无作用或者无贡献,可考虑踢出模型。
我们还想从可视化的角度来查看和判断,单因素方差分析为我们提供了均值图,可惜,这三个图却最容易误导我们的判断,因为spss在自动生产均值图时为每一个变量单独制图,而且分配不同的纵轴坐标,导致每个图看起来都有非常大的差异,从视觉上迷惑我们做出错误的判断。
作业2:城镇居民消费结构的K-means聚类模型
本次作业为基于IBM SPSS Statistics 24的K-means聚类运算
一、第一步:导入数据,点击文件下方的图标,选中”案例2-城镇居民消费结构“,点击打开,
二、分析数据
1、点击Spss界面的“分析”,然后依次点击“分类”、“K-均值聚类”,如下图
2、在弹出的界面中点击“选项”,勾选“ANOVA表”,如下图,再点击“继续”
3、在弹出的界面中点击“保存”,勾选“聚类成员”、“与聚类中心距离”,如下图所示,点击“继续”
4、最后在弹出的界面中,把“地区”放入“个案标注依据”,其余的放入“变量”中,如下图所示,点击“确定”。
三、结果展示
ANOVA。
聚类分析聚类分析的目的是将资料按相似程度进行分类。
分类的对象可以是指标(变量)也可以是观测数据。
分类方法大致可分为两类:系统聚类法和非系统聚类法。
一、系统聚类法1.适用范围:可对观测数据或变量进行聚类2.聚类原理:3.聚类方法:组间连接法(类平均法)、组内连接法、最远距离法、ward 法等7 种。
4.Spss 的实现例1 生物学家收集了21种蝴蝶花样本的4个指标:萼片长度()1x ,萼片宽度()2x ,花瓣长度()3x ,花瓣宽度()4x ,数据如下表。
试进行聚类分析。
序号 1x 2x 3x 4x序号 1x 2x 3x 4x序号 1x 2x 3x 4x1 50 24 342 2 55 23 33 2 3 50 47 44 21 4 55 46 35 18 5 55 46 44 21 6 86 24 40 217 83 22 39 248 54 23 76 229 53 24 34 3 10 46 26 40 2 11 58 22 69 23 12 87 23 41 22 13 55 25 43 2 14 54 23 74 20 15 57 45 41 24 16 83 23 42 23 17 53 49 42 20 18 51 23 37 4 19 49 24 44 1 20 57 25 73 23 21 88 25 40 19(1)录入数据点击variable view 定义变量名;点击data view 输入数据(按行输入 一个数据一行);点击file-save 或save as 保存数据。
(2)聚类分析Analyze---classify----hierarchical cluster主对话框界面说明:Variables 框:用于选入进行聚类分析的变量。
Label cases by框:选入标签变量,如果选入,该变量的取值将在分析结果中取代记录号出现。
该框只在样品聚类时可用。
Cluster框:用于选择是进行样品聚类还是变量聚类,默认前者。
IBM SPSS Modeler 实验一、聚类分析在数据挖掘中,聚类分析关注的内容是一些相似的对象按照不同种类的度量构造成的群体。
聚类分析的目标就是在相似的基础上对数据进行分类。
IBM SPSS Modeler提供了多种聚类分析模型,其中主要包括两种聚类分析,K-Mean 聚类分析和Kohonen聚类分析,下面对各种聚类分析实验步骤进行详解。
1、K-Means聚类分析实验首先进行K-Means聚类实验。
(1)启动SPSS Modeler 14.2。
选择“开始”→“程序”→“IBM SPSS Modeler 14.2”→“IBM SPSS Modeler 14.2”,即可启动SPSS Modeler程序,如图1所示。
图1 启动SPSS Modeler程序(2)打开数据文件。
首先选择窗口底部节点选项板中的“源”选项卡,再点击“可变文件”节点,单击工作区的合适位置,即可将“可变文件”的源添加到流中,如图2所示。
右键单击工作区的“可变文件”,选择“编辑”,打开如图3的编辑窗口,其中有许多选项可供选择,此处均选择默认设定。
点击“文件”右侧的“”按钮,弹出文件选择对话框,选择安装路径下“Demos”文件夹中的“DRUG1n”文件,点击“打开”,如图4所示。
单击“应用”,并点击“确定”按钮关闭编辑窗口。
图2 工作区中的“可变文件”节点图3 “可变文件”节点编辑窗口图4 文件选择对话框图5 工作区中的“表”节点(3)借助“表(Table)”节点查看数据。
选中工作区的“DRUG1n”节点,并双击“输出”选项卡中的“表”节点,则“表”节点出现在工作区中,如图5所示。
运行“表”节点(Ctrl+E或者右键运行),可以看到图6中有关病人用药的数据记录。
该数据包含7个字段(序列、年龄(Age)、性别(Sex)、血压(BP)、胆固醇含量(Cholesterol)、钠含量(Na)、钾含量(K)、药类含量(Drug)),共200条信息记录。
使用SPSS软件进行因子分析和聚类分析的方法因子分析和聚类分析是一种常用的数据分析方法,可以用于数据降维和分组。
SPSS是一款常用的统计软件,提供了丰富的分析工具和函数,可以方便地进行因子分析和聚类分析。
一、因子分析:因子分析是一种多变量分析方法,可以将一组相关的变量转化为少数几个互相独立的综合变量,称为因子。
因子分析可以用于降低数据的维度,提取主要的因素,并分析因素之间的关系。
以下是使用SPSS软件进行因子分析的步骤:1.打开SPSS软件,并导入要进行因子分析的数据集。
2.菜单栏选择“分析”-“降维”-“因子”。
3.在弹出的因子分析对话框中,选择要进行因子分析的变量,将其添加到“因子”框中。
4.在“提取”选项中,选择提取的因子个数。
可以根据实际需求和经验进行选择。
5. 在“旋转”选项中,选择旋转方法。
常用的旋转方法有方差最大旋转(Varimax),斜交旋转(Oblique)等。
6.点击“确定”按钮,进行因子分析。
7.SPSS会生成因子载荷矩阵、解释方差表、因子得分等结果。
可以根据因子载荷矩阵和解释方差表来解释因子的含义和解释度。
8.根据具体需求和分析目的,可以进行因子得分的计算和因子分组的分析。
二、聚类分析:聚类分析是一种无监督学习方法,可以将一组样本数据自动分成若干互不相交的群组,称为簇。
聚类分析可以用于数据的分组和群体特征的分析。
以下是使用SPSS软件进行聚类分析的步骤:1.打开SPSS软件,并导入要进行聚类分析的数据集。
2.菜单栏选择“分析”-“分类”-“聚类”。
3.在弹出的聚类分析对话框中,选择要进行聚类分析的变量,将其添加到“变量”框中。
可以选择多个变量进行分析。
4.在“距离”选项中,选择计算样本间距离的方法。
常用的方法有欧几里得距离、曼哈顿距离等。
5. 在“聚类方法”选项中,选择聚类算法的方法。
常用的方法有层次聚类(Hierarchical Clustering)、K均值聚类(K-means)等。
实验指导之一聚类分析的SPSS操作方法系统聚类法实验例城镇居民消费水平通常用下表中的八项指标来描述。
八项指标间存在一定的线性相关。
为研究城镇居民的消费结构,需将相关性强的指标归并到一起,这实际上就是对指标聚类。
实验数据表 XXXX年30个省。
市,自治区城镇居民月平均消费数据x1人均粮食支出(元/人) x5人均衣着商品支出(元/人)x2人均副食支出(元/人) x6人均日用品支出(元/人)x3人均烟、酒、茶支出(元/人) x7人均燃料支出(元/人)x4人均其他副食支出(元/人) x8人均非商品支出(元/人)x1x2x3x4x5x6x7x8北京7.78 48.44 8.00 20.51 22.12 15.73 1.15 16.61天津10.85 44.68 7.32 14.51 17.13 12.08 1.26 11.57河北9.09 28.12 7.40 9.62 17.26 11.12 2.49 12.65山西8.35 23.53 7.51 8.62 17.42 10.00 1.04 11.21内蒙古9.25 23.75 6.61 9.19 17.77 10.48 1.72 10.51辽宁7.90 39.77 8.49 12.94 19.27 11.05 2.04 13.29吉林8.19 30.50 4.72 9.78 16.28 7.60 2.52 10.32黑龙江7.73 29.20 5.42 9.43 19.29 8.49 2.52 10.00上海8.28 64.34 8.00 22.22 20.06 15.52 0.72 22.89江苏7.21 45.79 7.66 10.36 16.56 12.86 2.25 11.69浙江7.68 50.37 11.35 13.30 19.25 14.59 2.75 14.87安徽8.14 37.75 9.61 8.49 13.15 9.76 1.28 11.28福建10.60 52.41 7.70 9.98 12.53 11.70 2.31 14.69江西 6.25 35.02 4.72 6.28 10.03 7.15 1.93 10.39山东8.82 33.70 7.59 10.98 18.82 14.73 1.78 10.10河南9.42 27.93 8.20 8.14 16.17 9.42 1.55 9.76湖北8.67 36.05 7.31 7.75 16.67 11.68 2.38 12.88湖南 6.77 38.69 6.01 8.82 14.79 11.44 1.74 13.23广东12.47 76.39 5.52 11.24 14.52 22.00 5.46 25.50广西7.27 52.65 3.84 9.16 13.03 15.26 1.98 14.57海南13.45 55.85 5.50 7.45 9.55 9.52 2.21 16.30四川7.18 40.91 7.32 8.94 17.60 12.75 1.14 14.80贵州7.67 35.71 8.04 8.31 15.13 7.76 1.41 13.25云南9.98 37.69 7.01 8.94 16.15 11.08 0.83 11.67西藏7.94 39.65 20.97 20.82 22.52 12.41 1.75 7.90陕西9.41 28.20 5.77 10.80 16.36 11.56 1.53 12.17甘肃9.16 27.98 9.01 9.32 15.99 9.10 1.82 11.35青海10.06 28.64 10.52 10.05 16.18 8.39 1.96 10.81宁夏8.70 28.12 7.21 10.53 19.45 13.30 1.66 11.96新疆 6.93 29.85 4.54 9.49 16.62 10.65 1.88 13.61系统聚类法的SPSS操作:1. 从数据编辑窗口点击Analyze →Classify →Hierachical Cluster , (见图1)图1 系统聚类法打开层次聚类法对话如图2。
SPSS聚类分析:用于筛选聚类变量的一套方法
聚类分析是常见的数据分析方法之一,主要用于市场细分、用户细分等领域。
利用SPSS进行聚类分析时,用于参与聚类的变量决定了聚类的结果,无关变量有时会引起严重的错分,因此,筛选有效的聚类变量至关重要。
案例数据源:
在SPSS自带数据文件plastic.sav中记录了20中塑料的三个特征,分别是tear_res(抗拉力)、gloss(光滑度)、opacity(透明度),相关经验表面这20中塑料可以分为3个种类,如果用这三个变量进行聚类,请判断和筛选有效聚类变量。
一套筛选聚类变量的方法
一、盲选
将根据经验得到的、现有的备选聚类变量全部纳入模型,暂时不考虑某些变量是否不合适。
本案例采用SPSS系统聚类方法。
对话框如下:
统计量选项卡:聚类成员选择单一方案,聚类数输入数字3;
绘制选项卡:勾选树状图;
方法选项卡:默认选项,不进行标准化;
保存选项卡:聚类成员选择单一方案,聚类数输入数字3;
二、初步聚类
这是盲选得到的初步聚类结果,并且在数据视图我们可以看到已经自动生成了一个聚类结果变量,这个变量非常有用。
三、方差分析
是不是每一个纳入模型的聚类变量都对聚类过程有贡献?利用已经生成的初步聚类结果,我们可以用一个单因素方差分析来判断分类结果在三个变量上的差异是否显著,进而判断哪些变量对聚类是没有贡献的。
分析——比较均值——单因素方差分析:
选项选项卡:勾选均值图
由方差分析我们很明确的得知,纳入模型的三个聚类变量,其中只有“透明度”指标在各个分类上有显著的差异,也就是说分类有效果,让每个分类的差异很大,而两外两个变量则在三个分类上没有显著差异,没有很好的类别区分度,所以,我们可以认为,这两个变量对聚类无作用或者无贡献,可考虑踢出模型。
我们还想从可视化的角度来查看和判断,单因素方差分析为我们提供了均值图,可惜,这三个图却最容易误导我们的判断,因为spss在自动生产均值图时为每一个变量单独制图,而
且分配不同的纵轴坐标,导致每个图看起来都有非常大的差异,从视觉上迷惑我们做出错误的判断。
这里需要改进!
四、均值描述
为改进以上SPSS默认选项的不足之处,我们需要自己生成三个变量在不同类别上的均值,means过程可以帮助到我们。
从数字上来看,抗拉力(6.8、6.7、7.1)、光滑度(9.3、9.4、9.2)两个指标在三个类别上并没有多大的差异,而对聚类有贡献的透明度指标在不同类别上区分度非常明显。
五、多线均值图
克服纵轴刻度的方法是将这三个指标放在同一个坐标轴上进行对比,也就是制作一个多线均值图。
此时,结果已经一目了然了。
综上,我们可以将抗拉力、光滑度两个指标从模型中剔除,只留下透明度一个指标再进行聚类。
我们发现,前后两次聚类的结果一模一样,用一个指标可以代替以前三个指标的进行聚类。
我们这样做的意义何在?如果能将这些整理成为规则,形成经验,那我们就可以不用测量抗拉力和光滑度这两个指标了,你不觉得多测量两个指标成本会增加吗?。