烃源岩的定性评价
- 格式:docx
- 大小:271.06 KB
- 文档页数:20
烃源岩地化特征评价烃源岩地化特征评价摘要:烃源岩对应的英文为Source rock,从本意上讲,它应该既包括能生油的油源岩,也包括能生气的气源岩,但过去多将它译为生油岩。
其中的重要原因可能在于国内早期的油气勘探主要瞄准着对油的勘探。
因此,油气地球化学所关注和研究的对象主要是油而不是气。
这可能是早期的有关专著和教材也多冠以“石油”而不是“油气”的原因所在。
相应地,生油岩这一术语在地化文献中得到了相当广泛的沿用。
随着我国对天然气重视程度的逐步、大幅提高,有关天然气的勘探和地球化学研究也越来越多,很多时候,需要区分油、气源岩。
因此,本文中以烃源岩替代早期的生油岩来涵盖油源岩和气源岩。
关键词:机质的丰度;有机质的类型;有机质的成熟度。
前言烃源岩是控制油气藏形成与分布的关键性因素之一。
确定有效烃源岩是含油气系统的基础。
烃源岩评价涉及许多方面,虽然在不同勘探阶段以及不同的沉积盆地,评价重点也有所不同,但是总体上主要包括两大方面:(l)烃源岩的地球化学特征评价,如有机质的丰度、有机质的类型、有机质的成熟度;(2)烃源岩的生烃能力评价,如生烃强度、生烃量、排烃强度等。
本人主要介绍烃源岩的地球化学特征评价方面:1.有机质的丰度有机质丰度是指单位质量岩石中有机质的数量。
在其它条件相近的前提下,岩石中有机质的含量(丰度)越高,其生烃能力越高。
目前,衡量岩石中有机质的丰度所用的指标主要有总有机碳(TOC)、氯仿沥青“A”、总烃和生烃势(或生烃潜量Pg,Pg=S1+S2)。
1.1有机质丰度指标1.1.1总有机碳(TOC,%)有机碳是指岩石中存在于有机质中的碳。
它不包括碳酸盐岩、石墨中的无机碳。
通常用占岩石重量的%来表示。
从原理上讲,岩石中有机质的量还应该包括H、O、N、S等所有存在于有机质中的元素的总量。
但要实测各种有机元素的含量之后求和,并不是一件轻松、经济的工作。
考虑到C元素一般占有机质的绝大部分,且含量相对稳定,故常用有机碳的含量来反映有机质的丰度。
烃源岩地化特征评价烃源岩地化特征评价摘要:烃源岩对应的英文为Source rock,从本意上讲,它应该既包括能生油的油源岩,也包括能生气的气源岩,但过去多将它译为生油岩。
其中的重要原因可能在于国内早期的油气勘探主要瞄准着对油的勘探。
因此,油气地球化学所关注和研究的对象主要是油而不是气。
这可能是早期的有关专著和教材也多冠以“石油”而不是“油气”的原因所在。
相应地,生油岩这一术语在地化文献中得到了相当广泛的沿用。
随着我国对天然气重视程度的逐步、大幅提高,有关天然气的勘探和地球化学研究也越来越多,很多时候,需要区分油、气源岩。
因此,本文中以烃源岩替代早期的生油岩来涵盖油源岩和气源岩。
关键词:机质的丰度;有机质的类型;有机质的成熟度。
前言烃源岩是控制油气藏形成与分布的关键性因素之一。
确定有效烃源岩是含油气系统的基础。
烃源岩评价涉及许多方面,虽然在不同勘探阶段以及不同的沉积盆地,评价重点也有所不同,但是总体上主要包括两大方面:(l)烃源岩的地球化学特征评价,如有机质的丰度、有机质的类型、有机质的成熟度;(2)烃源岩的生烃能力评价,如生烃强度、生烃量、排烃强度等。
本人主要介绍烃源岩的地球化学特征评价方面:1.有机质的丰度有机质丰度是指单位质量岩石中有机质的数量。
在其它条件相近的前提下,岩石中有机质的含量(丰度)越高,其生烃能力越高。
目前,衡量岩石中有机质的丰度所用的指标主要有总有机碳(TOC)、氯仿沥青“A”、总烃和生烃势(或生烃潜量Pg,Pg=S1+S2)。
1.1有机质丰度指标1.1.1总有机碳(TOC,%)有机碳是指岩石中存在于有机质中的碳。
它不包括碳酸盐岩、石墨中的无机碳。
通常用占岩石重量的%来表示。
从原理上讲,岩石中有机质的量还应该包括H、O、N、S等所有存在于有机质中的元素的总量。
但要实测各种有机元素的含量之后求和,并不是一件轻松、经济的工作。
考虑到C元素一般占有机质的绝大部分,且含量相对稳定,故常用有机碳的含量来反映有机质的丰度。
将有机碳的量转换为有机质的量,需要补偿其它有机元素的量,常用的方法是乘一校正系数K,即有机质=K·有机碳。
不难理解,K值是随有机质类型和演化程度而变化的量。
Tissot等给出了经验的K值(表1.1)。
表1.1 由有机碳含量计算有机质含量的转换系数(据Tissot,1984)从分析原理来看,有机碳既包括占岩石有机质大部分的干酪根中的碳,也包括可溶有机质中的碳,但不包括已经从源岩中所排出的油气中的碳和虽然仍残留于岩石中,但分子量较小、因而挥发性较强的轻质油和天然气中的有机碳。
因此,所测得的有机碳只能是残余有机碳。
1.1.2氯仿沥青“A”(%)和总烃(HC,ppm)氯仿沥青“A”是指用氯仿从沉积岩(物)中溶解(抽提)出来的有机质。
它反映的是沉积岩中可溶有机质的含量,通常用占岩石重量的%来表示。
严格地讲,它作为生烃(取决于有机质丰度、类型和成熟度)和排烃作用的综合结果,只能反映源岩中残余可溶有机质的丰度而不能反映总有机质的丰度。
氯仿沥青中饱和烃和芳香烃之和称为总烃。
通常用占岩石重量的百万分(ppm)做单位。
显然,它反映的是源岩中烃类的丰度而不是总有机质的丰度。
但在其它条件相近的前提下,二指标的值越高,所指示的有机质的丰度越高。
因此,它们也常常被用作烃源岩评价时的丰度指标。
不过,显而易见,这两项指标均无法反映源岩的生气能力。
同时,在高过成熟阶段,由于液态产物裂解为气态产物,它也难以指示高过成熟源岩的生油能力。
还有必要指出的是,由于氯仿抽提及饱和烃、芳烃分离时的恒重过程,C14-的烃类基本损失殆尽,两项指标实际上也未能反映源岩中的全部残油和残烃。
也有学者认为(庞雄奇等,1993,1995),从本质上看,氯仿沥青“A”和总烃是一个残油、残烃量的指标,因此,其值高,可能不一定表明生烃条件好,反而可能指示源岩的排烃条件不好,即指示这类源岩对成藏的贡献可能有限。
1.1.3生烃势(S1+S2,mgHC/g岩石)对岩石用Rock Eval热解仪(第三章)分析得到的S1被称为残留烃,相当于岩石中已由有机质生成但尚未排出的残留烃(或称之为游离烃或热解烃),内涵上与氯仿沥青“A”和总烃有重叠,但比较富含轻质组分而贫重质组分。
分析所得的S2为裂解烃,本质上是岩石中能够生烃但尚未生烃的有机质,对应着不溶有机质中的可产烃部分。
所以(S1+S2)被称为“Genetic potential”(Tissot等,1978)。
中文一般将它译为“生烃潜力”或者“生烃潜量”。
考虑到“潜力”含有“能够但尚未实现的”意义,即从字面上理解,更容易将它与S2相联系,因此本书建议将“Genetic potential”译为生烃势。
黄第藩等(1984)也曾在著名的“陆相有机质的演化和成烃机理”一书中将(S1+S2)称为生油势。
它包括源岩中已经生成的和潜在能生成的烃量之和,但不包括生成后已从源岩中排出的部分。
可见,在其它条件相近的前提下,两部分之和(S1+S2)也随岩石中有机质含量的升高而增大。
因此,也成为目前常用的评价源岩有机质丰度的指标,称为生烃势,单位为mgHC/g岩石。
显然,它也会随着有机质生烃潜力的消耗和排烃过程而逐步降低。
1.2烃源岩中有机质丰度评价有机质丰度评价是烃源岩评价的重要组成部分。
岩石中有机质的含量达到多少才能成为烃源岩,是有机质丰度评价的主要内容。
我国中新生代主要含油气盆地1080个样品数据编绘的有机碳含量频率图(图1.3)的研究表明(尚慧芸,1981),暗色泥质生油岩的有机碳含量下限值约为0.4%,较好的生油岩为1.0%。
例如,华北第三系各组段有机碳含量频率图(图1.4)显示,上第三系明化镇组及馆陶组为非生油岩层,其有机碳含量一般低于0.4%;下第三系东营组有机碳含量多数在0.5%左右,具有一定的生油能力;下第三系沙河街组大多数有机碳在1.5%左右,为该区主要生油层系。
黄第藩(1991)对我国主要陆相含油气盆地的有机质丰度进行了总结,结果表明,在陆相淡水-半咸水沉积中,主力油源层的有机碳含量均在1.0%以上,平均值变化在1.2~2.3%之间,可高达2.6%以上;氯仿沥青“A”的含量均在0.1%以上,平均值变化在0.1~0.3%之间,烃含量均在410ppm以上,平均值大多变化在550~1800ppm之间。
总的来看,我国陆相主力油源岩是一套灰黑、灰色泥岩、页岩,所含碳酸盐极少。
陆相生油岩的有机质丰度,特别是烃含量不低,构成了陆相石油生成的良好的物质基础。
根据我国勘探实践,黄第藩提出了适用我国陆相含油气盆地的烃源岩评价标准(黄第藩等,1984)。
表1.5是在黄第藩标准基础上修订后由中国石油天然气总公司1995年发布的行业标准,适用淡水—半咸水湖相沉积的生油岩,海相泥岩也可参照此标准评价。
对一般盐湖相沉积,因具有机碳含量较低,而烃含量不低,评价标准稍有不同。
煤系地层因有机质类型较差,相应的丰度评价标准有明显的提高(黄第藩等,1996,陈建平等,1997)。
煤系泥岩(TOC<6%)与一般湖相泥岩相比有机质以陆生植物为主,类脂组含量低,富碳贫氢,虽然有机碳含量高,但生烃潜力低;较高的有机质丰度也使其对可溶有机质的吸附能力比一般泥岩强;单位有机碳的生烃潜力低,但单位岩石的生烃潜力又较高,煤系泥岩的这些基本特点决定了其评价标准(表13-3)与泥岩有所不同。
表1.5为主要依据热解生烃潜量和氢指数给出的煤系炭质泥岩(6%<TOC<40%)评价标准。
表1.5陆相烃源岩有机质丰度评价指标(SY/T 5735-1995)2.有机质的类型由于不同来源、组成的有机质成烃潜力有很大的差别(第五章),因此,要客观认识烃源岩的成烃能力和性质,仅仅评价有机质的丰度是不够的,还必需对有机质的类型进行评价。
有机质(干酪根)类型是衡量有机质产烃能力的参数,同时也决定了产物是以油为主,还是以气为主。
有机质的类型既可以由不溶有机质的组成特征来反映,也可以由其产物-可溶有机质及其中烃类的特征来反映。
2.1据有机质(干酪根)的显微组分组成鉴别有机质的类型不同光学方法在研究显微组分确定类型上各有特色和长处:透射光法(transmitted light)来源于孢粉研究。
它对鉴定具结构的类脂-壳质组如藻类、孢子、花粉、角质体等是很有效的。
无定型有机质在投射光下没有清晰的轮廓和形状,难以分出是富氢无定型、还是贫氢无定型。
反射光法(reflected light)来源于煤岩石学研究,它既可观测生油岩的光片,他可观测干酪根的光片。
对于区分腐殖型有机质十分有效,尤其可区分具一定生油气潜力的镜质组和不具备生油潜力的惰质组及沉积有机质。
荧光(fluorescent light)分析和荧光光谱对于鉴别脂质组,尤其对于区分富氢无定型和贫氢无定型具有特殊作用。
此外,用荧光还可辨认出次生的脂质体-沥青渗出体,这对煤成油研究很有意义。
干酪根是各种显微组分的混合物,因此根据各种显微组分的相对比例,可将跟老根分成相应的种类。
2.2据岩石(或干酪根)的Rock-Eval热解特征划分有机质的类型无论是元素分析还是显微组分分析都需要制备干酪根,这一过程繁杂费时,利用Rock Eval烃源岩评价仪所得到的热解三分资料可快速经济地直接利用少量岩石获得许多参数(这项分析也可以对干酪根进行),其中不少包含有烃源岩中有机质类型的信息。
由该项分析所得到直接参数有:S1:游离烃(mgHC/g岩石),为升温过程中300℃以前热蒸发出来的已经存在于源岩中的烃类产物;S2:裂解烃(mgHC/g岩石),为300℃~500℃升温过程有机质裂解出来的烃类产物,反映干酪根的剩余成烃潜力;S3:(mg CO2/g岩石)有机质热解过程中CO2的含量,反映了有机质含氧量的多少;Tmax:最大热解峰温(℃),为热解产烃速率最高时的温度,对应着S2峰的峰温。
由此可以计算得到的参数:氢指数(HI ,mgHC/gTOC):=S2 /TOC;氧指数(OI,mg CO2/gTOC):=S3/TOC;烃指数(HCI ,mgHC/gTOC):=S1/TOC;生烃势(文献中常称为生油潜力):S1+S2,(mgHC/g岩石);产烃指数:S1/(S1+S2)母质类型指数:S2/S3不难理解,在物理意义上,氢指数、氧指数分别与H/C、O/C原子比相近。
因此,对成熟度较低的源岩而言,HI能较好地反映有机质生烃能力的高低,母质类型指数也可反映有机质氢、氧的相对富集程度,因而可成为良好的判识有机质类型的指标。
事实上,这些参数已成为目前油田生产实践中最常用的判识有机质类型的指标之一。
图1.5为以氢指数-氧指数关系图按三类四型方案划分有机质类型的图解。
黄第藩等(1984)提出的判识有机质类型的X型图解及相应的分类标准主要就是依据氢指数及母质类型指数。