《大学物理》第6章 万有引力
- 格式:ppt
- 大小:7.24 MB
- 文档页数:50
高考物理万有引力定律知识点总结(万有引力定律及其应用 环绕速度第二宇宙速度 第三宇宙速度)一.开普勒行星运动规律:行星轨道视为圆处理 则32r K T =(K 只与中心天体质量M 有关)理解:(1)k 是与太阳质量有关而与行星无关的常量. 由于行星的椭圆轨道都跟圆近似,在近似的计算中,可以认为行星都是以太阳为圆心做匀速圆周运动,在这种情况下,a 可代表轨道半径.(2)开普勒第三定律不仅适用于行星,也适用于卫星,只不过此时 a 3 /T 2 =k ′,比值k ′是由行星的质量所决定的另一常量,与卫星无关.二、万有引力定律(1)内容:宇宙间的一切物体都是互相吸引的,两个物体间的引力大小,跟它们的质量的乘积成正比,跟它们的距离的平方成反比.(2)公式:F =G 221rm m ,其中2211/1067.6kg m N G ⋅⨯=-,叫做引力常量。
(3)适用条件:此公式适用于质点间的相互作用.当两物体间的距离远远大于物体本身的大小时,物体可视为质点.均匀的球体可视为质点,r 是两球心间的距离.一个均匀球体与球外一个质点间的万有引力也适用,其中r 为球心到质点间的距离.说明:(1)对万有引力定律公式中各量的意义一定要准确理解,尤其是距离r 的取值,一定要搞清它是两质点之间的距离. 质量分布均匀的球体间的相互作用力,用万有引力公式计算,式中的r 是两个球体球心间的距离. (2)不能将公式中r 作纯数学处理而违背物理事实,如认为r→0时,引力F→∞,这是错误的,因为当物体间的距离r→0时,物体不可以视为质点,所以公式F =Gm 1m 2r2就不能直接应用计算.(3)物体间的万有引力是一对作用力和反作用力,总是大小相等、方向相反的,遵循牛顿第三定律,因此谈不上质量大的物体对质量小的物体的引力大于质量小的物体对质量大的物体的引力,更谈不上相互作用的一对物体间的引力是一对平衡力.注意:万有引力定律把地面上的运动与天体运动统一起来,是自然界中最普遍的规律之一,式中引力恒量G 的物理意义是:G 在数值上等于质量均为1千克的两个质点相距1米时相互作用的万有引力.三.万有引力定律的应用(天体质量M , 卫星质量m ,天体半径R, 轨道半径r ,天体表面重力加速度g ,卫星运行向心加速度a n 卫星运行周期T)解决天体(卫星)运动问题的两种基本思路: 一是把天体(或人造卫星)的运动看成是匀速圆周运动,其所需向心力由万有引力提供;二是在地球表面或地面附近的物体所受的重力等于地球对物体的引力.(1))人造地球卫星(只讨论绕地球做匀速圆周运动的人造卫星r GM v =,r 越大,v 越小;3rGM =ω,r 越大,ω越小;GM r T 324π=,r 越大,T 越大;2n GM a r =, r 越大,n a越小。
第六章 万有引力定律高考热点本章研究物体受万有引力作用下的运动,是牛顿运动定律和曲线运动的综合运用。
主要知识是万有引力定律及其应用,且重在万有引力定律的应用,尤其是在天文学与航空航天方面的应用。
本章所涉及的知识点与现代生活、现代科技有着密切的联系,在历年的高考试题中频频出现。
单纯考查本章内容的试题以中等难度的选择题、填空题为主,也有计算题;若将这部分知识与牛顿运动定律、曲线运动、功和能、科技前沿等知识综合起来进行考查,则以难度较大的计算题为主。
纵观近几年高考试卷,本章考查的热点知识主要有:万有引力定律在天文学上的应用、万有引力定律在空间技术领域的应用。
本章考查的主要能力有:建立物理模型的能力、数学运算与估算能力、获取和处理信息的能力。
在以后的综合测试中,会更关注国内外在航空航天以及空间技术领域所取得的成就。
知识与方法提要1.开普勒第一定律和开普勒第三定律:⑴开普勒第一定律:所有行星围绕太阳运动的轨道都是椭圆,太阳处在所有椭圆的一个焦点上。
⑵开普勒第三定律:所有行星的轨道的半长轴R 的三次方与公转周期T 的二次方的比值相等,即R 3/T 2=K (K 为与行星无关的常量)。
2.万有引力定律:(1)内容:自然界中任何两个物体都是相互吸引的,引力的大小跟这两个物体的质量的 乘积成正比,跟它们的距离的二次方成反比。
(2)公式:221rm m G F =,式中G 为引力常量,G =6.67×10-11N·m 2/k g 2 (3)适用条件:万有引力定律公式适用于计算两个可以视作质点的物体之间的万有引力,如两个相距很远的天体等。
但两个质量均匀分布的球体间的万有引力可以由公式直接计算。
(4)引力常量是在牛顿发现万有引力定律一百多年后由英国物理学家卡文迪许利用扭秤装置测出的。
引力常量的测定,使万有引力定律有了真正的实用价值。
3.万有引力定律在天文学上的应用:(1)测定天体的质量。
处理方法:将天体运动近似看作匀速圆周运动,则有 ①r v m r Mm G22=, G r v M 2=。
万有引力开普勒行星运动定律1.所有行星绕太阳运动的轨道都是椭圆,太阳处在椭圆的一个焦点上。
2.对任意一个行星来说,它与太阳的连线在相等的时间内扫过相等的面积。
3.所有行星的轨道的半长轴的三次方跟它的公转周期的二次方的比值都相等.此比值的大小只与有关,在不同的星系中,此比值是不同的.(R 3T 2=k ) 一、对开普勒三定律的理解1.开普勒第一定律说明了不同行星绕太阳运动时的椭圆轨道是不同的,但有一个共同的焦点.2.行星靠近太阳的过程中都是向心运动,速度增加,在近日点速度最大;行星远离太阳的时候都是离心运动,速度减小,在远日点速度最小.3.开普勒第三定律的表达式为a 3T2=k ,其中a 是椭圆轨道的半长轴,T 是行星绕太阳公转的周期,k 是一个常量,与行星无关但与中心天体的质量有关.二、开普勒三定律的应用1.开普勒定律不仅适用于行星绕太阳的运转,也适用于卫星绕地球的运转.2.表达式a 3T2=k 中的常数k 只与中心天体的质量有关.如研究行星绕太阳运动时, 常数k 只与太阳的质量有关,研究卫星绕地球运动时,常数k 只与地球的质量有关.三、太阳与行星间的引力1.模型简化:行星以太阳为圆心做匀速圆周运动,太阳对行星的引力提供了行星做匀速圆周运一、太阳与行星间的引力2.万有引力的三个特性(1)普遍性:万有引力不仅存在于太阳与行星、地球与月球之间,宇宙间任何两个有质量的物体之间都存在着这种相互吸引的力.(2)相互性:两个有质量的物体之间的万有引力是一对作用力和反作用力,总是满足牛顿第三定律.(3)宏观性:地面上的一般物体之间的万有引力很小,与其他力比较可忽略不计,但在质量巨大的天体之间或天体与其附近的物体之间,万有引力起着决定性作用.四、万有引力和重力的关系1. 万有引力和重力的关系如图6-2、3-3所示,设地球的质量为M ,半径为R ,A 处物体的质量为m ,则物体受到地球的吸引力为F ,方向指向地心O ,由万有引力公式得F =G Mmr2.引力F 可分解为F 1、F 2两个分力,其中F 1为物体随地球自转做圆周运动的向心力F n ,F 2就是物体的重力mg2.近似关系:如果忽略地球的自转,则万有引力和重力的关系为:mg =GMm R 2,g 为地球表面的重力加速度.关系式2G Mm/R mg =即2gr G M =3.随高度的变化:在高空中的物体所受到的万有引力可认为等于它在高空中所受的重力mg ′=G Mm(R +h )2,在地球表面时mg =G Mm R 2,所以在距地面h 处的重力加速度g ′=R 2(R +h )2g . 五.计算天体的质量行星绕太阳,卫星绕行星做匀速圆周运动,为他们提供向心力的就是他们之间的万有引力,测量出环绕周期和环绕半径。
第六章 万有引力定律习题解答6.1.1设某行星绕中心天体以公转周期T 沿圆轨道运行,试用开普勒第三定律证明:一个物体由此轨道自静止而自由下落至中心天体所需的时间为π2Tt =证明:物体自由下落的加速度就是在行星上绕中心天体公转的向心加速度:2222/41)2(T R RT R R v a ππ=⋅== 由自由落体公式:π2221/2,T a R t at R === (此题原来答案是:24Tt =,这里的更正与解答仅供参考)6.2.1 土星质量为5.7×1026kg ,太阳质量为2.0×1030kg ,两者的平均距离是1.4×1012m.⑴太阳对土星的引力有多大?⑵设土星沿圆轨道运行,求它的轨道速度。
解:⑴据万有引力定律,太阳与土星之间的引力f =GMm/r 2=6.51×10-11×2.0×1030×5.7×1026/(1.4×1012)2≈3.8×1022N⑵选择日心恒星参考系,对土星应用牛顿第二定律:f=mv 2/rs m m fr v /107.9107.5/04.1108.3/3261222⨯≈⨯⨯⨯⨯==6.2.3 ⑴一个球形物体以角速度ω转动,如果仅有引力阻碍球的离心分解,此物体的最小密度是多少?由此估算巨蟹座中转数为每秒30转的脉冲星的最小密度。
这脉冲星是我国在1054年就观察到的超新星爆的结果。
⑵如果脉冲星的质量与太阳的质量相当(≈2×1030kg 或3×105M e ,M e 为地球质量),此脉冲星的最大可能半径是多少?⑶若脉冲星的密度与核物质相当,它的半径是多少?核密度约为1.2×1017kg/m 3.解:⑴设此球体半径为R,质量为m.考虑球体赤道上的质元Δm,它所受到的离心惯性力最大 f *=Δm ω2R ,若不被分解,它所受到的引力至少等于离心惯性力,即 Gm Δm/R 2=Δm ω2R ∴ m=ω2R 3/G ,而 m=4πR 3ρ/3,代如上式,可求得,G πωρ432=脉冲星的最小密度3141051.64)230(3/103.1112m kg ⨯≈=-⨯⨯⨯⨯ππρ⑵据密度公式,m =ρV=4πR 3ρ/3 ,∴R 3=3m/(4πρ)km R 231430105.1)103.114.34/(1023⨯=⨯⨯⨯⨯⨯= ⑶km R 16)102.114.34/(102331730=⨯⨯⨯⨯⨯=6.2.4 距银河系中心约25000光年的太阳约以170000000年的周期在一圆周上运动。
万有引力所有公式及推导公式万有引力是一个重要的物理概念,它描述了质点之间的相互吸引力。
根据牛顿的万有引力定律,两个质点之间的引力与它们的质量和距离的平方成正比,与它们之间的距离成反比。
万有引力的公式可以用以下方式表示:F =G * (m1 * m2) / r^2其中,F表示两个质点之间的引力,m1和m2分别表示两个质点的质量,r表示它们之间的距离,G是一个常数,称为万有引力常数。
牛顿的万有引力定律可以通过以下推导得出:假设有两个质点m1和m2,它们之间的距离为r。
根据牛顿第二定律,质点m1所受的引力F1满足以下关系:F1 = m1 * a1其中,a1表示质点m1的加速度。
根据牛顿的第二定律,质点m1的加速度与它所受的合力成正比,与质量成反比。
因此,可以得到:F1 = G * (m1 * m2) / r^2同样地,质点m2所受的引力F2满足以下关系:F2 = m2 * a2将牛顿第二定律应用于质点m2,可以得到:F2 = G * (m1 * m2) / r^2由于质点m1和m2之间的引力是相互作用的,所以F1和F2的大小相等,方向相反。
因此,可以得到:F1 = F2结合以上两个式子,可以得到:G * (m1 * m2) / r^2 = G * (m1 * m2) / r^2从而得到了牛顿的万有引力定律。
万有引力的公式和推导过程给我们提供了理解物质世界的重要工具。
它不仅解释了天体运动的规律,还应用于地球上的物体。
我们可以通过这个公式计算地球上物体的重量,也可以用它来解释天体之间的相互作用。
通过深入理解万有引力的公式和推导过程,我们可以更好地理解物质世界的运动规律,从而更好地利用这些规律来推动科学和技术的发展。
通过研究万有引力,我们可以更好地理解宇宙的奥秘,探索未知的领域,为人类的未来发展做出更大的贡献。
第三节 万有引力定律一、万有引力定律1、内容:自然界中任何两个物体都相互吸引,引力的方向在它们的连线上,引力的大小与物体的质量m 1和m 2的乘积成正比,与它们之间距离r 的二次方成反比.2、公式:F =G m 1m 2r2 3、方向:两物体连线指向受力物体。
4、理解:①普适性即大到天体小到原子分子都会受到万有引力作用。
②宏观性即地面上的一般物体或更小分子原子之间的万有引力比较小,与其他力比较可忽略不计,但在质量巨大的天体之间或天体与其附近的物体之间,万有引力起着决定性作用③相互性即m1吸引m2同时m2也在吸引m1。
④客观性即万有引力是客观存在的。
⑤独立性即周围环境不会影响两物体间的万有引力,两个物体之间的万有引力只与它们本身的质量和它们间的距离有关。
5、说明:①此公式适用于质点之间的相互作用。
②质量分布均匀的球体r 为两球体球心之间的距离。
③质量分布均匀的球体与质点的引力r 为质点到球心之间的距离。
④特别注意:r 趋向于无穷小,F 趋向于无限大,此说法是错误的,因为r 无限性公式不在成立。
6、万有引力的两个推论:①在均匀质量的球层空腔内的任意位置,质点受到的该球层的万有引力为零。
②在均匀质量的球体内部距离球心r 处质点受到的万有引力等于半径为r 的球体对其的引力。
二、万有引力与重力的关系1.万有引力的作用效果:万有引力F =G Mm R2的效果有两个: ①一个是重力mg ,②另一个是物体随地球自转需要的向心力F n =mrω2.2.重力与纬度的关系:地面上物体的重力随纬度的升高而变大.①赤道上:重力和向心力在一条直线上F =F n +mg ,即G Mm R 2=mr ω2+mg ,所以mg =G Mm R 2-mr ω2. ②地球两极处:向心力为零,所以mg =F =G Mm R 2.③其他位置:重力是万有引力的一个分力,重力的大小mg <G Mm R 2,重力的方向偏离地心.3.在粗略计算式,万有引力等于重力,即mg =G Mm R 2,GM=gR 2,此式子又被成为“黄金代换”。
万有引力与航天编辑:李鸿书一、行星的运动1、开普勒的行星运动定律(1)开普勒第一定律(轨道定律)所有行星绕太阳运动的轨道都是椭圆,太阳处在椭圆的一个焦点上.不同行星椭圆轨道则是不同的.开普勒第一定律说明了行星的运动轨道是椭圆,太阳在此椭圆的一个焦点上,而不是位于椭圆的中心.不同的行星位于不同的椭圆轨道上,而不是位于同一椭圆轨道,再有,不同行星的椭圆轨道一般不在同一平面内(2)开普勒第二定律(面积定律)对任意一个行星来说, 它与太阳的连线在相等的 时间内扫过相等的面积.如右图所示,行星沿着椭圆轨道运行,太阳位于椭 圆的一个焦点上.如果时间间隔相等,即3412t t t t -=-,那么B A S S =,由此可见,行星在远日点a 的速率最小,在近日点b 的速率最大.(3)开普勒第三定律(周期定律)所有行星的轨道的半长轴的三次方跟它的公转周期的二次方的比值都相等.若用a 代表椭圆轨道的半长轴,T 代表公转周期.即k a 23=T(其中,比值k 是一个与行星无关的常量)2、对行星运动规律的理解(1)开普勒第二定律可以用来确定行星的运行速率,如上图所示,如果时间间隔相等,即3412t t t t -=-,由开普勒第二定律,可得速度之比等于到中心天体距离的反比,即ABB A R R V V = (2)开普勒三定律不仅适用于行星,也适用于其他天体,例如对于木星的所有卫星来说,它们的23a T一定相同,但常量k 的值跟太阳系各行星绕太阳运动的k 值不同.开普勒恒量k 的值只跟(行星运动时所围绕的)中心天体的质量有关(3)要注意长轴是指椭圆中过焦点与椭圆相交的线段,半长轴即长轴的一半,注意它和远日点到太阳的距离不同.(4)由于大多数行星绕太阳运动的轨道与圆十分接近,因此,在中学阶段的研究可以按圆周运动处理,这样开普勒三定律就可以这样理解: ①大多数行星绕太阳运动的轨道十分接近圆,太阳处在圆心;②对某一行星来说,它绕太阳做圆周运动的速率不变,即行星做匀速圆周运动; ③所有行星轨道半径的三次方跟它的公转周期的二次方的比值都相等,即k a 23=T .如绕同一中心天体运动的两颗行星的轨道半径分别为R ₁、R ₂,公转周期分别为T ₁、T ₂,则有22322131T R T R =3、对应练习1.火星和木星沿各自的椭圆轨道绕太阳运行,根据开普勒行星运动定律可知( )A.太阳位于木星运行轨道的中心B.火星和木星绕太阳运行的速度大小始终相等C.火星与木星公转周期之比的平方等于它们的轨道半长轴之比的立方D.相同时间内,火星与太阳连线扫过的面积等于木星与太阳连线扫过的面积2.某行星沿椭圆轨道运动,近日点离太阳中心距离为a ,远日点离太阳 心距离为b ,该行星过近日点时的速率为a v ,则过远日点时速率b v 为( ) A.a bv a B.a vb a C.bava D.a v ab 3.人造卫星A 、B 绕地球做匀速圆周运动,A 卫星的运行周期为3小时,A 的轨道半径为B 的轨道半径的1/4,则B 卫星运行的周期大约是( ) A.12小时 B.24小时 C.36小时 D.48小时4.如图,0表示地球,P 表示一个绕地球沿椭圆轨道做逆时针方向运动的人造 卫星,AB 为长轴,CD 为短轴.在卫星绕地球运动一周的时间内,从A 到B 的时间为AB t ,同理,从B 到A 、从C 到D 、从D 到C 的时间分别为DC CD BA t t t 、、,下列关系式正确的是( ) A. AB t >BA t B.AB t <BA t C. CD t >DC t D. CD t <DC t 二二、万有引力定律1.太阳与行星间引力的推导牛顿在前人对惯性研究的基础上,认为:以任何方式改变速度(包括方向)都需要力。
万有引力知识点总结第1篇1.开普勒第三定律:t2/r3=k(=42/gm){r:轨道半径,t:周期,k:常量(与行星质量无关,取决于中心天体的质量)}2.万有引力定律:f=gm1m2/r2(g=,方向在它们的连线上)3.天体上的重力和重力加速度:gmm/r2=mg;g=gm/r2{r:天体半径(m),m:天体质量(kg)}4.卫星绕行速度、角速度、周期:v=(gm/r)1/2;=(gm/r3)1/2;t=2(r3/gm)1/2{m:中心天体质量}5.第一(二、三)宇宙速度v1=(g地r地)1/2=(gm/r地)1/2=;v2=;v3=6.地球同步卫星gmm/(r地+h)2=m42(r地+h)/t2{h36000km,h:距地球表面的高度,r地:地球的半径}注:(1)天体运动所需的xxx力由万有引力提供,f向=f万;(2)应用万有引力定律可估算天体的质量密度等;(3)地球同步卫星只能运行于赤道上空,运行周期和地球自转周期相同;(4)卫星轨道半径变小时,势能变小、动能变大、速度变大、周期变小(一同三反);(5)地球卫星的最大环绕速度和最小发*速度均为。
万有引力知识点总结第2篇定义:万有引力是由于物体具有质量而在物体之间产生的一种相互作用。
它的大小和物体的质量以及两个物体之间的距离有关。
物体的质量越大,它们之间的万有引力就越大;物体之间的距离越远,它们之间的万有引力就越小。
两个可看作质点的物体之间的万有引力,可以用以下公式计算:F=GmM/r^2,即万有引力等于引力常量乘以两物体质量的乘积除以它们距离的平方。
其中G代表引力常量,其值约为×10的负11次方单位N·m2/kg2。
为英国科学家卡文迪许通过扭秤实验测得。
万有引力的推导:若将行星的轨道近似的看成圆形,从开普勒第二定律可得行星运动的角速度是一定的,即:ω=2π/T(周期)如果行星的质量是m,离太阳的距离是r,周期是T,那么由运动方程式可得,行星受到的力的作用大小mrω^2=mr(4π^2)/T^2另外,由开普勒第三定律可得r^3/T^2=常数k'那么沿太阳方向的力为mr(4π^2)/T^2=mk'(4π^2)/r^2由作用力和反作用力的关系可知,太阳也受到以上相同大小的力。