河南省八校届高三数学上学期第一次联考试卷理(含解析)【含答案】
- 格式:doc
- 大小:497.01 KB
- 文档页数:24
2022届高三第一次联考数学试题试卷满分150分考试用时120分钟注意事项: 1.答卷前,考生务必将自己的姓名、考生号、考场号、座位号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.“03πθ<<”是“0sin θ<<”的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件2.已知2i12i 1iz =-+-,则复数z 在复平面内对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限3.设a ,b 为非零向量,λ,μ∈R ,则下列命题为真命题的是( ) A .若()0⋅-=a a b ,则=a b B .若λ=b a ,则+=+a b a b C .若0λμ+=a b ,则0λμ==D .若>a b ,则()()0+⋅->a b a b4.已知函数()y f x =的图象与函数2xy =的图象关于直线y x =对称,()g x 为奇函数,且当0x >时,()()g x f x x =-,则()8g -=( ) A .5-B .6-C .5D .65.如图,抛物线C :24y x =的焦点为F ,直线l 与C 相交于A ,B 两点,l 与y 轴相交于E 点.已知7AF =,3BF =,记△AEF 的面积为S 1,△BEF 的面积为S 2,则( )A .S 1=2S 2B .2S 1=3S 2C .S 1=3S 2D .3S 1=4S 26.已知3tan 20cos 703λ︒+︒=,则λ的值为( ) A .3B .23C .33D .437.如图,已知四棱柱ABCD−A 1B 1C 1D 1,的底面为平行四边形,E ,F ,G 分别为棱AA 1,CC 1,C 1D 1的中点,则( )A .直线BC 1与平面EFG 平行,直线BD 1与平面EFG 相交B .直线BC 1与平面EFG 相交,直线BD 1与平面EFG 平行 C .直线BC 1、BD 1都与平面EFG 平行 D .直线BC 1、BD 1都与平面EFG 相交8.设a ,b 都为正数,e 为自然对数的底数,若1ln a ae b b b ++<,则( ) A .ab e >B .1a b e +>C .ab e <D .1a b e +<二、选择题:本题共4小题,每小题5分,共20分,在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分. 9.已知函数()()sin f x A x ωϕ=+(0A >,0ω>,2πϕ<)的部分图象如图所示,则( )A .()f x 的最小正周期为πB .6f x π⎛⎫+⎪⎝⎭为偶函数 C .()f x 在区间0,4π⎡⎤⎢⎥⎣⎦内的最小值为1 D .()f x 的图象关于直线23x π=-对称 10.某中学在学校艺术节举行“三独”比赛(独唱、独奏、独舞),由于疫情防控原因,比赛现场只有9名教师评委给每位参赛选手评分,全校4000名学生通过在线直播观看并网络评分,比赛评分采取10分制.某选手比赛后,现场9名教师原始评分中去掉一个最高分和一个最低分,得到7个有效评分如下表.对学生网络评分按[7,8),[8,9),[9,10]分成三组,其频率分布直方图如图所示.教师评委 А B C D E F G 有效评分9.69.19.48.99.29.39.5则下列说法正确的是( )A .现场教师评委7个有效评分与9个原始评分的中位数相同B .估计全校有1200名学生的网络评分在区间[8,9)内C .在去掉最高分和最低分之前,9名教师评委原始评分的极差一定大于0.7D .从学生观众中随机抽取10人,用频率估计概率,X 表示评分不小于9分的人数,则()5E X =11.设双曲线C :22221x y a b-=(0a >,0b >)的左、右焦点分别为F 1,F 2,点P 在C 的右支上,且不与C 的顶点重合,则下列命题中正确的是( ) A .若3a =,2b =,则C 的两条渐近线的方程是32y x =± B .若点P 的坐标为(2,2),则C 的离心率大于3 C .若PF 1⊥PF 2,则△F 1PF 2的面积等于2bD .若C 为等轴双曲线,且122PF PF =,则123cos 5FPF ∠= 12.在矩形ABCD 中,AB=2,AD=3沿对角线AC 将矩形折成一个大小为θ的二面角B−AC−D ,若1cos 3θ=,则( )A .四面体ABCD 外接球的表面积为16πB .点B 与点D 之间的距离为C .四面体ABCD 的体积为3D .异面直线AC 与BD 所成的角为45°三、填空题:本题共4小题,每小题5分,共20分. 13.设函数()13x f x ex -=+的图象在点(1,()1f )处的切线为l ,则直线l 在y 轴上的截距为.14.已知2nx ⎫⎪⎭的展开式中第3项为常数项,则这个展开式中各项系数的绝对值之和为.(用数字作答)15.数列{}n a :1,1,2,3,5,8,13,21,34,…,称为斐波那契数列(Fibonaccisequence ),该数列是由十三世纪意大利数学家莱昂纳多·斐波那契(LeonardoFibonacci )以兔子繁殖为例子而引入,故又称为“兔子数列”.在数学上,斐波那契数列可表述为121a a ==,12n n n a a a --=+(3n ≥,n *∈N ).设该数列的前n 项和为S n ,记2023a m =,则2021a =.(用m 表示)16.在平面直角坐标系中,若正方形的四条边所在的直线分别经过点A (1,0),B (2,0),C (4,0),D (8,0),则这个正方形的面积可能为或.(每条横线上只填写一个可能结果)四、解答题:本题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤。
2023-2024学年河北省邯郸市八校联考高一(上)期中数学试卷一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合M ={x |2x ﹣1>5},N ={x ∈N *|﹣1<x <5},则(∁R M )∩N =( ) A .{0,1,2,3}B .{1,2,3}C .{0,1,2}D .{1,2}2.设x ∈R ,则“|x ﹣3|<2”是“x 2+x ﹣2>0”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件3.若b ﹣6a =1,则8a212b =( )A .1B .12C .√22D .√24.已知函数f(x)={2x +1,x <23x 2−ax ,x ≥2,若f(f(12))=6,则a =( )A .2B .3C .4D .55.已知函数f (x )=ax 3+bx +2在[2,3]上的值域为[2,3],则g (x )=ax 3+bx ﹣1在[﹣3,﹣2]上的值域为( ) A .[﹣5,﹣4]B .[﹣4,﹣3]C .[﹣3,﹣2]D .[﹣2,﹣1]6.已知关于x 的不等式mx ﹣n >0的解集为{x |x <﹣2},函数f (x )=(b 2+1)a x (a >0且a ≠0)为指数函数,则f (n )•[f (m )]2=( ) A .1B .2C .3D .47.已知f (x )是定义在R 上的偶函数,且在[0,+∞)上单调递增,又f (4)=0,则(3x ﹣1)f (2x )<0的解集是( ) A .(−2,13)B .(13,2)C .(−2,13)∪(2,+∞)D .(−∞,−2)∪(13,2)8.若a >b ,且ab =2,则(a−1)2+(b+1)2a−b的最小值为( )A .2√5−2B .2√6−4C .2√5−4D .2√6−2二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分. 9.下列命题为真命题的是( )A.若a>b,则ac2>bc2B.若﹣3<a<2,1<b<4,则﹣7<a﹣b<1C.若b<a<0,m<0,则ma>mbD.若a>b>0,c>d>0,则ac>bd10.下列各组函数中,两个函数相同的是()A.f(x)=|x|,g(x)=√x2B.f(x)=√x33,g(x)=|x|C.f(x)=x 2−9x−3,g(x)=x+3D.f(x)=3x2+2x,g(t)=3t2+2t11.若函数y=a x﹣2b﹣1(a>0且a≠0)的图象过第一、三、四象限,则()A.0<a<1B.a>1C.b>0D.b<012.高斯是德国著名的数学家,近代数学奠基者之一,享有“数学王子”的称号,他和阿基米德、牛顿并列为世界三大数学家,用其名字命名的“高斯函数”为:设x∈R,用[x]表示不超过x的最大整数,则y =[x]称为高斯函数,如[3.24]=3,[﹣1.5]=﹣2.若f(x)=x﹣[x],则下列说法正确的是()A.当2023≤x<2024时,f(x)=x﹣2023 B.f(x+1)﹣f(x)=1C.函数f(x)是增函数D.函数f(x)的值域为[0,1)三、填空题:本题共4小题,每小题5分,共20分.13.函数f(x)=(13)√−x2+2x+3的单调递减区间是.14.已知函数f(x)的定义域为[﹣2013,2013],则函数g(x)=f(x−1)x+1的定义域为.15.已知命题p:∃x∈[0,4],使得2x2﹣x﹣a<0,若p是真命题,则a的取值范围是.16.若函数f(x)与g(x)对于任意x1,x2∈[c,d],都有f(x1)•g(x2)≥m,则称函数f(x)与g(x)是区间[c,d]上的“m阶依附函数”,已知函数f(x)=x+7x+1与g(x)=x6﹣2x3+a是区间[1,2]上的“3阶依附函数”,则a的取值范围是.四、解答题:本题共6小题,共70分解答应写出必要的文字说明、证明过程及演算步骤.17.(10分)已知集合A={x|7x+2>1},B={x|x2+ax﹣12<0}.(1)若a=﹣11,求A∪B;(2)若A∩B={x|﹣2<x<2},求a的值.18.(12分)已知幂函数f(x)=(3a2+2a﹣7)x a(a∈R)在(0,+∞)上单调递增.(1)求f(x)的解析式;(2)判断f(x)的奇偶性,并证明.19.(12分)已知一次函数y=f(x)满足f(x﹣1)=ax﹣1,且f(−a2)=−1.(1)求y=f(x)的函数关系式;(2)求关于x的不等式xf(x)﹣2b2﹣b≤0的解集.20.(12分)已知函数f(x)=4x﹣a•2x﹣a+5(a∈R).(1)若a=2,求f(x)在区间[﹣1,1]上的最大值和最小值;(2)若f(x)+3≥0在(﹣∞,+∞)上恒成立,求a的取值范围.21.(12分)如图,某物业需要在一块矩形空地(记为矩形ABCD)上修建两个绿化带,矩形ABCD的面积为800m2,这两个绿化带是两个形状、大小完全相同的直角梯形,这两个梯形上下对齐,且中心对称放置,梯形与空地的顶部、底部和两边都留有宽度为5m的人行道,且这两个梯形之间也留有5m的人行道.设AB=xm.(1)用x表示绿化带的面积;(2)求绿化带面积的最大值.22.(12分)已知函数f(x)=a√1−x2+√1+x+√1−x(a∈R).(1)若a=0,求f(x)的值域;(2)求f(x)的最大值.2023-2024学年河北省邯郸市八校联考高一(上)期中数学试卷参考答案与试题解析一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合M ={x |2x ﹣1>5},N ={x ∈N *|﹣1<x <5},则(∁R M )∩N =( ) A .{0,1,2,3}B .{1,2,3}C .{0,1,2}D .{1,2}解:由题意知M ={x |2x ﹣1>5}={x |x >3},N ={x ∈N *|﹣1<x <5}={1,2,3,4}, 所以∁R M ={x |x ≤3},(∁R M )∩N ={1,2,3}. 故选:B .2.设x ∈R ,则“|x ﹣3|<2”是“x 2+x ﹣2>0”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解:∵|x ﹣3|<2,∴1<x <5, ∵x 2+x ﹣2>0,∴x >1或x <﹣2,设集合A ={x |1<x <5},集合B ={x |x >1或x <﹣2},∵集合A 是集合B 的真子集,∴“|x ﹣3|<2”是“x 2+x ﹣2>0”的充分不必要条件. 故选:A .3.若b ﹣6a =1,则8a212b =( )A .1B .12C .√22D .√2解:8a 212b=23a−12b=26a−b 2=2−12=√2=√22. 故选:C .4.已知函数f(x)={2x +1,x <23x 2−ax ,x ≥2,若f(f(12))=6,则a =( )A .2B .3C .4D .5解:f(12)=2×12+1=2,f(f(12))=f(2)=3×22−2a =6,解得a =3.故选:B .5.已知函数f (x )=ax 3+bx +2在[2,3]上的值域为[2,3],则g (x )=ax 3+bx ﹣1在[﹣3,﹣2]上的值域为()A.[﹣5,﹣4]B.[﹣4,﹣3]C.[﹣3,﹣2]D.[﹣2,﹣1]解:令h(x)=ax3+bx,则h(x)=f(x)﹣2,因为函数f(x)=ax3+bx+2在[2,3]上的值域为[2,3],所以h(x)在[2,3]上的值域为[0,1],又h(x)=ax3+bx为奇函数,所以h(x)在[﹣3,﹣2]上的值域为[﹣1,0],又g(x)=ax3+bx﹣1=h(x)﹣1,则g(x)=ax3+bx﹣1在[﹣3,﹣2]上的值域为[﹣2,﹣1].故选:D.6.已知关于x的不等式mx﹣n>0的解集为{x|x<﹣2},函数f(x)=(b2+1)a x(a>0且a≠0)为指数函数,则f(n)•[f(m)]2=()A.1B.2C.3D.4解:∵不等式mx﹣n>0的解集为{x|x<﹣2},∴﹣2m﹣n=0,即n+2m=0,又f(x)为指数函数,∴b2+1=1,∴f(x)=a x,a>0,且a≠1,∴f(n)•[f(m)]2=a n•(a m)2=a n+2m=a0=1.故选:A.7.已知f(x)是定义在R上的偶函数,且在[0,+∞)上单调递增,又f(4)=0,则(3x﹣1)f(2x)<0的解集是()A.(−2,13)B.(13,2)C.(−2,13)∪(2,+∞)D.(−∞,−2)∪(13,2)解:由题意可得当﹣4<x<4时,有f(x)<0,当x<﹣4或x>4时,有f(x)>0,所以当f(2x)>0时,有2x<﹣4或2x>4,即x<﹣2或x>2,当f(2x)<0时,有﹣4<2x<4,即﹣2<x<2,由(3x﹣1)f(2x)<0,可得{3x−1<0f(2x)>0,或{3x−1>0f(2x)<0,所以x<﹣2或13<x<2,所以(3x﹣1)f(2x)<0的解集是(−∞,−2)∪(13,2).故选:D.8.若a >b ,且ab =2,则(a−1)2+(b+1)2a−b的最小值为( )A .2√5−2B .2√6−4C .2√5−4D .2√6−2解:因为ab =2, 所以由题意(a−1)2+(b+1)2a−b=a 2+b 2+2−2a+2ba−b=a 2+b 2+aba−b−2=(a−b)2+3aba−b−2=(a −b)+6a−b−2,因为a >b ,所以a ﹣b >0,所以由基本不等式可得(a−1)2+(b+1)2a−b =(a −b)+6a−b −2≥2√6−2,当且仅当{ab =2a −b =√6a >b 时等号成立,即当且仅当{a =√6−√142b =−√6−√142或{a =√6+√142b =−√6+√142时等号成立, 综上所述,(a−1)2+(b+1)2a−b 的最小值为2√6−2.故选:D .二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分. 9.下列命题为真命题的是( ) A .若a >b ,则ac 2>bc 2 B .若﹣3<a <2,1<b <4,则﹣7<a ﹣b <1C .若b <a <0,m <0,则m a>m bD .若a >b >0,c >d >0,则ac >bd解:对于A ,当c =0时,ac 2=bc 2=0,A 错误;对于B ,∵1<b <4,∴﹣4<﹣b <﹣1,又﹣3<a <2,∴﹣7<a ﹣b <1,B 正确; 对于C ,∵b <a <0,∴1a <1b ,又m <0,∴m a >mb,C 正确;对于D ,∵a >b >0,c >d >0,∴ac >bc >bd ,D 正确. 故选:BCD .10.下列各组函数中,两个函数相同的是( ) A .f (x )=|x |,g(x)=√x 2B .f(x)=√x 33,g (x )=|x | C .f(x)=x 2−9x−3,g (x )=x +3D .f(x)=3x 2+2x ,g(t)=3t 2+2t解:对于A ,f (x )=|x |,g(x)=√x 2=|x|的定义域均为R ,且对应关系相同,故两个函数相同,A 正确,对于B ,f(x)=√x 33=x ,g (x )=|x |,两个函数的对应关系不相同,故两个函数不相同,B 错误, 对于C ,f(x)=x 2−9x−3的定义域为{x |x ≠3},而g (x )=x +3的定义域为R ,两个函数的定义域不相同,故不是相同的函数,C错误,对于D,f(x)=3x2+2x,g(t)=3t2+2t的定义域均为(﹣∞,0)∪(0,+∞),且对应关系相同,故两个函数相同,D正确.故选:AD.11.若函数y=a x﹣2b﹣1(a>0且a≠0)的图象过第一、三、四象限,则()A.0<a<1B.a>1C.b>0D.b<0解:若函数y=a x﹣2b﹣1(a>0且a≠0)的图象过第一、三、四象限,则{a>11−2b−1<0,解得a>1,b>0.故选:BC.12.高斯是德国著名的数学家,近代数学奠基者之一,享有“数学王子”的称号,他和阿基米德、牛顿并列为世界三大数学家,用其名字命名的“高斯函数”为:设x∈R,用[x]表示不超过x的最大整数,则y =[x]称为高斯函数,如[3.24]=3,[﹣1.5]=﹣2.若f(x)=x﹣[x],则下列说法正确的是()A.当2023≤x<2024时,f(x)=x﹣2023 B.f(x+1)﹣f(x)=1C.函数f(x)是增函数D.函数f(x)的值域为[0,1)解:对于A,当2023≤x<2024时,f(x)=x﹣[x]=x﹣2023,故A正确;对于B,因为∀x∈R,∃k∈Z,使得k≤x<k+1,此时k+1≤x+1<k+2,从而f(x+1)﹣f(x)=x+1﹣(k+1)﹣(x﹣k)=0,故B选项错误;对于C,由B可知对于x<x+1,有f(x+1)=f(x),故C选项错误;对于D,由B选项分析可知,函数f(x)是以1为周期的周期函数,故只需讨论f(x)在[0,1)上的值域即可,当x∈[0,1)时,f(x)=x﹣[x]=x﹣0=x∈[0,1),即函数f(x)的值域为[0,1),故D正确.故选:AD.三、填空题:本题共4小题,每小题5分,共20分.13.函数f(x)=(13)√−x2+2x+3的单调递减区间是[﹣1,1].解:记u(x)=√−x2+2x+3,要使该函数式有意义,则﹣x2+2x+3≥0,解得x∈[﹣1,3],即原函数的定义域为[﹣1,3],又∵二次函数y=﹣x2+2x+3=﹣(x﹣1)2+4,∴该函数图象的对称轴为x=1,开口向下,根据复合函数单调性判断规则,讨论如下:①当x∈[﹣1,1]时,u(x)单调递增,f(x)=(13)u(x)单调递减;②当x∈[1,3]时,u(x)单调递减,f(x)=(13)u(x)单调递增;故填:[﹣1,1]14.已知函数f(x)的定义域为[﹣2013,2013],则函数g(x)=f(x−1)x+1的定义域为[﹣2012,﹣1)∪(﹣1,2014].解:因为f(x)的定义域为[﹣2013,2013],所以f(x﹣1)的定义域满足﹣2013≤x﹣1≤2013,解得:﹣2012≤x≤2014,即f(x﹣1)的定义域为[﹣2012,2014],所以函数g(x)=f(x−1)x+1的定义域满足{−2012≤x≤2014x+1≠0,解得﹣2012≤x<﹣1或﹣1<x≤2014,所以函数g(x)=f(x−1)x+1的定义域为[﹣2012,﹣1)∪(﹣1,2014].故答案为:[﹣2012,﹣1)∪(﹣1,2014].15.已知命题p:∃x∈[0,4],使得2x2﹣x﹣a<0,若p是真命题,则a的取值范围是(−18,+∞).解:由2x2﹣x﹣a<0得:a>2x2﹣x,∵∃x∈[0,4],使得2x2﹣x﹣a<0,∴a>(2x2﹣x)min,∵y=2x2﹣x为开口方向向上,对称轴为x=14的抛物线,∴当x∈[0,4]时,(2x2−x)min=2×(14)2−14=−18,∴a的取值范围为(−18,+∞).故答案为:(−18,+∞).16.若函数f(x)与g(x)对于任意x1,x2∈[c,d],都有f(x1)•g(x2)≥m,则称函数f(x)与g(x)是区间[c,d]上的“m阶依附函数”,已知函数f(x)=x+7x+1与g(x)=x6﹣2x3+a是区间[1,2]上的“3阶依附函数”,则a的取值范围是[2,+∞).解:∵f(x)=x+7x+1=1+6x+1,∴f(x)在[1,2]上单调递减,∴当x∈[1,2]时,f(x)∈[3,4];令t=x3,则当x∈[1,2]时,t∈[1,8],∵h (t )=t 2﹣2t +a =(t ﹣1)2+a ﹣1,∴当t ∈[1,8]时,h (t )∈[a ﹣1,a +48], 即当x ∈[1,2]时,g (x )∈[a ﹣1,a +48];由“3阶依附函数”定义可知:f (x 1)•g (x 2)≥3对于任意x 1,x 2∈[1,2]恒成立, ∵f (x 1)∈[3,4],∴g(x 2)≥3f(x 1)恒成立,即g(x 2)min ≥[3f(x 1)]max =3[f(x 1)]min=1, ∴a ﹣1≥1,即a ≥2,∴a 的取值范围为[2,+∞). 故答案为:[2,+∞).四、解答题:本题共6小题,共70分解答应写出必要的文字说明、证明过程及演算步骤. 17.(10分)已知集合A ={x|7x+2>1},B ={x |x 2+ax ﹣12<0}. (1)若a =﹣11,求A ∪B ;(2)若A ∩B ={x |﹣2<x <2},求a 的值. 解:(1)由A ={x|7x+2>1},可得A ={x|7−x−2x+2>0}={x|x−5x+2<0}={x|−2<x <5}, 当a =﹣11时,B ={x |x 2﹣11x ﹣12<0}={x |(x ﹣12)(x +1)<0}={x |﹣1<x <12}, 所以A ∪B ={x |﹣2<x <12};(2)A ∩B ={x |﹣2<x <2},A ={x |﹣2<x <5}, 所以x =2是方程x 2+ax ﹣12=0的一个根, 故22+2a ﹣12=0,故a =4.18.(12分)已知幂函数f (x )=(3a 2+2a ﹣7)x a (a ∈R )在(0,+∞)上单调递增. (1)求f (x )的解析式;(2)判断f (x )的奇偶性,并证明.解:(1)由幂函数的概念可知3a 2+2a ﹣7=1,解得a =﹣2或43,又因为幂函数在(0,+∞)单调递增,故a =43,即f(x)=x 43;(2)f (x )为偶函数,证明:f(x)=x 43定义域为R ,f(−x)=(−x)43=x 43=f(x),故f(x)=x 43为偶函数. 19.(12分)已知一次函数y =f (x )满足f (x ﹣1)=ax ﹣1,且f(−a2)=−1.(1)求y =f (x )的函数关系式;(2)求关于x 的不等式xf (x )﹣2b 2﹣b ≤0的解集. 解:(1)∵f (x ﹣1)=ax ﹣1=a (x ﹣1)+a ﹣1,∴f (x )=ax +a ﹣1,∴f(−a 2)=−a 22+a −1=−1,解得:a =0或a =2,又y =f (x )为一次函数,∴a ≠0,则a =2,∴f (x )=2x +1.(2)由(1)知:xf (x )﹣2b 2﹣b =2x 2+x ﹣b (2b +1)=(2x +2b +1)(x ﹣b )≤0; 令(2x +2b +1)(x ﹣b )=0,解得:x =−2b+12或x =b ; 当b =−2b+12,即b =−14时,(2x +2b +1)(x ﹣b )≤0的解集为{−14}; 当b >−2b+12,即b >−14时,(2x +2b +1)(x ﹣b )≤0的解集为[−2b+12,b]; 当b <−2b+12,即b <−14时,(2x +2b +1)(x ﹣b )≤0的解集为[b ,−2b+12]; 综上所述:当b =−14时,不等式解集为{−14};当b >−14时,不等式解集为[−2b+12,b];当b <−14时,不等式解集为[b ,−2b+12].20.(12分)已知函数f (x )=4x ﹣a •2x ﹣a +5(a ∈R ).(1)若a =2,求f (x )在区间[﹣1,1]上的最大值和最小值; (2)若f (x )+3≥0在(﹣∞,+∞)上恒成立,求a 的取值范围. 解:(1)当a =2时,f (x )=4x ﹣2•2x +3,x ∈[﹣1,1],令t =2x ,则f (x )=g (t )=t 2﹣2t +3,t ∈[12,2],开口向上,对称轴为x =1,∴g (t )在[12,1]上单调递减,在(1,2]上单调递增,∴当t =1,即x =0时,函数g (t )也就是f (x )取得最小值,f (x )min =f (0)=2, 当t =2,即x =1时,函数f (x )取得最大值,f (x )max =f (1)=3.(2)f (x )+3≥0在(﹣∞,+∞)上恒成立,即4x ﹣a •2x +8﹣a ≥0,令t =2x ,原不等式可化为t 2﹣at +8﹣a ≥0对任意的t >0成立,转化为a ≤t 2+8t+1对任意的t >0成立,∵t 2+8t+1=(t+1)2−2(t+1)+9t+1=(t +1)+9t+1−2≥2√9−2=4,当且仅当t +1=9t+1,即t =2时等号成立, ∴a ≤4.∴实数a 的取值范围为(﹣∞,4].21.(12分)如图,某物业需要在一块矩形空地(记为矩形ABCD )上修建两个绿化带,矩形ABCD 的面积为800m 2,这两个绿化带是两个形状、大小完全相同的直角梯形,这两个梯形上下对齐,且中心对称放置,梯形与空地的顶部、底部和两边都留有宽度为5m 的人行道,且这两个梯形之间也留有5m 的人行道.设AB =xm .(1)用x 表示绿化带的面积;(2)求绿化带面积的最大值.解:(1)已知AB =xm .则梯形的高为(800x −10)m ,设梯形的上底为a (m ),下底为b (m ),由题意可得:a +b =x ﹣15,则绿化带的面积为S =(a +b)×(800x −10)=(x −15)(800x−10)(m 2), 其中{800x −10>0x −15>0,即15<x <80;(2)由(1)可得S =(x −15)(800x −10)=950−(10x +12000x )≤950−2√10x ×12000x =950−200√3,当且仅当10x =12000x,即x =20√3(m )时取等号, 即绿化带面积的最大值为950−200√3(m 2).22.(12分)已知函数f(x)=a√1−x 2+√1+x +√1−x(a ∈R).(1)若a =0,求f (x )的值域;(2)求f (x )的最大值.解:(1)当a =0时,由题意可得:{1+x ≥01−x ≥0,解得﹣1≤x ≤1, 令t =√1+x +√1−x ,则t 2=2+2√1−x 2,t 2∈[2,4],即t ∈[√2,2],当a =0时,原函数可化为y =t ,故函数的值域为[√2,2].(2)由题意可得:{1−x 2≥01+x ≥01−x ≥0,解得﹣1≤x ≤1,由(1)可知函数f(x)=a√1−x 2+√1+x +√1−x(a ∈R)可转化为函数ℎ(t)=12at 2+t −a ,t ∈[√2,2],当a>0时,−1a<0,函数ℎ(t)=12at2+t−a开口向上,所以ℎ(t)=12at2+t−a在t∈[√2,2]上单调递增,设f(x)最大值为g(a),因此g(a)=h(2)=a+2;当a=0时,ℎ(t)=12at2+t−a在t∈[√2,2]上单调递增,此时g(a)=h(2)=2;当a<0时,−1a>0,函数ℎ(t)=12at2+t−a开口向下,若0<−1a≤√2,即a≤−√22时,函数ℎ(t)=12at2+t−a在t∈[√2,2]上单调递减,因此g(a)=ℎ(√2)=√2;若√2<−1a<2,即−√22≤a≤−12时,ℎ(t)=12at2+t−a在t∈[√2,−1a]上单调递增,在t∈[−1a,2]上单调递减,因此g(a)=ℎ(−1a)=−a−12a;若−1a≥2,即−12≤a<0时,ℎ(t)=12at2+t−a在t∈[√2,2]上单调递增,因此g(a)=h(2)=a+2;综上所述f(x)max={√2,a≤−√22−12a−a,−√22<a<−12 a+2,a≥−12.。
绝密★启用前2023届高三第一次学业质量评价(T8联考)副标题考试范围:xxx ;考试时间:100分钟;命题人:xxx注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上,写在试卷上无效。
3.考试结束后,本试卷和答题卡一并交回。
第I 卷(选择题)一、单选题(本大题共8小题,共40.0分。
在每小题列出的选项中,选出符合题目的一项)1. 复数z 满足1+zi +zi 2=|1−√3i|,则z = A. 1+iB. 12+12iC. −12−12iD. −12+12i2. 若集合M ={x|2x >4},N ={x|log 3x ≤1},则M ∪N =( ) A. {x|2<x ⩽3} B. {x|x >0} C. {x|0<x <2或x >2}D. R3. 已知S n 是数列{a n }的前n 项和,则“a n >0”是“{S n }是递增数列”的 A. 充分不必要条件 B. 必要不充分条件 C. 充要条件D. 既不充分也不必要条件4. 某同学掷骰子5次,分别记录每次骰子出现的点数,根据5次的统计结果,可以判断一定没有出现点数6的是A. 中位数是3,众数是2B. 平均数是3,中位数是2C. 方差是2.4,平均数是2D. 平均数是3,众数是25. 已知sin(α+π6)−cosα=12,则sin(2α+π6)=( ) A. −12B. 12C. −34D. 34……○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※……○…………内…………○…………装…………○…………订…………○…………线…………○…………6. 已知圆台上底面半径为1,下底面半径为3,球与圆台的两个底面和侧面均相切,则该圆台的侧面积与球的表面积之比为A. 136B. 43√3C. 1312D. 437. 已知函数f(x)及其导函数f′(x)的定义域均为R ,记g(x) = f(1+x)−x ,若f′(x)为奇函数,g(x)为偶函数,则f′(2023)=A. 2021B. 2022C. 2023D. 20248. 已知椭圆C:x 2a 2+y 2b2=1(a >b >0),直线l 过坐标原点并交椭圆于P ,Q 两点(P 在第一象限),点A 是x 轴正半轴上一点,其横坐标是点P 横坐标的2倍,直线QA 交椭圆于点B ,若直线BP 恰好是以PQ 为直径的圆的切线,则椭圆的离心率为( )A. 12B. √22C. √33D. √63二、多选题(本大题共4小题,共20.0分。
长郡十八校联盟2023届高三第一次联考(全国卷)理科数学试题一、单选题 1.已知集合{}21,0,430A y y x xB xx x x ⎧⎫==+>=-+<⎨⎬⎩⎭,则AB =( )A .(1,)+∞B .[2,3)C .(1,2]D .[2,)+∞2.如果一个复数的实部和虚部相等,则称这个复数为“等部复数”,若复数(2i)i z a =+(其中a ∈R )为“等部复数”,则复数iz a +在复平面内对应的点在( )A .第一象限B .第二象限C .第三象限D .第四象限3.若x ,y 满足约束条件201030? x y x y x -+≥⎧⎪+-≥⎨⎪-≤⎩,则23zx y=-的最大值为( )A .2B .4C .8D .124.已知1x <-,那么在下列不等式中,不成立的是A .210x -> B .12x x+<- C .sinx x -> D .co s 0x x +>5.希尔伯特在1990年提出了孪生素数猜想,其内容是:在自然数集中,孪生素数对有无穷多个.其中孪生素数就是指相差2的素数对,即若p 和2p+均是素数,素数对(),2p p +称为孪生素数.从16以内的素数中任取两个,其中能构成孪生素数的概率为( ) A .13B .15C .17D .3286.大衍数列来源于《乾坤谱》中对易传“大衍之数五十”的推论,主要用于解释中国传统文化中的太极衍生原理,数列中的每一项,都代表太极衍生过程中,曾经经历过的两仪数量总和,是中华传统文化中隐藏的世界数学史上第一道数列题.已知该数列{}n a 的前10项依次是0,2,4,8,12,18,24,32,40,50,记(1)nn nb a =-⋅,n *∈N ,则数列{}n b 的前20项和是( ) A .110B .100C .90D .807.某几何体的三视图如图所示,则该几何体的体积是( )A .64B .128C .256D .3848.八一广场是南昌市的心脏地带,江西省最大的城市中心广场,八一南昌起义纪念塔为八一广场标志性建筑,塔座正面携刻“八一南昌起义简介”碑文,东、南、西三面各有一幅反映武装起义的人物浮雕.塔身正面为“八一南昌起义纪念塔”铜胎鎏金大字,塔顶由一支直立的巨型“汉阳造”步枪和一面八一军旗组成.八一南昌起义纪念塔的建成,表达了亿万人民永远缅怀老一辈无产阶级革命家创建和培育解放军的丰功伟绩,鼓励国人进行新的长征.现某兴趣小组准备在八一广场上对八一南昌起义纪念塔的高度进行测量,并绘制出测量方案示意图,A 为纪念塔最顶端,B 为纪念塔的基座(即B 在A 的正下方),在广场内(与B 在同一水平面内)选取C 、D 两点,测得C D 的长为m .兴趣小组成员利用测角仪可测得的角有.A C B∠、A C D∠、B C D ∠、A D C∠、B D C ∠,则根据下列各组中的测量数据,不能计算出纪念塔高度A B 的是( )A .m A CB BCD B D C ∠∠∠、、、 B .m A C B B C D A C D ∠∠∠、、、 C .m A C B A C D A D C ∠∠∠、、、 D .m A C B B C D A D C ∠∠∠、、、9.将函数()c o s 2f x x=的图象向右平移π02ϕϕ⎛⎫<< ⎪⎝⎭个单位长度后得到函数()g x 的图象,若对满足()()122fx g x -=的12,xx ,总有12x x -的最小值等于π6,则ϕ=( )A .π12B .π6C .π3D .5π1210.已知R λ∈,函数21,0,()()412lg ,0,x x f x g x x x x x λ⎧+<==-++⎨>⎩,若关于x 的方程(())f g x λ=有6个解,则λ的取值范围为( )A .10,2⎛⎤ ⎥⎝⎦B .20,3⎛⎫ ⎪⎝⎭C .1,12⎛⎫⎪⎝⎭D .12,23⎛⎫⎪⎝⎭11.双曲线22:13xCy-=的左焦点为F ,过点F 的直线l 与双曲线C 交于A ,B 两点,若过A ,B和点0)M 的圆的圆心在y 轴上,则直线l 的斜率为( )A.2±B.C .1± D .32±12.《九章算术》卷五《商功》中描述几何体“阳马”为“底面为矩形,一棱垂直于底面的四棱锥”,现有阳马P A B C D -(如图),P A ⊥平面,1,2,3A B C D P A A B A D ===,点E ,F 分别在,A B B C 上,当空间四边形P E F D 的周长最小时,三棱锥P A D F-外接球的表面积为( )A .9πB .11πC .12πD .16π二、填空题13.已知7280128(1)(21)x x a a x a x a x-+=++++,则2a 等于___________.14.已知向量()2,1a =r ,()1,0b=,()1,2c=,若()ca mb ⊥+,则m=___________.15.已知ππ,s in 2c o s 2s in c o s 122βαβααβ-<-<+=-=,则πc o s 3α⎛⎫+=⎪⎝⎭___________. 16.设函数1()ln ()f x x a x a x=-+∈R 的两个极值点分别为12,xx .若()()2124124e2e 1fx fx a x x -≤---恒成立,则实数a 的取值范围是___________.三、解答题17.在数列{}n a 中,616a =,点()()1,n n a a n *+∈N在直线30x y -+=上.(1)求数列{}n a 的通项公式; (2)若2nnnb a =,求数列{}n b 的前n 项和nT .18.基础学科招生改革试点,也称强基计划,强基计划是教育部开展的招生改革工作,主要是为了选拔培养有志于服务国家重大战略需求且综合素质优秀或基础学科拔尖的学生.聚焦高端芯片与软件、智能科技、新材料、先进制造和国家安全等关键领域以及国家人才紧缺的人文社会科学领域.某校在一次强基计划模拟考试后,从全体考生中随机抽取52名,获取他们本次考试的数学成绩(x )和物理成绩(y ),绘制成如图散点图:根据散点图可以看出y 与x 之间有线性相关关系,但图中有两个异常点A ,B .经调查得知,A 考生由于重感冒导致物理考试发挥失常,B 考生因故未能参加物理考试.为了使分析结果更科学准确,剔除这两组数据后,对剩下的数据作处理,得到一些统计的值:5015800i i x ==∑,5013900i i y ==∑,501462770i i i x y ==∑,()502128540ii x x=-=∑,()502118930ii y y=-=∑,其中,i i x y 分别表示这50名考生的数学成绩、物理成绩,1i =,2,…,50,y 与x 的相关系数0.45r≈.(1)若不剔除A ,B 两名考生的数据,用52组数据作回归分析,设此时y 与x 的相关系数为0r .试判断0r 与r 的大小关系(不必说明理由);(2)求y 关于x 的线性回归方程(系数精确到0.01),并估计如果B 考生加了这次物理考试(已知B 考生的数学成绩为125分),物理成绩是多少?(精确到0.1)附:线性回归方程ˆˆˆyab x =+中:()()()121ˆˆˆ,niii nii xxy yb ay b x xx==--==--∑∑.19.如图,在四棱锥P A B C D-中,E 为棱A D 上一点,,P E A D P A P C⊥⊥,四边形B C D E为矩形,且13,,//4B CP E B E P F P C P A ====平面B E F .(1)求证:P A⊥平面P C D ;(2)求二面角FA B D--的大小.20.如图,在平面直角坐标系x O y 中,已知直线5y =与椭圆2222:1(0)x y Ca b ab+=>>交于,P Q 两点(P 在x 轴上方),且65P Q a=,设点P 在x 轴上的射影为点N ,P Q N V 的5抛物线2:2(0)Eyp x p =>的焦点与椭圆C的焦点重合,斜率为k 的直线l 过抛物线E 的焦点与椭圆C 交于,A B 两,点,与抛物线E 交于,C D 两点.(1)求椭圆C 及抛物线E 的标准方程;(2)是否存在常数λ||||A B C D λ为常数?若存在,求λ的值;若不存在,说明理由.21.设函数311()s in c o s 0,()()s in 222f x x x x x g x f x x a x π⎛⎫=-<<=+- ⎪⎝⎭.(1)证明:当0,2x π⎛⎫∈ ⎪⎝⎭时,()f x 有唯一零点;(2)若任意[0,)x ∈+∞,不等式()0g x ≤恒成立,求实数a 的取值范围.22.在直角坐标系x O y中,直线l 的参数方程为,x y ⎧=⎪⎨=⎪⎩(t 为参数),以坐标原点O为极点,x 轴为正半轴建立极坐标,椭圆C 的极坐标方程为2222c o s 2s in 4ρθρθ+=,其右焦点为F ,直线l 与椭圆C 交于,A B 两点. (1)求||||F A F B +的值; (2)若点P 是椭圆上任意一点,求P A B的面积最大值.23.已知函数()|21||3|f x x x =---.(1)求()f x 的最小值m ;(2)若a ,b 为正实数,且20a b m ++=,证明不等式225abba+≥.参考答案:1.B【分析】根据基本不等式求得集合A ,解一元二次不等式得集合B ,即可得集合的交集.【详解】∵10,2x y x x >=+≥=,当且仅当1x =时,等号成立,∴[2,)A =+∞,又∵{}{}()2430|131,3Bxx x x x =-+<=<<=,∴[2,3)AB =.故选:B. 2.D【分析】根据“等部复数”得a 的值,即可得22iz =+,从而得iza +,从而可确定其复平面内对应的点所对应的象限. 【详解】∵(2i)i 2iz a a =+=-+,又∵“等部复数”的实部和虚部相等,复数z 为“等部复数”,∴2a -=,解得2a =-, ∴22i z=+,∴22iz=-,即24iza i +=-,∴复数iza +在复平面内对应的点是(2,4)-,位于第四象限.故选:D. 3.D【分析】如图所示,画出可行域,233z y x =-,3z-表示直线与y 轴的截距,截距最小时,z最大,根据图像得到答案. 【详解】画出可行域,如图所示:23z x y=-,则233z yx =-,3z-表示直线与y 轴的截距,截距最小时,z 最大,当直线过交点,310x x y =⎧⎨+-=⎩,即()3,2-时,6612z=+=.故选:D4.D【分析】利用作差法可判断A 、B 选项的正误,利用正弦、余弦值的有界性可判断C 、D 选项的正误.综合可得出结论. 【详解】1x <-Q,则()()21110x x x -=-+>,()22112120x x x x xxx+++++==<,又sin x、[]c o s 1,1x ∈-,sinx x ∴->,co s 0x x +<.可得:ABC 成立,D 不成立. 故选:D.【点睛】本题考查不等式正误的判断,一般利用作差法来进行判断,同时也要注意正弦、余弦有界性的应用,考查推理能力,属于中等题. 5.B【分析】先分析20以内的素数,再分析其中孪生素数的对数,再分别求解所以可能的情况种数以及孪生素数的对数求概率即可.【详解】20以内的素数有2,3,5,7,11,13共6个,从中任取两个共有15种可能,其中构成孪生素数的有3和5,5和7,11和13共3对,∴16以内的素数中任取两个,其中能构成孪生素数的概率31155P ==.故选:B【点睛】本题主要考查了古典概型的问题,需要根据题意分析总的情况数以及满足条件的基本事件数.属于基础题. 6.A【分析】根据所给数列的项归纳出通项公式,利用分组求和法求和即可. 【详解】观察此数列可知,当n为偶数时,22nna =,当n为奇数时,212nn a -=,因为221,2(1)2nn n n n b a nn ⎧--⎪⎪=-⋅=⎨⎪⎪⎩为奇数,为偶数,所以数列{}n b 的前20项和为:(02)++2219120(48)(1218)()22--++-+++-+10(220)246201102⨯+=++++==,故选:A 7.B【分析】根据三视图得到该几何体是一个四棱锥求解. 【详解】解:如图所示:由三视图知:该几何体是一个四棱锥, 其底面积为8864S=⨯=,高为6h=,所以其体积为11283V S h ==,故选:B 8.B【分析】依据解三角形的条件,逐项判断可解三角形求出塔高度A B 的选项即可. 【详解】对于A :由m ,B C D ∠、B D C ∠可以解B C D △,又tan A B B C A C B=⋅∠,可求塔高度A B ;对于B :在B C D △中,由,C D m B C D=∠无法解三角形,在A C D中,由,C Dm A C D=∠无法解三角形,在B C A V 中,已知两角A C B A B C ∠∠、无法解三角形,所以无法解出任意三角形,故不能求塔高度A B ; 对于C :由C Dm=,∠∠A C D A D C 、可以解A C D,可求A C ,又sin A BA C A C B=⋅∠,即可求塔高度A B ;对于D :如图,过点B 作B EC D⊥于点E ,连接A E ,由c o s ,c o s B C E C A C B B C D A CB C∠=∠=,c o s E C A C E A C∠=,知co s c o s c o s A C E A C B B C D∠=∠⋅∠,故可知A C D∠的大小,由A C D∠、A D C∠、m 可解A C D,可求A C ,又s i n AB A CA C B=⋅∠,可求塔高度A B . 故选:B. 9.C【分析】根据函数图象平移规律可得函数()g x 的图象,由()()122fx g x -=、12m inπ6x x -=设1x=,则2π6=±x ,分别利用πc o s 2216ϕ⎛⎫⨯-=- ⎪⎝⎭、πc o s 2216ϕ⎡⎤⎛⎫⨯--=- ⎪⎢⎥⎝⎭⎣⎦,求出ϕ可得答案. 【详解】函数()c o s 2f x x=的周期为π,将函数的图象向右平移π02ϕϕ⎛⎫<< ⎪⎝⎭个单位长度后得到函数()g x 的图象,可得()c o s(22)g x x ϕ=-,由()()122fx g x -=可知,两个函数的最大值与最小值的差为2,且12m inπ6x x -=,不妨设1x=,则2π6=±x ,即()g x 在2π6=±x 时取得最小值,由于πc o s 2216ϕ⎛⎫⨯-=- ⎪⎝⎭,此时ππ,3ϕ=--∈k k Z ,不合题意;πc o s 2216ϕ⎡⎤⎛⎫⨯--=- ⎪⎢⎥⎝⎭⎣⎦,此时2ππ,3ϕ=--∈k k Z,当1k=-时,π3ϕ=满足题意.故选:C. 10.B【分析】数形结合法,令()g x t =,可得方程()f t λ=的解有3个,对应的一元二次方程各有2个不相等的实数根,利用判别式求解λ的范围. 【详解】令()g x t =,则方程()f t λ=的解有3个,由图象可得,01λ<<,且三个解分别为1231,1,10t t t λλλ=--=-+=,则24121x x λλ-++=--,24121x x λλ-++=-+,241210x x λλ-++=,均有两个不相等的实根, 则1∆>,且2∆>,且3∆>,即164(23)0λ-+>且164(2)0λ-+>,解得203λ<<,当203λ<<时,()316412104(3210)λλλλ∆=-+-=-+,因为203λ<<,所以4203λ-<-<,所以53233λ<-<,且100λ>,所以32100λλ-+>,即3∆>恒成立,故λ的取值范围为20,3⎛⎫ ⎪⎝⎭.故选:B. 11.A【分析】利用韦达定理结合P GA B⊥可得283m tm=-,再根据弦长公式表示得A B,结合2221||2rdA B ⎛⎫=+ ⎪⎝⎭即可求直线l 的斜率.【详解】由题意可知:(2,0)F -,设()11,A x y ,()22,B x y ,A B 的中点为P , 过点A ,B ,M 的圆的圆心坐标为(0,)G t,则||G Mr==,由题意知:直线A B 的斜率存在且不为0,设直线A B 的方程为:2xm y =-,联立方程组222,1,3x m y x y =-⎧⎪⎨-=⎪⎩化简整理可得,()223410m y m y --+=,则230m -≠,()222164312120mmm∆=--=+>,12122241,33m y y y y mm+==--,故A B 的中点P 的纵坐标122223p y y m y m+==-,横坐标2623pp x m y m=-=-,则2262,33mP mm⎛⎫⎪--⎝⎭,由圆的性质可知:圆心与弦中点连线的斜率垂直于弦所在的直线,所以222363P Gmtm k m m--==---,化简整理可得:283m tm=-①,则圆心(0,)G t 到直线A B的距离d=)221||3m A B m+===-,2221||2rdA B ⎛⎫=+ ⎪⎝⎭,即()()222222231(2)713mm t tmm+-+=++-,将①代入可得:()()()2222222222282313647133m mm mmmm⎛⎫- ⎪+-⎝⎭+=++--,即()()()()2222222222316436367333mmm mmm+++=+---,整理可得:42560m m -+=,则()()22230m m--=,因为230m -≠,所以220m-=,解得m=∴12km ==±.故选:A. 12.B【分析】把,A P P B 剪开,使得P A B与矩形A B C D 在同一个平面内.延长D C 到M ,使得C MD C=,则四点P ,E ,F ,M 在同一条直线上时,P EE F F D++取得最小值,即空间四边形P E F D 的周长取得最小值.可得122C F PD ==,∴1B F =.∴点E 为A B 的中点.设A F D △的外心为1O ,外接圆的半径为r ,则2s in 45︒=A F r,利用勾股定理进而得出结论. 【详解】如图所示,把,A P P B 剪开,使得P A B与矩形A B C D 在同一个平面内.延长D C 到M ,使得C MD C=,则四点P ,E ,F ,M 在同一条直线上时,P EE F F D++取得最小值,即空间四边形P E F D 的周长取得最小值.可得122C F PD ==,∴1B F=.∴点E 为A B的中点.如图所示,设A F D △的外心为1O ,外接圆的半径为r ,易得45F D A ∠=,则2s in 45==︒A F r设三棱锥PA D F-外接球的半径为R ,球心为O ,连接1O O ,则11122O O P A ==,则222111224R⎛⎛⎫=+= ⎪⎝⎭⎝⎭.∴三棱锥PA D F-外接球的表面积24π11π==R.故选:B. 13.70-【分析】要求2a ,即求展开式中2x 项的系数,进而根据二项式定理求解即可; 【详解】解:因为777(1)(21)(21)(21)x x x x x -+=+-+,对于7(21)x +,其展开式通项为()777177C 22C kkkkkk T x x---+==.所以,7(1)(21)x x -+中含2x 的项为6252772C 2C x x x⋅-,所以展开式中含2x 的项系数为625772C 2C 70⨯-=-.故答案为:70-. 14.4-【分析】用向量的坐标运算即可. 【详解】依题意:()()211211200ca mb ca m cb m +=+=⨯+⨯+⨯+⨯= ,解得m =-4, 故答案为:-4.15.3-【分析】根据已知等式平方后相加可得()1sin 2βα-=-,即()1sin 2αβ-=,根据已知角度范围即可得6παβ-=,从而可得s in3β=πs in 63α⎛⎫-= ⎪⎝⎭得所求.【详解】等式sin 2c o s 2sin c o s 1βααβ+=-=,两边同时平方得22s in 4c o s 4s in c o s 2βαβα++=,24s in c o s 4s in c o s 1αβαβ+-=,两式相加,得414sin c o s 4sin c o s 3βααβ++-=,,整理得()1sin 2βα-=-,即1s i n()2αβ-=,因为ππ22βα-<-<,所以6παβ-=,得π6αβ=+,代入2sin c o s 1αβ-=,得2sin c o s 16πββ⎛⎫+-= ⎪⎝⎭,即s in3β=πs in 63α⎛⎫-= ⎪⎝⎭则ππππc o s c o s s in 36263ααα⎛⎫⎛⎫⎛⎫+=-+=--=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭故答案为:3-16.221e,e ⎡⎫++∞⎪⎢⎣⎭【分析】由函数()f x 有两个极值点分别为12,xx ,可知()f x 不单调,利用导数求得a 的范围,运用韦达定理可得122212ax x x x =+=+>,作差()()12f x fx -,再由条件,结合恒成立思想,运用函数的单调性,构造函数421e 1()ln (1)2eF x x x x x-=-+>,通过求导,判断单调性可得22ex ≥,即可得到a 的范围.【详解】∵函数1()ln ()f x x a x a x=-+∈R 有两个极值点分别为12,x x ,()f x 的定义域为221(0,),()x a x f x x-'++∞=-,令2()1g x x a x =-+,其判别式2Δ4a =-,当22a -≤≤时,Δ0,()0,()f x f x '≤≤在(0,)+∞上单调递减,不合题意.当2a <-时,Δ0,()0g x >=的两根都小于零,在(0,)+∞上,()0f x '<,则()f x 在(0,)+∞上单调递减,不合题意. 当2a>时,Δ0>,设()0g x =的两个根12,xx 都大于零,令1212122x x x x =<==,当10x x <<时,()0f x '<,当12xx x <<时,()0f x '>,当2xx >时,()0f x '<,故()f x 分别在区间()10,x ,()2,x +∞上单调递减,在区间()12,x x 上单调递增,则122212a x x x x =+=+>,∴a 的取值范围是(2,)+∞.∵()()1211221211ln ln ⎛⎫-=-+--+=⎪⎝⎭f x fx x a x x a x x x ()()21211212ln ln x x x x a x x x x -+-+-,∴()()121212121212121ln ln ln ln 12fx fx x x x x aax x x x x x x x ---=--+=-+---,若()()2124124e2e 1fx fx a x x -≤---恒成立,则212412ln ln 4e22e 1x x aa x x --+≤---,∴212412ln ln 4ee 1x x x x -≤--,由12x x <,则()412122e 1lnln 4ex x x x --≤-.又121x x =,∴()422221e 12ln4ex x x --≤-,∴()4222221e 1ln 012ex x x x --+≤>①恒成立,记421e 1()ln (1)2eF x x x x x-=-+>,4221e 1()12e F x xx-=--+',记()0F x '=的两根为4121e 122e x ⎡-⎢=-⎢'⎣,4221e 122e x ⎡-⎢=+⎢'⎣,()F x 在区间()21,x '上单调递增,在区间()2,x '+∞上单调递减,且易知2121e x x <<<<''.又()2(1)0,e0F F ==,∴当()2ex ∈1,时,()0F x >;当)2,e x ⎡∈+∞⎣时,()0F x ≤.故由①式可得,22ex ≥,代入方程()222210g x x a x =-+=,得222211e ea x x =+≥+.又2a>, ∴a 的取值范围是221e,e ⎡⎫++∞⎪⎢⎣⎭.故答案为:221e,e ⎡⎫++∞⎪⎢⎣⎭.【点睛】关键点点睛:本题考查利用导数求单调区间、极值,主要考查极值的运用,运用分类讨论的思想方法是解题的关键,同时考查函数的单调性的运用和基本不等式的运用,考查运算能力,属于难题. 17.(1)32n a n =-;(2)1(35)210n n T n +=-⋅+.【分析】(1)根据给定条件,结合等差数列定义判断求解作答. (2)利用(1)的结论,利用错位相减法求和作答. 【详解】(1)依题意,130n n a a +-+=,即13n na a +-=,因此数列{}n a 是公差为3的等差数列,则63(6)32na a n n =+-=-,所以数列{}n a 的通项公式是32n a n =-.(2)由(1)得(32)2nn b n =-⋅,则1321242(342)22nnT n =⨯+⨯⨯+⋅⋅⋅-⨯++,于是23121242(35)2(32)2nn nT n n +=⨯+⨯+⋅⋅⋅+-⨯+-⨯,两式相减得1231122()23(222(32)2(3212)22)123n n n n nT n n +-+-=+++⋅⋅⋅⋅+--⋅--⋅-=+-1(53)210n n +⋅=--,所以1(35)210n nT n +=-⋅+.18.(1)0r r<(2)0.36 6.4ˆ32yx =+,估计B 考生的物理成绩约为81.2分【分析】(1)根据已知条件,结合散点图,即可求解.(2)根据已知条件,结合最小二乘法,以及线性回归方程的公式,求出线性回归方程,再将125x =代入,即可求解.【详解】(1)0r r<理由如下:由图可知,y 与x 成正相关关系, ①异常点A ,B 会降低变量之间的线性相关程度,②52个数据点与其回归直线的总偏差更大,回归效果更差,所以相关系数更小, ③50个数据点与其回归直线的总偏差更小,回归效果更好,所以相关系数更大, ④50个数据点更贴近其回归直线l , ⑤52个数据点与其回归直线更离散. (2)由题中数据可得:50501111116,785050i i i i xx y y ======∑∑,所以()()5050115010370iii i i i x xy yx y x y ==--=-=∑∑,所以()()()501502110370ˆ0.3628540iii ii xxy ybxx==--==≈-∑∑,780.36ˆˆ11636.24a y b x =-=-⨯=,所以0.36 6.4ˆ32y x =+,将125x =代入,得0.3612536.2481.2481.2y =⨯+=≈,所以估计B 考生的物理成绩约为81.2分. 19.(1)证明见解析 (2)π4【分析】(1)连接A C 交B E 于点G ,连接F G ,利用线面平行的性质得//P A F G ,利用平行线分线段成比例可得线段长度,从而由勾股定理得线线垂直,再利用线面垂直的判定定理证明线面垂直;(2)利用线面关系,证明线线垂直,建立空间直角坐标系,根据空间向量的坐标运算分别确定平面A B F 与平面A B D 的法向量,根据坐标运算得二面角的余弦值,即可确定二面角大小.【详解】(1)连接A C 交B E 于点G ,连接F G ,因为//P A 平面B E F ,平面P A C 平面B E FF G=,P A⊂平面P A C ,所以//P A F G ,又//B E C D,所以13A F A F A G P F D EB CG CF C====,又3D E=,所以1,4A EA D ==.因为P E A D⊥,所以2P A==,P D==所以222P A P D A D+=,所以P A P D⊥,又,,,P AP C P D P C P P D P C ⊥⋂=⊂平面P C D ,所以P A ⊥平面P C D . (2)因为P A ⊥平面P C D ,C D⊂平面P C D ,所以P AC D⊥,又,A D C D P A A D A ⊥⋂=,,P A A D⊂平面P A D ,所以C D⊥平面P A D ,又P E⊂平面P A D ,所以P EC D⊥,又P E A D⊥,A DC D D =,A D C D ⊂平面A B C D所以P E ⊥平面A B C D .如图建系,则3(1,0,0),(0,0),(3,0,0),,444A B D F ⎛-- ⎝⎭,7333,,,(1,3,0)444A F A B ⎛⎫=-- ⎝⎭,设平面A B F 的一个法向量为(,,)mx y z=,则720044400z y A F m x y z x A B m x ⎧⎧=⎧⋅=-++=⎪⎪⎪⇒⇒⎨⎨⎨=⎪⋅=⎪⎩⎪⎩-+=⎩,取1y =,得2)m =,又平面A B D的一个法向量为(0,0,1)n=,所以2c o s ,2||||22m n m n m n ⋅〈〉===FA B D--为锐角,故二面角F A B D--的大小为π4.20.(1)2215xy+=,28yx=(2)存在,16λ=-【分析】(1)设()00005P xx ⎛⎫> ⎪⎝⎭,由2P Q N P O NS S =△△解得1,5⎛⎫⎪ ⎪⎝⎭P ,利用13525O P P Q a====可得a=,再求得b 的值,即可得椭圆C 方程,由抛物线2:2(0)E yp x p =>的焦点与椭圆C 的焦点重合,即可得抛物线E 的标准方程;(2)设直线l 的方程为(2)yk x =-,()()()()11223344,,,,,,,A x yB x yC x yD x y ,分别让直线l 与椭圆、抛物线联立,得交点坐标关系,从而得弦长,即可求得λ的值. 【详解】(1)由题意可设()00005P x x⎛⎫> ⎪⎝⎭,可得2P Q N P O N S S =△△,所以001255P O NS x x =⋅⋅=△,所以01x =,1,5⎛ ⎝⎭P ,所以13525O PP Q a====,所以a=,点P 坐标代入椭圆方程得1b =,所以椭圆C 方程为2215xy+=,所以2c=,即4p=,所以抛物线E 方程为28y x=.(2)设()()()()11223344,,,,,,,A x y B x y C x y D x y .直线l 的方程为(2)yk x =-,与椭圆C 的方程联立()22152x y y k x ⎧+=⎪⎨⎪=-⎩得()222215202050k xk x k+-+-=,则()()()4222Δ4002051412010kkkk=-+-=+>恒成立,所以2212122220205,1515kk x x x x kk-+==++则)221||15kA Bk+==+.直线l 的方程为(2)y k x =-,与抛物线E 的方程联立28,(2),y x y k x ⎧=⎨=-⎩得()22224840k x k x k -++=.()223434228148,||4kkx x C D x x kk+++==++=.()()()22222215(20)4||||218181k kk A B C D kkkλλλ+++=+=+++.||||A B C D λ+为常数,则204λ+=,得16λ=-.故存在16λ=-||||A B C D λ为常数.21.(1)证明见解析 (2)13a ≥【分析】(1)求导,根据导函数判断函数()f x 的单调性,再根据零点存在法则求解; (2)求导,根据导函数的结构,对a 分类讨论. 【详解】(1)π110,,()s in c o s ,()s in c o s 222x f x x x x f x x x x ⎛⎫∈=-=-' ⎪⎝⎭ ,令'()()h x f x = ,则'3()sin co s 02h x x x x =+> ,则π0,,()2x f x '⎛⎫∈ ⎪⎝⎭单调递增,且''1ππ(0),222f f ⎛⎫=-= ⎪⎝⎭,∴'π0,,()02t f t ⎛⎫∃∈= ⎪⎝⎭ ,'(0,),()0,()x t f x f x ∈<单调递减,'π,,()0,()2x t f x f x ⎛⎫∈> ⎪⎝⎭单调递增,且π1(0)0,022f f ⎛⎫==> ⎪⎝⎭,则()0<f t ,∴存在唯一零点0π,2x t ⎛⎫∈ ⎪⎝⎭,使得()00f x =,即()f x 有唯一零点;(2)3()s in c o s g x x x x a x=--,则'()(s in 3)g x x x a x =- ,又令'()s in 3,()c o s 3h x x a x h x x a=-=- ,①当31a≤-,即13a ≤-时,()0h x '≥ 恒成立,∴()h x 在区间[0,)+∞上单调递增,∴()(0)0h x h ≥=,∴'()0g x ≥ ,∴()g x 在区间[0,)+∞上单调递增, ∴()(0)0g x g ≥=(不合题意);②当31a≥即13a ≥时,'()0,()h x h x ≤在区间[0,)+∞上单调递减,∴()(0)0h x h ≤=,∴'()0g x ≤ ,∴()g x 在区间[0,)+∞上单调递减, ∴()(0)0g x g ≤=(符合题意);③当131a -<<,即1133a -<<时,由''(0)130,(π)130h a h a =->=--< ,∴0(0,π)x ∃∈ ,使()'00h x = ,且()00,x x ∈时,''()0,()(0)0,()0h x h x h g x >>=> ,∴()g x 在()00,x x ∈上单调递增,∴()(0)0g x g >=(不符合题意);综上,a 的取值范围是13a≥;【点睛】本题的函数类型是三角函数与非三角函数组合成的,对于这一类函数往往是在一个周期()2π 内讨论或半个周期()π内讨论 ;如果一次求导不能判断清楚导函数的符号,则需要多次求导,而且每次求导后都要研究导函数的解析式能否判断清楚导函数的符号,直至能判断清楚导函数的符号为止.22.(1)83(2)41)3【分析】(1)根据极坐标方程可得椭圆C 的标准方程,又直线l 经过点椭圆焦点F ,将直线参数方程代入椭圆方程,得坐标关系,即可得||||F A F B +的值;(2)设点P 坐标为(2c o s in )θθ,直线l 的直角坐标方程为0x y --=,由点到直线的距离,结合三角函数的图象性质求得距离最大值,即可求得P A B的面积最大值.【详解】(1)由2222c o s 2s in 4ρθρθ+=得椭圆C 的方程为22142xy+=,其焦点F坐标为答案第16页,共16页0),由题意得直线l 经过点F,其参数方程为x y ⎧=⎪⎨=⎪⎩(t 为参数),代入椭圆C 的方程整理得23210t t +-=,所以121221,33t t t t +=-=-,所以121282223F A F B t t t t +==+=-===(2)由椭圆方程22142xy+=,可设点P 坐标为(2c o s ,in )θθ,又直线l 的直角坐标方程为0x y --=,∴点P 到直线l的距离d ==ta n 2φ=,所以m a x 1d =+,因为18||,||||||23P A BS A B d A B F A F B =⋅=+=△,所以P A B323.(1)52m=-(2)证明见解析【分析】(1)讨论去绝对值可得()f x 的解析式及最小值;(2)由(1)可得5a b +=,利用基本不等式可得答案.【详解】(1)当12x <时,5()21322=-++-=--≥-f x x x x ,当132x ≤≤时,5()21334,52⎡⎤=-+-=-∈-⎢⎥⎣⎦f x x x x ,当3x >时,()21325=--+=+>f x x x x ,综上,12,21()34,322,3x x f x x x x x ⎧--<⎪⎪⎪=-≤≤⎨⎪+>⎪⎪⎩,可知当12x=时,()f x 有最小值52-,所以52m=-;(2)由(1)可得5a b +=,因为a ,b 为正实数,所以222,2abb a a bba+≥+≥,所以225aba b b a+≥+=.。
河南省八校2015高三(上)第一次联考数学试卷(文科)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合A={x|x2﹣5x+6=0},B={x|y=log2(2﹣x)},则A∩(∁RB)=()A. {2,3} B. {﹣1,6} C. {3} D. {6}2.设复数z1,z2在复平面内的对应点关于虚轴对称,z1=2+i,则z1z2=()A.﹣5 B. 5 C.﹣4+i D.﹣4﹣i3.设a,b为实数,则“a>b>0是<”的()A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分又不必要条件4.一个几何体的三视图是一个正方形,一个矩形,一个半圈,尺寸大小如图所示,则该几何体的表面积是()A.πB. 3π+4 C.π+4 D. 2π+45.已知向量=(sin(α+),1),=(4,4cosα﹣),若⊥,则sin(α+)等于()A.﹣B.﹣C. D.6.已知等差数列{an}中,Sn是前n项和,S1=﹣6,S5﹣S2=6,则|a1|+|a2|+|a3|+|a4|+|a5|﹣=()A. 0 B. 6 C. 12 D. 187.某程序框图如图,当输入x=3时,则输出的y=()A. 1 B. 2 C. 4 D. 88.已知函数f(x)是R上的可导函数,f(x)的导数f′(x)的图象如图,则下列结论正确的是()A. a,c分别是极大值点和极小值点B. b,c分别是极大值点和极小值点C. f(x)在区间(a,c)上是增函数D. f(x)在区间(b,c)上是减函数9.设a=2﹣0.5,b=log3π,c=log42,则()A. b>a>c B. b>c>a C. a>b>c D. a>c>b10.中心在原点,焦点在x轴上的双曲线,一条渐近线方程是y=x,则双曲线的离心率是()A. B.C. D. 211.已知函数f(x)=+ax2+2bx+c的两个极值分别为f(x1)和f(x2),若x1和x2分别在区间(﹣2,0)与(0,2)内,则的取值范围为()A.(﹣2,)B. [﹣2,]C.(﹣∞,﹣2)∪(,+∞)D.(﹣∞,﹣2]∪[,+∞)12.函数f(x)=lnx+x﹣,则函数的零点所在的区间是()A.(,)B.(,)C.(,1)D.(1,2)二、填空题:(本大题共4小题,每小题5分,共20分)13.若函数y=f(x)的值域是[1,3],则函数F(x)=1﹣2f(x+3)的值域是_________ .14.已知数列{an}中,Sn是前n项和,且Sn=2an+1,则数列的通项an= _________ .15.若函数f(x)=x3+a|x﹣1|在[0,+∞)上单调递增,则实数a的取值范围是_________ .16.已知下列5个命题,其中正确的是命题_________ (写出所有正确的命题代号)①函数y=x+,x∈[1,4]的最大值是4;②底面直径和高都是2的圆柱侧面积,等于内切球的表面积;③在抽样过程中,三种抽样方法抽取样本时,每个个体被抽取的可能性不相等;④F1,F2是椭圆+=1(a>0)的两个焦点,过F1点的弦AB,△ABF2的周长是4a;⑤“∀x∈R,|x|>x”的否定,“∃x∈R,|x|≤x”.三、解答题:解答应写出必要的文字说明、证明过程或演算步骤.(共70分)17.(12分)设△ABC的内角A,B,C的对边分别为a,b,c,且b=3,c=2,S△ABC=.(Ⅰ)求角A的值;(Ⅱ)当角A钝角时,求BC边上的高.18.(12分)抛掷一枚质地不均匀的骰子,出现向上点数为1,2,3,4,5,6的概率依次记为p1,p2,p3,p4,p5,p6,经统计发现,数列{pn}恰好构成等差数列,且p4是p1的3倍.(Ⅰ)求数列{pn}的通项公式.(Ⅱ)甲、乙两人用这枚骰子玩游戏,并规定:掷一次骰子后,若向上点数为奇数,则甲获胜,否则已获胜,请问这样的规则对甲、乙二人是否公平?请说明理由;(Ⅲ)甲、乙、丙三人用这枚骰子玩游戏,根据掷一次后向上的点数决定胜出者,并制定了公平的19.(12分)已知矩形ABCD,ED⊥平面ABCD,EF∥DC,EF=DE=AD=AB=2,O为BD中点.(Ⅰ)求证:EO∥平面BCF;(Ⅱ)求几何体ABCDEF的体积.20.(12分)已知抛物线y=x2,过点P(0,2)作直功l,交抛物线于A、B两点,O为坐标原点.(Ⅰ)求证:•为定值;(Ⅱ)求三角形AOB面积的最小值.21.(12分)已知函数f(x)=,其中a∈R(Ⅰ)若a=0,求函数f(x)的定义域和极值;(Ⅱ)当a=1时,试确定函数g(x)=f(x)﹣1的零点个数,并证明.四、选考题(请考生在第22、23、24题中任选一题作答,如果多做,则按所做第一题记分.)选修4-1:几何证明选讲22.(10分)如图,D,E分别为△ABC的边AB,AC上的点,且不与△ABC的顶点重合,已知AE的长为m,AC的长为n,AD,AB的长是关于x的方程x2﹣14x﹣mn=0的两个根.(Ⅰ)证明:C,B,D,E四点共圆;(Ⅱ)若∠A=90°,且m=4,n=6,求C,B,D,E所在圆的半径.五、选考题(请考生在第22、23、24题中任选一题作答,如果多做,则按所做第一题记分.)选修4-4:坐标素与参数方程23.已知圆C的极坐标方程为ρ=2cosθ,直线l的参数方程为(t为参数,t∈R).(Ⅰ)求直线l的普通方程和圆C的直角坐标方程;(Ⅱ)求直线l与圆C相交的弦长.六、选考题(请考生在第22、23、24题中任选一题作答,如果多做,则按所做第一题记分.)选修4-5:不等式选讲24.设函数f(x)=|2x+1|﹣|x﹣3|(1)求函数y=f(x)的最小值;(2)若f(x)≥ax+恒成立,求实数a的取值范围.高三数学(文)试题参考答案 一选择题:二填空题: 13. [5,1]-- 14. 12n n a -=- 15. [3,0]- 16. ②⑤三解答题:17. (本小题满分12分)解:(Ⅰ)由题设3,2,ABC b c S ∆===和1sin 2ABC S bc A∆=得,132sin 2A ⨯⨯=,∴sin A =…………………………4分∴60A =或120A =………………….………………6分 (Ⅱ)由已知120A =…………………………………………7分由余弦定理得,29412cos12019a =+-=,∴a =………10分设BC 边上的高为h ,由三角形面积相等得,h =⇒=12分18.(本小题满分12分)解:(Ⅰ)设数列{}n p 的公差为d ,由4p 是1p 的3倍及概率的性质,有1113365612p d p p d +=⎧⎪⎨⨯+=⎪⎩ ,解111,1624p d ==, 故21,16,N 48n n n p n *+=≤≤∈. …………………………4分(Ⅱ)不公平,甲获胜的概率123371174816P p p p ++=++==甲,乙获胜的概456591394816P p p p ++=++==乙,二者概率不同,所以不公平.……………8分(Ⅲ)(共6种可能,答出任意2种即可)题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 A B A B B C A C A D CC……………………12分 19. (本小题满分12分)证明:(Ⅰ)在矩形ABCD 中,取BC 的中点G ,连接FG ,OG由O 为BD 中点知,OG ∥DC ,OG= 12DC ,又EF ∥DC ,EF= 12AB= 12DC∴OG ∥EF 且OG=EF ,∴OGFE 是平行四边形,……………4分∴EO ∥FG ,又FG ⊂平面BCF ,∴EO∥平面BCF ……………………6分解:(Ⅱ)连接AC ,AF ,则几何体ABCDEF 的 体积为A EDCF F ABC V V V --=+………………………7分由ED ⊥平面ABCD ,ABCD 为矩形得,AD ⊥平面EDCF , ∴AD 是四棱锥A EDCF -的高,又EF ∥DC ,∴EDCF 是直角梯形,又EF=DE=AD=12AB=2,∴1162433A EDCF EDCF V S AD -=⨯⨯=⨯⨯=………………………9分在三棱锥F ABC -中,高ED=2,∴11842333F ABC ABC V S ED -∆=⨯⨯=⨯⨯=…………………………11分 ∴几何体ABCDEF 的体积为820433V =+=…………………………12分20. (本小题满分12分)证明:(Ⅰ)设过点(0,2)P 的直线l :2y kx =+,ABCD OEFG由2214y kx y x =+⎧⎪⎨=⎪⎩得,2480x kx --=令1122(,),(,)A x y B x y ,∴12124,8x x k x x +==-………………4分∴2212121212116OA OB x x y y x x x x ⋅=+=+844=-+=-为定值……6分解:(Ⅱ)由(Ⅰ)知,12||||AB x x =-==,原点到直线l的距离d =……………10分∴1||2AOB S AB d ∆=⨯⨯=≥当0k =时,三角形AOB面的最小,最小值是………………12分21.(本小题满分12分)解:(Ⅰ)函数()1xe f x x =+的定义域为{|,x x ∈R 且1}x ≠-, ………………2分2()(1)xxe f x x '=+.令()0f x '=,得0x =.当x 变化时,()f x 和()f x '的变化情况如下:x(,1)-∞-(1,0)-0 (0,)+∞()f x ' - - 0+ ()f x↘↘极小↗所以()f x 的单调减区间为(,1)-∞-,(1,0)-;单调增区间(0,)+∞.故当0x =时,函数()f x 有极小值(0)1f =. ……………… 5分(Ⅱ)结论:函数()g x 存在两个零点.证明过程如下:由题意,函数2()11xe g x x x =-++. 因为22131()024x x x ++=++>.所以函数()g x 的定义域为R .求导,得 22222e (1)e (21)e (1)()(1)(1)x x x x x x x x g x x x x x ++-+-'==++++,…………………… 7分令()0g x '=,得10x =,21x =,当x 变化时,()g x 和()g x '的变化情况如下:故函数()g x 的单调减区间为(0,1);单调增区间为(,0)-∞,(1,)+∞.当0x =时,函数()g x 有极大值(0)0g =;当1x =时,函数()g x 有极小值e (1)13g =-. ………………………… 10分 因为函数()g x 在(,0)-∞单调递增,且(0)0g =,所以对于任意(,0)x ∈-∞,()0g x ≠. 因为函数()g x 在(0,1)单调递减,且(0)0g =,所以对于任意(0,1)x ∈,()0g x ≠.因为函数()g x 在(1,)+∞单调递增,且e(1)103g =-<,2e (2)107g =->,所以函数()g x 在(1,)+∞上存在唯一0x ,使得0()0g x =,故函数()g x 存在两个零点(即0和0x ). ……………… 12分请考生在第22、23、24三题中任选一题做答,如果多做,则按所做的第一题记分。
2025届安徽省”皖南八校“联盟高三第一次调研测试数学试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置. 3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B 铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效. 5.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.如图所示,网络纸上小正方形的边长为1,粗线画出的是某四棱锥的三视图,则该几何体的体积为( )A .2B .83C .6D .82.已知集合{}10,1,0,12x A x B x -⎧⎫=<=-⎨⎬+⎩⎭,则A B 等于( )A .{}11x x -<<B .{}1,0,1-C .{}1,0-D .{}0,13.已知双曲线的两条渐近线与抛物线22,(0)y px p =>的准线分别交于点、,O 为坐标原点.若双曲线的离心率为2,三角形AOB 3p=( ). A .1B .32C .2D .34.已知双曲线2222:1x y a bΓ-=(0,0)a b >>的一条渐近线为l ,圆22:()4C x c y -+=与l 相切于点A ,若12AF F ∆的面积为23Γ的离心率为( ) A .2B 23C .73D 21 5.如图,网格纸是由边长为1的小正方形构成,若粗实线画出的是某几何体的三视图,则该几何体的表面积为( )A .920π+B .926π+C .520π+D .526π+6.函数的图象可能是下列哪一个?( )A .B .C .D .7.已知(2sin,cos),(3cos,2cos)2222xxxxa b ωωωω==,函数()f x a b =·在区间4[0,]3π上恰有3个极值点,则正实数ω的取值范围为( ) A .85[,)52B .75[,)42C .57[,)34D .7(,2]48.两圆()224x a y ++=和()221x y b +-=相外切,且0ab ≠,则2222a b a b+的最大值为( ) A .94B .9C .13D .19.已知椭圆22221(0)x y a b a b+=>>的焦点分别为1F ,2F ,其中焦点2F 与抛物线22y px =的焦点重合,且椭圆与抛物线的两个交点连线正好过点2F ,则椭圆的离心率为( ) A .22B .21-C .322-D .31-10.已知数列满足:.若正整数使得成立,则( ) A .16B .17C .18D .1911.已知函数()x af x x e-=+,()()ln 24a xg x x e-=+-,其中e 为自然对数的底数,若存在实数0x ,使()()003f x g x -=成立,则实数a 的值为( )A .ln 21--B .1ln 2-+C .ln 2-D .ln 212.已知三棱锥A BCD -的所有顶点都在球O 的球面上,AD ⊥平面,120ABC BAC ︒∠=,2AD =,若球O 的表面积为20π,则三棱锥A BCD -的体积的最大值为( ) A 3B 23C 3D .23二、填空题:本题共4小题,每小题5分,共20分。
河南省八校2015届高三上学期第一次联考数学试卷(理科)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)在复平面内,复数对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限2.(5分)若sin2t=﹣cosxdx,其中t∈(0,π),则t=()A.B.C.D.π3.(5分)在某项测量中,测量结果ξ服从正态分布N(2,σ2)(σ>0),若ξ在(0,2)内取值的概率为0.4,则ξ在(0,+∞)内取值的概率为()A.0.2 B.0.4 C.0.8 D.0.94.(5分)设p:f(x)=x3﹣2x2﹣mx+1在(﹣∞,+∞)上单调递增;q:m>,则p是q的()A.充要条件B.充分不必要条件C.必要不充分条件D.以上都不对5.(5分)将函数y=cosx+sinx(x∈R)的图象向左平移m(m>0)个长度单位后,所得到的图象关于原点对称,则m的最小值是()A.B.C.D.6.(5分)x、y满足约束条件,若z=y﹣ax取得最大值的最优解不唯一,则实数a的值为()A.或﹣1 B.2或C.2或1 D.2或﹣17.(5分)若表示不超过x的最大整数,执行如图所示的程序框图,则输出的S值为()A.4 B.5 C.7 D.98.(5分)等差数列{a n}的前n项和为S n,且a1+a2=10,a3+a4=26,则过点P(n,a n)和Q(n+1,a n+1)(n∈N*)的直线的一个方向向量是()A.(﹣,﹣2)B.(﹣1,﹣2)C.(﹣,﹣4)D.(2,)9.(5分)在△ABC中,内角A,B,C的对边分别为a,b,c,sin=,a=b=3,点P是边AB上的一个三等分点,则•+•=()A.0 B.6 C.9 D.1210.(5分)一个几何体的三视图如图所示,其中正视图是一个正三角形,则这个几何体的外接球的表面积为()A.B.C.D.11.(5分)已知y=f(x)为R上的可导函数,当x≠0时,,则关于x的函数的零点个数为()A.1 B.2 C.0 D.0或212.(5分)已知函数f(x)=,若存在实数x1,x2,x3,x4,满足x1<x2<x3<x4,且f(x1)=f(x2)=f(x3)=f(x4),则的取值范围是()A.(0,12)B.(4,16)C.(9,21)D.(15,25)二、填空题:本大题共4小题,每小题5分,共20分.13.(5分)已知双曲线=1的右焦点为(3,0),则该双曲线的离心率等于.14.(5分)若(2x﹣3)5=a0+a1x+a2x2+a3x3+a4x4+a5x5,则a1+2a2+3a3+4a4+5a5等于.15.(5分)已知函数f(x)=e sinx+cosx﹣sin2x(x∈R),则函数f(x)的最大值与最小值的差是.16.(5分)下列说法:①“∃x∈R,使2x>3”的否定是“∀x∈R,使2x≤3”;②函数y=sin(2x+)sin(﹣2x)的最小正周期是π,③命题“函数f(x)在x=x0处有极值,则f′(x0)=0”的否命题是真命题;④f(x)是(﹣∞,0)∪(0,+∞)上的奇函数,x>0时的解析式是f(x)=2x,则x<0时的解析式为f(x)=﹣2﹣x其中正确的说法是.三、解答题:本大题共5小题,共70分,解答应写出文字说明、证明过程或演算步骤.17.(12分)在△ABC中,a,b,c分别是角A,B,C的对边,且2cosAcosC(tanAtanC﹣1)=1.(Ⅰ)求B的大小;(Ⅱ)若,,求△ABC的面积.18.(12分)现有4个人去参加娱乐活动,该活动有甲、乙两个游戏可供参加者选择.为增加趣味性,约定:每个人通过掷一枚质地均匀的骰子决定自己去参加哪个游戏,掷出点数为1或2的人去参加甲游戏,掷出点数大于2的人去参加乙游戏.(1)求这4个人中恰有2人去参加甲游戏的概率;(2)求这4个人中去参加甲游戏的人数大于去参加乙游戏的人数的概率;(3)用X,Y分别表示这4个人中去参加甲、乙游戏的人数,记ξ=|X﹣Y|,求随机变量ξ的分布列与数学期望Eξ.19.(12分)如图,在直三棱柱ABC﹣A1B1C1中,平面A1BC⊥侧面A1ABB1,且AA1=AB=2.(1)求证:AB⊥BC;(2)若直线AC与平面A1BC所成的角为,求锐二面角A﹣A1C﹣B的大小.20.(12分)已知椭圆C的中心在原点,离心率等于,它的一个短轴端点点恰好是抛物线x2=8y的焦点.(1)求椭圆C的方程;(2)已知P(2,3)、Q(2,﹣3)是椭圆上的两点,A,B是椭圆上位于直线PQ两侧的动点,①若直线AB的斜率为,求四边形APBQ面积的最大值;②当A、B运动时,满足∠APQ=∠BPQ,试问直线AB的斜率是否为定值,请说明理由.21.(12分)已知函数f(x)=(a+1)lnx+ax2+1(1)讨论函数f(x)的单调性;(2)设a<﹣1.如果对任意x1,x2∈(0,+∞),|f(x1)﹣f(x2)|≥4|x1﹣x2|,求a的取值范围.四、选考题(请考生在第22、23、24题中任选一题作答,如果多做,则按所做第一题记分.)选修4-1:几何证明选讲22.(10分)已知AB为半圆O的直径,AB=4,C为半圆上一点,过点C作半圆的切线CD,过点A作AD⊥CD于D,交半圆于点E,DE=1.(Ⅰ)求证:AC平分∠BAD;(Ⅱ)求BC的长.五、选考题(请考生在第22、23、24题中任选一题作答,如果多做,则按所做第一题记分.)选修4-4:坐标素与参数方程23.已知在直角坐标系xOy中,直线l的参数方程为(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ2﹣4ρcosθ=0.(Ⅰ)求直线l的普通方程和曲线C的直角坐标方程;(Ⅱ)设点P是曲线C上的一个动点,求它到直线l的距离d的取值范围.六、选考题(请考生在第22、23、24题中任选一题作答,如果多做,则按所做第一题记分.)选修4-5:不等式选讲24.关于x的不等式lg(|x+3|﹣|x﹣7|)<m.(Ⅰ)当m=1时,解此不等式;(Ⅱ)设函数f(x)=lg(|x+3|﹣|x﹣7|),当m为何值时,f(x)<m恒成立?河南省八校2015届高三上学期第一次联考数学试卷(理科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)在复平面内,复数对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限考点:复数代数形式的乘除运算;复数的代数表示法及其几何意义.专题:计算题.分析:首先把复数的分子分母都乘以分母的共轭复数,化为1﹣i,进而可判断出所对应的点位于的象限.解答:解:∵===1﹣i.∴复数对应的点是(1,﹣1),位于第四象限.故选:D.点评:本题考查了复数的除法运算及其几何意义,熟练掌握以上有关知识是解决问题的关键.2.(5分)若sin2t=﹣cosxdx,其中t∈(0,π),则t=()A.B.C.D.π考点:定积分.专题:导数的综合应用.分析:将已知中等式中的定积分化简求值,化为关于t的三角函数方程解之.解答:解:因为﹣cosxdx=﹣sinx=0,所以sin2t=0,因为t∈(0,π),所以2t=π,所以t=;故选:B.点评:本题考查了定积分的计算以及三角函数求值,属于基础题.3.(5分)在某项测量中,测量结果ξ服从正态分布N(2,σ2)(σ>0),若ξ在(0,2)内取值的概率为0.4,则ξ在(0,+∞)内取值的概率为()A.0.2 B.0.4 C.0.8 D.0.9考点:正态分布曲线的特点及曲线所表示的意义.专题:计算题;概率与统计.分析:根据ξ服从正态分布N(2,σ2),得到曲线的对称轴是直线x=2,根据所给的ξ在(0,2)内取值的概率为0.4,根据正态曲线的对称性知在(0,+∞)内取值的概率.解答:解:∵ξ服从正态分布N(2,σ2)∴曲线的对称轴是直线x=2,∵ξ在(0,2)内取值的概率为0.4,∴根据正态曲线的性质知在(0,+∞)内取值的概率为0.4+0.5=0.9.故选:D.点评:本题考查正态分布曲线的特点及曲线所表示的意义,主要考查正态曲线的对称性,是一个基础题.4.(5分)设p:f(x)=x3﹣2x2﹣mx+1在(﹣∞,+∞)上单调递增;q:m>,则p是q的()A.充要条件B.充分不必要条件C.必要不充分条件D.以上都不对考点:必要条件、充分条件与充要条件的判断.专题:简易逻辑.分析:根据f(x)=x3﹣2x2﹣mx+1在(﹣∞,+∞)上单调递增,可得f′(x)=3x2﹣4x ﹣m,3x2﹣4x﹣m≥0在R上恒成立,求出m的范围,再根据充分必要条件可判断答案.解答:解:∵f(x)=x3﹣2x2﹣mx+1在(﹣∞,+∞)上单调递增,∴f′(x)=3x2﹣4x﹣m,即3x2﹣4x﹣m≥0在R上恒成立,所以△=16+12m≤0,即m≥﹣,∵p:f(x)=x3﹣2x2﹣mx+1在(﹣∞,+∞)上单调递增;q:m>∴根据充分必要条件的定义可判断:p是q的必要不充分条件,故选:C点评:本题考查了充分必要条件的判断方法,结合导数判断求解,难度适中,有点综合性.5.(5分)将函数y=cosx+sinx(x∈R)的图象向左平移m(m>0)个长度单位后,所得到的图象关于原点对称,则m的最小值是()A.B.C.D.考点:函数y=Asin(ωx+φ)的图象变换.专题:三角函数的图像与性质.分析:利用两角和的正弦化简原函数,然后利用三角函数的图象平移得到平移后图象的函数解析式,由图象关于原点对称列式求得m的最小值.解答:解:设y=f(x)=cosx+sinx(x∈R),化简得f(x)=2(cosx+sinx)=2sin(x+),∴图象向左平移m(m>0)个单位长度得到y=2sin=2sin(x+m+),∵所得的图象关于原点对称,∴m+=kπ(k∈Z),则m的最小正值为.故选:D.点评:本题考查了三角函数的图象平移,考查了两角和的正弦公式,考查了三角函数的性质,是基础题.6.(5分)x、y满足约束条件,若z=y﹣ax取得最大值的最优解不唯一,则实数a的值为()A.或﹣1 B.2或C.2或1 D.2或﹣1考点:简单线性规划.专题:不等式的解法及应用.分析:作出不等式组对应的平面区域,利用目标函数的几何意义,得到直线y=ax+z斜率的变化,从而求出a的取值.解答:解:作出不等式组对应的平面区域如图:(阴影部分ABC).由z=y﹣ax得y=ax+z,即直线的截距最大,z也最大.若a=0,此时y=z,此时,目标函数只在A处取得最大值,不满足条件,若a>0,目标函数y=ax+z的斜率k=a>0,要使z=y﹣ax取得最大值的最优解不唯一,则直线y=ax+z与直线2x﹣y+2=0平行,此时a=2,若a<0,目标函数y=ax+z的斜率k=a<0,要使z=y﹣ax取得最大值的最优解不唯一,则直线y=ax+z与直线x+y﹣2=0,平行,此时a=﹣1,综上a=﹣1或a=2,故选:D点评:本题主要考查线性规划的应用,利用目标函数的几何意义,结合数形结合的数学思想是解决此类问题的基本方法.注意要对a进行分类讨论,同时需要弄清楚最优解的定义.7.(5分)若表示不超过x的最大整数,执行如图所示的程序框图,则输出的S值为()A.4 B.5 C.7 D.9考点:程序框图.专题:算法和程序框图.分析:根据题意,模拟程序框图的运行过程,求出该程序运行后输出的S的值.解答:解:模拟程序框图的运行过程,如下;S=0,n=0,S=0+=0,0>4,否;n=1,S=0+=1,1>4,否;n=2,S=1+=2,2>4,否;n=3,S=2+=3,3>4,否;n=4,S=3+=5,4>4,否;n=5,S=5+=7,5>4,是;输出S=7.故选:C.点评:本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,从而得出该程序运行后的结果是什么.8.(5分)等差数列{a n}的前n项和为S n,且a1+a2=10,a3+a4=26,则过点P(n,a n)和Q(n+1,a n+1)(n∈N*)的直线的一个方向向量是()A.(﹣,﹣2)B.(﹣1,﹣2)C.(﹣,﹣4)D.(2,)考点:等差数列的前n项和.专题:等差数列与等比数列.分析:设等差数列{a n}的公差为d,则由题意可得 2a1+d=10,2a1+5d=26,解得a1=3,d=4,由此求出过点P(n,a n)和Q(n+1,a n+1)(n∈N*)的直线的斜率,从而求得直线的一个方向向量.解答:解:设等差数列{a n}的公差为d,则由题意可得 2a1+d=10,2a1+5d=26,解得a1=3,d=4.故过点P(n,a n)和Q(n+1,a n+1)(n∈N*)的直线的斜率等于d==4,故过点P(n,a n)和Q(n+1,a n+1)(n∈N*)的直线的一个方向向量应和向量(1,4)平行,故选:A.点评:本题主要考查等差数列的定义和性质,直线的斜率的求法,直线的方向向量,属于基础题.9.(5分)在△ABC中,内角A,B,C的对边分别为a,b,c,sin=,a=b=3,点P是边AB上的一个三等分点,则•+•=()A.0 B.6 C.9 D.12考点:平面向量数量积的运算;余弦定理.专题:平面向量及应用.分析:过点C作CO⊥AB,垂足为O.如图所示,.由sin=,可得=,CO,AO=OB=.分别取点P靠近点B,A的三等分点.可得P.利用向量的三角形法则、坐标运算、数量积运算即可得出.解答:解:过点C作CO⊥AB,垂足为O.如图所示,.∵sin=,∴==.∴CO=.∴AO=OB==.取点P靠近点B的三等分点.则P.∴•+•==2•=6.同理取点P靠近点A的三等分点答案也是6.∴•+•=6.故选:B.点评:本题考查了向量的三角形法则、坐标运算、数量积运算、同角三角函数基本关系式,考查了推理能力与计算能力,属于中档题.10.(5分)一个几何体的三视图如图所示,其中正视图是一个正三角形,则这个几何体的外接球的表面积为()A.B.C.D.考点:由三视图求面积、体积.专题:图表型.分析:由已知中几何体的三视图中,正视图是一个正三角形,侧视图和俯视图均为三角形,我们得出这个几何体的外接球的球心O在高线PD上,且是等边三角形PAC的中心,得到球的半径,代入球的表面积公式,即可得到答案.解答:解:由已知中知几何体的正视图是一个正三角形,侧视图和俯视图均为三角形,可得该几何体是有一个侧面PAC垂直于底面,高为,底面是一个等腰直角三角形的三棱锥,如图.则这个几何体的外接球的球心O在高线PD上,且是等边三角形PAC的中心,这个几何体的外接球的半径R=PD=.则这个几何体的外接球的表面积为S=4πR2=4π×()2=故选:A.点评:本题考查的知识点是由三视图求面积、体积,其中根据三视图判断出几何体的形状,分析出几何体的几何特征是解答本题的关键.11.(5分)已知y=f(x)为R上的可导函数,当x≠0时,,则关于x的函数的零点个数为()A.1 B.2 C.0 D.0或2考点:根的存在性及根的个数判断.专题:函数的性质及应用.分析:由题意可得,x≠0,因而 g(x)的零点跟 xg(x)的非零零点是完全一样的.当x>0时,利用导数的知识可得xg(x)在(0,+∞)上是递增函数,xg(x)>1恒成立,可得xg(x)在(0,+∞)上无零点.同理可得xg(x)在(﹣∞,0)上也无零点,从而得出结论.解答:解:由于函数,可得x≠0,因而 g(x)的零点跟 xg(x)的非零零点是完全一样的,故我们考虑 xg(x)=xf(x)+1 的零点.由于当x≠0时,,①当x>0时,(x•g(x))′=(xf(x))′=xf′(x)+f(x)=x(f′(x)+)>0,所以,在(0,+∞)上,函数x•g(x)单调递增函数.又∵=1,∴在(0,+∞)上,函数x•g(x)=xf(x)+1>1恒成立,因此,在(0,+∞)上,函数x•g(x)=xf(x)+1 没有零点.②当x<0时,由于(x•g(x))′=(xf(x))′=xf′(x)+f(x)=x(f′(x)+)<0,故函数x•g(x)在(﹣∞,0)上是递减函数,函数x•g(x)=xf(x)+1>1恒成立,故函数x•g(x)在(﹣∞,0)上无零点.综上可得,函在R上的零点个数为0,故选C.点评:本题考查了根的存在性及根的个数判断,导数与函数的单调性的关系,体现了分类讨论、转化的思想,属于中档题.12.(5分)已知函数f(x)=,若存在实数x1,x2,x3,x4,满足x1<x2<x3<x4,且f(x1)=f(x2)=f(x3)=f(x4),则的取值范围是()A.(0,12)B.(4,16)C.(9,21)D.(15,25)考点:分段函数的应用.专题:计算题;数形结合;函数的性质及应用.分析:画出函数f(x)的图象,确定x1x2=1,x3+x4=12,2<x3<4,8<x4<10,由此可得的取值范围.解答:解:函数的图象如图所示,∵f(x1)=f(x2),∴﹣log2x1=log2x2,∴log2x1x2=0,∴x1x2=1,∵f(x3)=f(x4),∴x3+x4=12,2<x3<x4<10∴=x3x4﹣2(x3+x4)+4=x3x4﹣20,∵2<x3<4,8<x4<10∴的取值范围是(0,12).故选:A.点评:本小题主要考查分段函数的解析式求法及其图象的作法、函数的值域的应用、函数与方程的综合运用等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想,属于中档题.二、填空题:本大题共4小题,每小题5分,共20分.13.(5分)已知双曲线=1的右焦点为(3,0),则该双曲线的离心率等于.考点:双曲线的简单性质.专题:圆锥曲线的定义、性质与方程.分析:利用双曲线=1的右焦点为(3,0),求出|a|,再利用双曲线的定义,即可求出双曲线的离心率.解答:解:∵双曲线=1的右焦点为(3,0),∴a2+5=9,∴|a|=2,∵c=3,∴双曲线的离心率等于.故答案为:.点评:本题考查双曲线的几何性质,考查学生的计算能力,确定双曲线的几何量是关键.14.(5分)若(2x﹣3)5=a0+a1x+a2x2+a3x3+a4x4+a5x5,则a1+2a2+3a3+4a4+5a5等于10.考点:二项式定理.专题:计算题.分析:对已知等式求导数,对求导后的等式中的x赋值1,求出a1+2a2+3a3+4a4+5a5的值.解答:解:对等式两边求导数得10(2x﹣3)4=a1+2a2x+3a3x2+4a4x3+5a5x4令x=1得10=a1+2a2+3a3+4a4+5a5,故答案为10点评:本题考查复合函数的求导法则、考查赋值法求展开式的系数和常用的方法.15.(5分)已知函数f(x)=e sinx+cosx﹣sin2x(x∈R),则函数f(x)的最大值与最小值的差是.考点:函数的最值及其几何意义.专题:函数的性质及应用.分析:令t=sinx+cosx=sin(x+),则t∈,且sin2x=t2﹣1,利用导数法分析y=e t﹣(t2﹣1)在上单调性,进而可得答案.解答:解:令t=sinx+cosx=sin(x+),则t∈,且sin2x=t2﹣1,则y=f(x)=e t﹣(t2﹣1),∵y′=e t﹣t>0在t∈时恒成立,故y=e t﹣(t2﹣1)在上为增函数,故函数f(x)的最大值与最小值的差是y|﹣y|=()﹣()=,故答案为:点评:本题主要考查函数求最值,常要借助函数的单调性,因为本题构成比较复杂,所以采用换元法简化函数的解析式.16.(5分)下列说法:①“∃x∈R,使2x>3”的否定是“∀x∈R,使2x≤3”;②函数y=sin(2x+)sin(﹣2x)的最小正周期是π,③命题“函数f(x)在x=x0处有极值,则f′(x0)=0”的否命题是真命题;④f(x)是(﹣∞,0)∪(0,+∞)上的奇函数,x>0时的解析式是f(x)=2x,则x<0时的解析式为f(x)=﹣2﹣x其中正确的说法是①④.考点:命题的否定;函数奇偶性的性质.专题:压轴题;规律型.分析:根据含量词的命题的否定形式判断出①对,根据二倍角正弦公式先化简函数,再利用三角函数的周期公式求出函数的周期判断出②错;写出否命题,利用特例即可判断③错;根据函数的奇偶性求出f(x)在x<0时的解析式,判断出④对.解答:解:对于①,根据含量词的命题的否定是量词互换,结论否定,故①对对于②,,所以周期T=,故②错对于③,“函数f(x)在x=x0处有极值,则f′(x0)=0”的否命题为“函数f(x)在x=x0处没有极值,则f′(x0)≠0”,例如y=x3,x=0时,不是极值点,但是f′(0)=0,所以③错对于④,设x<0,则﹣x>0,∴f(﹣x)=2﹣x,∵f(x)为奇函数,∴f(x)=﹣2﹣x,故④对故答案为①④点评:求含量词的命题的否定,应该将量词”任意“与”存在“互换,同时结论否定;函数的极值点要满足导数为0且左右两边的导数符号相反.三、解答题:本大题共5小题,共70分,解答应写出文字说明、证明过程或演算步骤.17.(12分)在△ABC中,a,b,c分别是角A,B,C的对边,且2cosAcosC(tanAtanC﹣1)=1.(Ⅰ)求B的大小;(Ⅱ)若,,求△ABC的面积.考点:余弦定理;三角函数中的恒等变换应用;正弦定理.专题:三角函数的求值.分析:(Ⅰ)已知等式括号中利用同角三角函数间基本关系切化弦,去括号后利用两角和与差的余弦函数公式化简,再由诱导公式变形求出cosB的值,即可确定出B的大小;(Ⅱ)由cosB,b的值,利用余弦定理列出关系式,再利用完全平方公式变形,将a+b以及b的值代入求出ac的值,再由cosB的值,利用三角形面积公式即可求出三角形ABC面积.解答:解:(Ⅰ)由2cosAcosC(tanAtanC﹣1)=1得:2cosAcosC(﹣1)=1,∴2(sinAsinC﹣cosAcosC)=1,即cos(A+C)=﹣,∴cosB=﹣cos(A+C)=,又0<B<π,∴B=;(Ⅱ)由余弦定理得:cosB==,∴=,又a+c=,b=,∴﹣2ac﹣3=ac,即ac=,∴S△ABC=acsinB=××=.点评:此题考查了余弦定理,三角形面积公式,两角和与差的余弦函数公式,熟练掌握余弦定理是解本题的关键.18.(12分)现有4个人去参加娱乐活动,该活动有甲、乙两个游戏可供参加者选择.为增加趣味性,约定:每个人通过掷一枚质地均匀的骰子决定自己去参加哪个游戏,掷出点数为1或2的人去参加甲游戏,掷出点数大于2的人去参加乙游戏.(1)求这4个人中恰有2人去参加甲游戏的概率;(2)求这4个人中去参加甲游戏的人数大于去参加乙游戏的人数的概率;(3)用X,Y分别表示这4个人中去参加甲、乙游戏的人数,记ξ=|X﹣Y|,求随机变量ξ的分布列与数学期望Eξ.考点:离散型随机变量的期望与方差;相互独立事件的概率乘法公式;离散型随机变量及其分布列.专题:概率与统计.分析:依题意,这4个人中,每个人去参加甲游戏的概率为,去参加乙游戏的人数的概率为设“这4个人中恰有i人去参加甲游戏”为事件A i(i=0,1,2,3,4),故P(A i)=(1)这4个人中恰有2人去参加甲游戏的概率为P(A2);(2)设“这4个人中去参加甲游戏的人数大于去参加乙游戏”为事件B,则B=A3∪A4,利用互斥事件的概率公式可求;(3)ξ的所有可能取值为0,2,4,由于A1与A3互斥,A0与A4互斥,求出相应的概率,可得ξ的分布列与数学期望.解答:解:依题意,这4个人中,每个人去参加甲游戏的概率为,去参加乙游戏的人数的概率为设“这4个人中恰有i人去参加甲游戏”为事件A i(i=0,1,2,3,4),∴P(A i)=(1)这4个人中恰有2人去参加甲游戏的概率为P(A2)=;(2)设“这4个人中去参加甲游戏的人数大于去参加乙游戏”为事件B,则B=A3∪A4,∴P(B)=P(A3)+P(A4)=(3)ξ的所有可能取值为0,2,4,由于A1与A3互斥,A0与A4互斥,故P(ξ=0)=P(A2)=P(ξ=2)=P(A1)+P(A3)=,P(ξ=4)=P(A0)+P(A4)=∴ξ的分布列是ξ 0 2 4P数学期望Eξ=点评:本题考查概率知识的求解,考查互斥事件的概率公式,考查离散型随机变量的分布列与期望,属于中档题.19.(12分)如图,在直三棱柱ABC﹣A1B1C1中,平面A1BC⊥侧面A1ABB1,且AA1=AB=2.(1)求证:AB⊥BC;(2)若直线AC与平面A1BC所成的角为,求锐二面角A﹣A1C﹣B的大小.考点:用空间向量求平面间的夹角;空间中直线与直线之间的位置关系.专题:空间位置关系与距离;空间角.分析:(1)取A1B的中点D,连接AD,由已知条件推导出AD⊥平面A1BC,从而AD⊥BC,由线面垂直得AA1⊥BC.由此能证明AB⊥BC.(2)连接CD,由已知条件得∠ACD即为直线AC与平面A1BC所成的角,∠AED即为二面角A ﹣A1C﹣B的一个平面角,由此能求出二面角A﹣A1C﹣B的大小.解答:(本小题满分14分)(1)证明:如右图,取A1B的中点D,连接AD,…(1分)因AA1=AB,则AD⊥A1B…(2分)由平面A1BC⊥侧面A1ABB1,且平面A1BC∩侧面A1ABB1=A1B,…(3分)得AD⊥平面A1BC,又BC⊂平面A1BC,所以AD⊥BC.…(4分)因为三棱柱ABC﹣﹣﹣A1B1C1是直三棱柱,则AA1⊥底面ABC,所以AA1⊥BC.又AA1∩AD=A,从而BC⊥侧面A1ABB1,又AB⊂侧面A1ABB1,故AB⊥BC.…(7分)(2)解:连接CD,由(1)可知AD⊥平面A1BC,则CD是AC在平面A1BC内的射影∴∠ACD即为直线AC与平面A1BC所成的角,则…(8分)在等腰直角△A1AB中,AA1=AB=2,且点D是A1B中点∴,且,∴…(9分)过点A作AE⊥A1C于点E,连DE由(1)知AD⊥平面A1BC,则AD⊥A1C,且AE∩AD=A∴∠AED即为二面角A﹣A1C﹣B的一个平面角,…(10分)且直角△A1AC中:又,∴,且二面角A﹣A1C﹣B为锐二面角∴,即二面角A﹣A1C﹣B的大小为.…(14分)点评:本题考查异面直线垂直的证明,考查二面角的大小的求法,解题时要认真审题,注意空间思维能力的培养.20.(12分)已知椭圆C的中心在原点,离心率等于,它的一个短轴端点点恰好是抛物线x2=8y的焦点.(1)求椭圆C的方程;(2)已知P(2,3)、Q(2,﹣3)是椭圆上的两点,A,B是椭圆上位于直线PQ两侧的动点,①若直线AB的斜率为,求四边形APBQ面积的最大值;②当A、B运动时,满足∠APQ=∠BPQ,试问直线AB的斜率是否为定值,请说明理由.考点:直线与圆锥曲线的综合问题;圆锥曲线的共同特征.专题:计算题;圆锥曲线的定义、性质与方程.分析:(Ⅰ)根据椭圆C的一个顶点恰好是抛物线的焦点,离心率等于.由此列式解出出a,b的值,即可得到椭圆C的方程.(Ⅱ)①设A(x1,y1),B(x2,y2),直线AB的方程为,将直线的方程代入椭圆的方程,消去y得到关于x的一元二次方程,再结合根系数的关系利用弦长公式即可求得四边形APBQ的面积,从而解决问题.②设直线PA的斜率为k,则PB的斜率为﹣k,PA的直线方程为y﹣3=k(x﹣2)将直线的方程代入椭圆的方程,消去y得到关于x的一元二次方程,再结合根系数的关系利用弦长公式即可求得x1+2,同理PB的直线方程为y﹣3=﹣k(x﹣2),可得x2+2,从而得出AB的斜率为定值.解答:解:(Ⅰ)设C方程为,则.由,得a=4∴椭圆C的方程为.…(4分)(Ⅱ)①解:设A(x1,y1),B(x2,y2),直线AB的方程为,代入,得x2+tx+t2﹣12=0由△>0,解得﹣4<t<4…(6分)由韦达定理得x1+x2=﹣t,x1x2=t2﹣12.∴==.由此可得:四边形APBQ的面积∴当t=0,.…(8分)②解:当∠APQ=∠BPQ,则PA、PB的斜率之和为0,设直线PA的斜率为k则PB的斜率为﹣k,直线PA的直线方程为y﹣3=k(x﹣2)由(1)代入(2)整理得(3+4k2)x2+8(3﹣2k)kx+4(3﹣2k)2﹣48=0∴…(10分)同理直线PB的直线方程为y﹣3=﹣k(x﹣2),可得∴…(12分)所以AB的斜率为定值.…(14分)点评:本题考查的知识点是椭圆的标准方程,直线与圆锥曲线的综合问题,其中根据已知条件计算出椭圆的标准方程是解答本题的关键.21.(12分)已知函数f(x)=(a+1)lnx+ax2+1(1)讨论函数f(x)的单调性;(2)设a<﹣1.如果对任意x1,x2∈(0,+∞),|f(x1)﹣f(x2)|≥4|x1﹣x2|,求a的取值范围.考点:利用导数研究函数的单调性.专题:计算题;压轴题.分析:(1)先确定函数的定义域然后求导数fˊ(x),在函数的定义域内解不等式fˊ(x)>0和fˊ(x)<0,求出单调区间.(2)根据第一问的单调性先对|f(x1)﹣f(x2)|≥4|x1﹣x2|进行化简整理,转化成研究g (x)=f(x)+4x在(0,+∞)单调减函数,再利用参数分离法求出a的范围.解答:解:(Ⅰ)f(x)的定义域为(0,+∞)..当a≥0时,f′(x)>0,故f(x)在(0,+∞)单调增加;当a≤﹣1时,f′(x)<0,故f(x)在(0,+∞)单调减少;当﹣1<a<0时,令f′(x)=0,解得.则当时,f'(x)>0;时,f'(x)<0.故f(x)在单调增加,在单调减少.(Ⅱ)不妨假设x1≥x2,而a<﹣1,由(Ⅰ)知在(0,+∞)单调减少,从而∀x1,x2∈(0,+∞),|f(x1)﹣f(x2)|≥4|x1﹣x2|等价于∀x1,x2∈(0,+∞),f(x2)+4x2≥f(x1)+4x1①令g(x)=f(x)+4x,则①等价于g(x)在(0,+∞)单调减少,即.从而故a的取值范围为(﹣∞,﹣2].(12分)点评:本小题主要考查函数的导数,单调性,极值,不等式等基础知识,考查综合利用数学知识分析问题、解决问题的能力.四、选考题(请考生在第22、23、24题中任选一题作答,如果多做,则按所做第一题记分.)选修4-1:几何证明选讲22.(10分)已知AB为半圆O的直径,AB=4,C为半圆上一点,过点C作半圆的切线CD,过点A作AD⊥CD于D,交半圆于点E,DE=1.(Ⅰ)求证:AC平分∠BAD;(Ⅱ)求BC的长.考点:圆的切线的性质定理的证明;圆內接多边形的性质与判定.专题:综合题.分析:(Ⅰ)连接OC,因为OA=OC,所以∠OAC=∠OCA,再证明OC∥AD,即可证得AC平分∠BAD.(Ⅱ)由(Ⅰ)知,从而BC=CE,利用ABCE四点共圆,可得∠B=∠CED,从而有,故可求BC的长.解答:(Ⅰ)证明:连接OC,因为OA=OC,所以∠OAC=∠OCA,(2分)因为CD为半圆的切线,所以OC⊥CD,又因为AD⊥CD,所以OC∥AD,所以∠OCA=∠CAD,∠OAC=∠CAD,所以AC平分∠BAD.(4分)(Ⅱ)解:由(Ⅰ)知,∴BC=CE,(6分)连接CE,因为ABCE四点共圆,∠B=∠CED,所以cosB=cos∠CED,(8分)所以,所以BC=2.(10分)点评:本题考查圆的切线,考查圆内接四边形,解题的关键是正确运用圆的切线性质及圆内接四边形的性质.五、选考题(请考生在第22、23、24题中任选一题作答,如果多做,则按所做第一题记分.)选修4-4:坐标素与参数方程23.已知在直角坐标系xOy中,直线l的参数方程为(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ2﹣4ρcosθ=0.(Ⅰ)求直线l的普通方程和曲线C的直角坐标方程;(Ⅱ)设点P是曲线C上的一个动点,求它到直线l的距离d的取值范围.考点:参数方程化成普通方程;简单曲线的极坐标方程.专题:计算题;坐标系和参数方程.分析:(Ⅰ)应用代入法,将t=x+3代入y=t,即可得到直线l的普通方程;将x=ρcosθ,y=ρsinθ,ρ2=x2+y2代入曲线C的极坐标方程,即得曲线C的直角坐标方程;(Ⅱ)由圆的参数方程设出点P(2+2cosθ,2sinθ),θ∈R,根据点到直线的距离公式得到d的式子,并应用三角函数的两角和的余弦公式,以及三角函数的值域化简,即可得到d 的范围.解答:解:( I)直线l的参数方程为(t为参数),将t=x+3代入y=t,得直线l的普通方程为x﹣y=0;曲线C的极坐标方程为ρ2﹣4ρcosθ=0,将x=ρcosθ,y=ρsinθ,ρ2=x2+y2代入即得曲线C的直角坐标方程:(x﹣2)2+y2=4;( II)设点P(2+2cosθ,2sinθ),θ∈R,则d==,∴d的取值范围是:.点评:本题考查参数方程化为普通方程,极坐标方程化为直角坐标方程,同时考查圆上一点到直线的距离的最值,本题也可利用圆上一点到直线的距离的最大(最小)是圆心到直线的距离加半径(减半径).六、选考题(请考生在第22、23、24题中任选一题作答,如果多做,则按所做第一题记分.)选修4-5:不等式选讲24.关于x的不等式lg(|x+3|﹣|x﹣7|)<m.(Ⅰ)当m=1时,解此不等式;(Ⅱ)设函数f(x)=lg(|x+3|﹣|x﹣7|),当m为何值时,f(x)<m恒成立?考点:对数的运算性质;绝对值不等式的解法.专题:计算题;压轴题;选作题.分析:(1)转化成绝对值不等式,令每项等于零,得到的值作为讨论的分区点,然后再分区间讨论绝对值不等式,最后应求出解集的并集.(2)解决恒成立问题,可将问题转化为研究函数f(x)的最大值小于m即可.解答:解:(1)当m=1时,原不等式可变为0<|x+3|﹣|x﹣7|<10,可得其解集为{x|2<x<7}.(2)设t=|x+3|﹣|x﹣7|,则由对数定义及绝对值的几何意义知0<t≤10,因y=lgx在(0,+∞)上为增函数,则lgt≤1,当t=10,x≥7时,lgt=1,故只需m>1即可,即m>1时,f(x)<m恒成立.点评:本题考查了对数的运算性质,以及绝对值不等式的解法,所谓零点分段法,即令每项等于零,得到的值作为讨论的分区点,然后再分区间讨论绝对值不等式,最后应求出解集的并集.。
河南八校2014—2015学年上期第一次联考高三数学(文)试题参考答案一选择题:二填空题: 13. [5,1]-- 14. 12n n a -=- 15. [3,0]- 16. ②⑤ 三解答题:17. (本小题满分12分)解:(Ⅰ)由题设3,2,ABC b c S ∆===1sin 2ABC S bc A ∆=得,132sin 2A ⨯⨯=,∴sin A =…………………………4分 ∴60A =或120A =………………….………………6分 (Ⅱ)由已知120A =…………………………………………7分 由余弦定理得,29412cos12019a =+-=,∴a =………10分 设BC 边上的高为h ,由三角形面积相等得,h =⇒=12分题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 A B A B B C A C ADCC19. (本小题满分12分) 证明:(Ⅰ)在矩形ABCD 中,取BC 的中点G ,连接FG ,OG 由O 为BD 中点知,OG ∥DC ,OG =12DC ,又EF ∥DC ,EF = 12AB= 12DC ∴OG ∥EF 且OG=EF ,∴OGFE 是平行四边形,……………4分∴EO ∥FG ,又FG ⊂平面BCF ,∴EO ∥平面BC F ……………………6分解:(Ⅱ)连接AC ,AF ,则几何体ABCDEF 的 体积为A EDCF F ABC V V V --=+………………………7分由ED ⊥平面ABCD ,ABCD 为矩形得,AD ⊥平面EDCF, ∴AD 是四棱锥A EDCF -的高,又EF ∥DC ,∴EDCF 是直角梯形,又EF=DE=AD=12AB=2,∴1162433A EDCF EDCF V S AD -=⨯⨯=⨯⨯=………………………9分在三棱锥F ABC -中,高ED=2,∴11842333F ABC ABC V S ED -∆=⨯⨯=⨯⨯=…………………………11分∴几何体ABCDEF 的体积为820433V =+=…………………………12分20. (本小题满分12分)证明:(Ⅰ)设过点(0,2)P 的直线l :2y kx =+,由2214y kx y x =+⎧⎪⎨=⎪⎩得,2480x kx --=令1122(,),(,)A x y B x y ,∴12124,8x x k x x +==-………………4分 ∴2212121212116OA OB x x y y x x x x ⋅=+=+844=-+=-为定值……6分 解:(Ⅱ)由(Ⅰ)知,12||||AB x x =-==,原点到直线l 的距离d =……………10分A BC DOEFG 高三数学(文科)参考答案 第2页(共5页)∴1||2AOB S AB d ∆=⨯⨯=≥当0k =时,三角形AOB面的最小,最小值是………………12分21.(本小题满分12分)解:(Ⅰ)函数()1xe f x x =+的定义域为{|,x x ∈R 且1}x ≠-,………………2分2()(1)xxe f x x '=+.令()0f x '=,得0x =.当x 变化时,()f x 和()f x '的变化情况如下: x (,1)-∞- (1,0)- 0(0,)+∞ ()f x ' - - 0 + ()f x↘ ↘ 极小 ↗ 所以()f x 的单调减区间为(,1)-∞-,(1,0)-;单调增区间(0,)+∞.故当0x =时,函数()f x 有极小值(0)1f =. ……………… 5分(Ⅱ)结论:函数()g x 存在两个零点.证明过程如下:由题意,函数2()11xe g x x x =-++.因为22131()024x x x ++=++>.所以函数()g x 的定义域为R .求导,得22222e (1)e (21)e (1)()(1)(1)x x x x x x x x g x x x x x ++-+-'==++++,…………………… 7分 令()0g x '=,得0x =,1x =,当变化时,()g x 和()g x '的变化情况如下: 故函数()g x 的单调减区间为(0,1);单调增区间为(,0)-∞,(1,)+∞. 当0x =时,函数()g x 有极大值(0)0g =;当1x =时,函数()g x 有极小值e(1)13g =-. ………………………… 10分 因为函数()g x 在(,0)-∞单调递增,且(0)0g =,所以对于任意(,0)x ∈-∞,()0g x ≠. 因为函数()g x 在(0,1)单调递减,且(0)0g =,所以对于任意(0,1)x ∈,()0g x ≠.因为函数()g x 在(1,)+∞单调递增,且e(1)103g =-<,2e (2)107g =->, 所以函数()g x 在(1,)+∞上存在唯一0x ,使得0()0g x =,高三数学(文科)参考答案 第3页(共5页)故函数()g x 存在两个零点(即0和0x ). ……………… 12分 请考生在第22、23、24三题中任选一题做答,如果多做,则按所做的第一题记分。
第1页共1页三明市2022-2023学年第一学期普通高中期末质量检测高三数学试题考试时间:2023年1月15日下午3:55-5:55试卷满分:150分考试用时:120分钟注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用2B 铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再涂其他答案。
非选择题部分作答时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(本题共8小题,每小题5分,40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知复数z 在复平面内对应的点与复数12i 在复平面内对应的点关于虚轴对称,则复数z 的共轭复数zA .12iB .12iC .12iD .12i2.已知集合{ln (1)}P x y x ,集合1{2}x Q y y ,则A .P QB .Q PC .P QD .P Q3.设,a b R ,则使a b 成立的一个充分不必要条件是A .33a bB .2lo g ()0a bC .22a bD .11ab4.有专业机构认为某流感在一段时间没有发生大规模群体感染的标志为“连续10天,每天新增疑似病例不超过15人”.根据过去10天甲、乙、丙、丁四地新增疑似病例数据,一定符合该标志的是A .甲地:总体均值为4,中位数为3B .乙地:总体均值为5,总体方差为12C .丙地:中位数为3,众数为2D .丁地:总体均值为3,总体方差大于05.已知si n c os ()16,则c os ()3第2页共2页A .33B .33C .63D .636.半正多面体亦称“阿基米德多面体”,是由边数不全相同的正多边形围成的多面体,体现了数学的对称美.二十四等边体就是一种半正多面体,它是由正方体的各条棱的中点连接形成的几何体.它由八个正三角形和六个正方形围成(如图所示),若它的棱长为2,则下列说法错误的是A .该二十四等边体的外接球的表面积为16B .该半正多面体的顶点数V 、面数F 、棱数E ,满足关系式2V F EC .直线A H 与P N 的夹角为60D .Q H A BE 平面7.已知双曲线22:18yC x,P 为双曲线C 上任意一点,过点P 分别作双曲线C 的两条渐近线的垂线,垂足分别为,M N ,则11P MP N的最小值为A .322B .423C .98D .898.已知函数21,-1()ln (2),-1x x f x x x x ,2()24g x x x ,设b 为实数,若存在实数a ,使得()1()f a g b 成立,则b 的取值范围为A .7(,]2 B .7[,)2C .37[,)22D .37[,]22二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项在,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.如图,在直三棱柱111A B C A B C 中,90B A C,2A B A C,12A A ,,,E F G 分第3页共3页别是棱1111,,B C A C A B 的中点,D 在线段11B C 上,则下列说法中正确的有A .11E F A A B B 平面B .B D E F G平面C .存在点D ,满足B D E F D .C D D G 的最小值为34210.首项为正数,公差不为0的等差数列{}n a ,其前n 项和为n S ,.现有下列4个命题,其中是真命题的有A .若100S ,,则280S S B .若412S S ,则使0n S 的最大的n 为15C .若15160,0S S ,则{}n S 中8S 最大D .若78S S ,则89S S 11.以下四个命题表述正确的是A .若A 、B 相互独立,()()P B A P B B .已知两个随机变量,X Y ,其中1~(5,)5X B ,2~(,),0Y N ,若()()E X E Y ,且(1)0.3P Y ,则(1)0.2P Y C .圆224x y 上存在4个点到直线:20l x y 的距离都等于1D .椭圆221164xy上的点到直线220x y的最大距离为1012.已知221()()ln 24xxf x exx a x是(0,) 上的单调递增函数,则实数a 的取值可能为第4页共4页A .2e B .12C .1D .1三、填空题:本题共4小题,每小题5分,共20分.13.51(2)x x展开式中常数项是_____________.(答案用数字作答)14.在第24届北京冬奥会开幕式上,一朵朵六角雪花飘拂在国家体育场上空,畅想着“一起向未来”的美好愿景.如图是“雪花曲线”的一种形成过程:从一个正三角形开始,把每条边分成三等份,然后以各边的中间一段为底边分别向外作正三角形,再去掉底边,重复进行这一过程,若第1个图中的三角形的周长为3,则第4个图形的周长为_______________.15.若实数0,0x y ,满足条件222x y ,且2122ya xx,则a 的最小值为_______.16.已知抛物线2:2C y px 的焦点为(1,0)F ,过F 的直线l 与C 交于,A B 两点,如图,过抛物线C 上一点A 作切线与抛物线C 的准线交于P 点,若5P F ,则A B;A P B 面积的最小值为.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(本小题满分10分)已知数列{}n a 的前n 项和为n S ,且11a ,{}n nn a S 是公差为的等差数列.(1)求{}n a 的通项公式;(2)求n S .第5页共5页18.(本小题满分12分)2022年卡塔尔世界杯于北京时间11月20日在卡塔尔正式开赛,该比赛吸引了全世界亿万球迷观看.为了了解喜爱观看世界杯是否与性别有关,某体育台随机抽取男女各100名观众进行统计,其中男的喜爱观看世界杯的有60人,女的喜爱观看世界杯的有20人.(1)完成下面22 列联表,男女合计喜爱看世界杯不喜爱看世界杯合计试根据小概率值0.001 的独立性检验,并判断能否认为喜爱观看世界杯与性别有关联?(2)在喜爱观看世界杯的观众中,按性别用分层抽样的方式抽取8人,再从这8人中随机抽取2人参加某电视台的访谈节目,设参加访谈节目的女性观众与男性观众的人数之差为X ,求X 的数学期望和方差.附:,其中.第6页共6页19.(本小题满分12分)如图,在三棱柱111A B C A B C 中,1A B C 为等边三角形,四边形11A A B B 为菱形,A C B C ,4A C,3B C .(1)求证:1B C A C B 面;(2)线段1C C 上是否存在一点E ,使得平面1A B E 与平面A B C 的夹角的正弦值为154若存在,求出点E 的位置;若不存在,请说明理由.20.(本小题满分12分)非等腰A B C 的内角A 、B 、C 的对应边分别为a 、b 、c ,且c os si n c os si n aB Ba C C.(1)证明:2a b c ;(2)若2B C ,证明:23b.21.(本小题满分12分)已知椭圆2222:1x yCa b(0)a b的左右焦点分别为1F、2F,左右顶点分别为A、B,P是椭圆C上异于A、B的任意一点,P A、P B斜率之积为34,且P A B的面积最大值为23.(1)求椭圆C的方程;(2)直线1P F交椭圆C于另一点Q,分别过P、Q作椭圆的切线,这两条切线交于点M.求证:1.M F P Q第7页共7页第8页共8页22.(本小题满分12分)已知函数1()si n xxf x x e,(,)2x.(1)求证:()f x 在(,)2上单调递增;(2)当(,0) 时,[()si n ]c os si n xf x x e x k x 恒成立,求k 的取值范围.。
河南省八校2015届高三上学期第一次联考数学试卷(理科)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)在复平面内,复数对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限2.(5分)若sin2t=﹣cosxdx,其中t∈(0,π),则t=()A.B.C.D.π3.(5分)在某项测量中,测量结果ξ服从正态分布N(2,σ2)(σ>0),若ξ在(0,2)内取值的概率为0.4,则ξ在(0,+∞)内取值的概率为()A.0.2 B.0.4 C.0.8 D.0.94.(5分)设p:f(x)=x3﹣2x2﹣mx+1在(﹣∞,+∞)上单调递增;q:m>,则p是q的()A.充要条件B.充分不必要条件C.必要不充分条件D.以上都不对5.(5分)将函数y=cosx+sinx(x∈R)的图象向左平移m(m>0)个长度单位后,所得到的图象关于原点对称,则m的最小值是()A.B.C.D.6.(5分)x、y满足约束条件,若z=y﹣ax取得最大值的最优解不唯一,则实数a的值为()A.或﹣1 B.2或C.2或1 D.2或﹣17.(5分)若表示不超过x的最大整数,执行如图所示的程序框图,则输出的S值为()A.4 B.5 C.7 D.98.(5分)等差数列{a n}的前n项和为S n,且a1+a2=10,a3+a4=26,则过点P(n,a n)和Q(n+1,a n+1)(n∈N*)的直线的一个方向向量是()A.(﹣,﹣2)B.(﹣1,﹣2)C.(﹣,﹣4)D.(2,)9.(5分)在△ABC中,内角A,B,C的对边分别为a,b,c,sin=,a=b=3,点P是边AB上的一个三等分点,则•+•=()A.0 B.6 C.9 D.1210.(5分)一个几何体的三视图如图所示,其中正视图是一个正三角形,则这个几何体的外接球的表面积为()A.B.C.D.11.(5分)已知y=f(x)为R上的可导函数,当x≠0时,,则关于x的函数的零点个数为()A.1 B.2 C.0 D.0或212.(5分)已知函数f(x)=,若存在实数x1,x2,x3,x4,满足x1<x2<x3<x4,且f(x1)=f(x2)=f(x3)=f(x4),则的取值范围是()A.(0,12)B.(4,16)C.(9,21)D.(15,25)二、填空题:本大题共4小题,每小题5分,共20分.13.(5分)已知双曲线=1的右焦点为(3,0),则该双曲线的离心率等于.14.(5分)若(2x﹣3)5=a0+a1x+a2x2+a3x3+a4x4+a5x5,则a1+2a2+3a3+4a4+5a5等于.15.(5分)已知函数f(x)=e sinx+cosx﹣sin2x(x∈R),则函数f(x)的最大值与最小值的差是.16.(5分)下列说法:①“∃x∈R,使2x>3”的否定是“∀x∈R,使2x≤3”;②函数y=sin(2x+)sin(﹣2x)的最小正周期是π,③命题“函数f(x)在x=x0处有极值,则f′(x0)=0”的否命题是真命题;④f(x)是(﹣∞,0)∪(0,+∞)上的奇函数,x>0时的解析式是f(x)=2x,则x<0时的解析式为f(x)=﹣2﹣x其中正确的说法是.三、解答题:本大题共5小题,共70分,解答应写出文字说明、证明过程或演算步骤.17.(12分)在△ABC中,a,b,c分别是角A,B,C的对边,且2cosAcosC(tanAtanC﹣1)=1.(Ⅰ)求B的大小;(Ⅱ)若,,求△ABC的面积.18.(12分)现有4个人去参加娱乐活动,该活动有甲、乙两个游戏可供参加者选择.为增加趣味性,约定:每个人通过掷一枚质地均匀的骰子决定自己去参加哪个游戏,掷出点数为1或2的人去参加甲游戏,掷出点数大于2的人去参加乙游戏.(1)求这4个人中恰有2人去参加甲游戏的概率;(2)求这4个人中去参加甲游戏的人数大于去参加乙游戏的人数的概率;(3)用X,Y分别表示这4个人中去参加甲、乙游戏的人数,记ξ=|X﹣Y|,求随机变量ξ的分布列与数学期望Eξ.19.(12分)如图,在直三棱柱ABC﹣A1B1C1中,平面A1BC⊥侧面A1ABB1,且AA1=AB=2.(1)求证:AB⊥BC;(2)若直线AC与平面A1BC所成的角为,求锐二面角A﹣A1C﹣B的大小.20.(12分)已知椭圆C的中心在原点,离心率等于,它的一个短轴端点点恰好是抛物线x2=8y的焦点.(1)求椭圆C的方程;(2)已知P(2,3)、Q(2,﹣3)是椭圆上的两点,A,B是椭圆上位于直线PQ两侧的动点,①若直线AB的斜率为,求四边形APBQ面积的最大值;②当A、B运动时,满足∠APQ=∠BPQ,试问直线AB的斜率是否为定值,请说明理由.21.(12分)已知函数f(x)=(a+1)lnx+ax2+1(1)讨论函数f(x)的单调性;(2)设a<﹣1.如果对任意x1,x2∈(0,+∞),|f(x1)﹣f(x2)|≥4|x1﹣x2|,求a的取值范围.四、选考题(请考生在第22、23、24题中任选一题作答,如果多做,则按所做第一题记分.)选修4-1:几何证明选讲22.(10分)已知AB为半圆O的直径,AB=4,C为半圆上一点,过点C作半圆的切线CD,过点A作AD⊥CD于D,交半圆于点E,DE=1.(Ⅰ)求证:AC平分∠BAD;(Ⅱ)求BC的长.五、选考题(请考生在第22、23、24题中任选一题作答,如果多做,则按所做第一题记分.)选修4-4:坐标素与参数方程23.已知在直角坐标系xOy中,直线l的参数方程为(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ2﹣4ρcosθ=0.(Ⅰ)求直线l的普通方程和曲线C的直角坐标方程;(Ⅱ)设点P是曲线C上的一个动点,求它到直线l的距离d的取值范围.六、选考题(请考生在第22、23、24题中任选一题作答,如果多做,则按所做第一题记分.)选修4-5:不等式选讲24.关于x的不等式lg(|x+3|﹣|x﹣7|)<m.(Ⅰ)当m=1时,解此不等式;(Ⅱ)设函数f(x)=lg(|x+3|﹣|x﹣7|),当m为何值时,f(x)<m恒成立?河南省八校2015届高三上学期第一次联考数学试卷(理科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)在复平面内,复数对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限考点:复数代数形式的乘除运算;复数的代数表示法及其几何意义.专题:计算题.分析:首先把复数的分子分母都乘以分母的共轭复数,化为1﹣i,进而可判断出所对应的点位于的象限.解答:解:∵===1﹣i.∴复数对应的点是(1,﹣1),位于第四象限.故选:D.点评:本题考查了复数的除法运算及其几何意义,熟练掌握以上有关知识是解决问题的关键.2.(5分)若sin2t=﹣cosxdx,其中t∈(0,π),则t=()A.B.C.D.π考点:定积分.专题:导数的综合应用.分析:将已知中等式中的定积分化简求值,化为关于t的三角函数方程解之.解答:解:因为﹣cosxdx=﹣sinx=0,所以sin2t=0,因为t∈(0,π),所以2t=π,所以t=;故选:B.点评:本题考查了定积分的计算以及三角函数求值,属于基础题.3.(5分)在某项测量中,测量结果ξ服从正态分布N(2,σ2)(σ>0),若ξ在(0,2)内取值的概率为0.4,则ξ在(0,+∞)内取值的概率为()A.0.2 B.0.4 C.0.8 D.0.9考点:正态分布曲线的特点及曲线所表示的意义.专题:计算题;概率与统计.分析:根据ξ服从正态分布N(2,σ2),得到曲线的对称轴是直线x=2,根据所给的ξ在(0,2)内取值的概率为0.4,根据正态曲线的对称性知在(0,+∞)内取值的概率.解答:解:∵ξ服从正态分布N(2,σ2)∴曲线的对称轴是直线x=2,∵ξ在(0,2)内取值的概率为0.4,∴根据正态曲线的性质知在(0,+∞)内取值的概率为0.4+0.5=0.9.故选:D.点评:本题考查正态分布曲线的特点及曲线所表示的意义,主要考查正态曲线的对称性,是一个基础题.4.(5分)设p:f(x)=x3﹣2x2﹣mx+1在(﹣∞,+∞)上单调递增;q:m>,则p是q的()A.充要条件B.充分不必要条件C.必要不充分条件D.以上都不对考点:必要条件、充分条件与充要条件的判断.专题:简易逻辑.分析:根据f(x)=x3﹣2x2﹣mx+1在(﹣∞,+∞)上单调递增,可得f′(x)=3x2﹣4x ﹣m,3x2﹣4x﹣m≥0在R上恒成立,求出m的范围,再根据充分必要条件可判断答案.解答:解:∵f(x)=x3﹣2x2﹣mx+1在(﹣∞,+∞)上单调递增,∴f′(x)=3x2﹣4x﹣m,即3x2﹣4x﹣m≥0在R上恒成立,所以△=16+12m≤0,即m≥﹣,∵p:f(x)=x3﹣2x2﹣mx+1在(﹣∞,+∞)上单调递增;q:m>∴根据充分必要条件的定义可判断:p是q的必要不充分条件,故选:C点评:本题考查了充分必要条件的判断方法,结合导数判断求解,难度适中,有点综合性.5.(5分)将函数y=cosx+sinx(x∈R)的图象向左平移m(m>0)个长度单位后,所得到的图象关于原点对称,则m的最小值是()A.B.C.D.考点:函数y=Asin(ωx+φ)的图象变换.专题:三角函数的图像与性质.分析:利用两角和的正弦化简原函数,然后利用三角函数的图象平移得到平移后图象的函数解析式,由图象关于原点对称列式求得m的最小值.解答:解:设y=f(x)=cosx+sinx(x∈R),化简得f(x)=2(cosx+sinx)=2sin(x+),∴图象向左平移m(m>0)个单位长度得到y=2sin=2sin(x+m+),∵所得的图象关于原点对称,∴m+=kπ(k∈Z),则m的最小正值为.故选:D.点评:本题考查了三角函数的图象平移,考查了两角和的正弦公式,考查了三角函数的性质,是基础题.6.(5分)x、y满足约束条件,若z=y﹣ax取得最大值的最优解不唯一,则实数a的值为()A.或﹣1 B.2或C.2或1 D.2或﹣1考点:简单线性规划.专题:不等式的解法及应用.分析:作出不等式组对应的平面区域,利用目标函数的几何意义,得到直线y=ax+z斜率的变化,从而求出a的取值.解答:解:作出不等式组对应的平面区域如图:(阴影部分ABC).由z=y﹣ax得y=ax+z,即直线的截距最大,z也最大.若a=0,此时y=z,此时,目标函数只在A处取得最大值,不满足条件,若a>0,目标函数y=ax+z的斜率k=a>0,要使z=y﹣ax取得最大值的最优解不唯一,则直线y=ax+z与直线2x﹣y+2=0平行,此时a=2,若a<0,目标函数y=ax+z的斜率k=a<0,要使z=y﹣ax取得最大值的最优解不唯一,则直线y=ax+z与直线x+y﹣2=0,平行,此时a=﹣1,综上a=﹣1或a=2,故选:D点评:本题主要考查线性规划的应用,利用目标函数的几何意义,结合数形结合的数学思想是解决此类问题的基本方法.注意要对a进行分类讨论,同时需要弄清楚最优解的定义.7.(5分)若表示不超过x的最大整数,执行如图所示的程序框图,则输出的S值为()A.4 B.5 C.7 D.9考点:程序框图.专题:算法和程序框图.分析:根据题意,模拟程序框图的运行过程,求出该程序运行后输出的S的值.解答:解:模拟程序框图的运行过程,如下;S=0,n=0,S=0+=0,0>4,否;n=1,S=0+=1,1>4,否;n=2,S=1+=2,2>4,否;n=3,S=2+=3,3>4,否;n=4,S=3+=5,4>4,否;n=5,S=5+=7,5>4,是;输出S=7.故选:C.点评:本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,从而得出该程序运行后的结果是什么.8.(5分)等差数列{a n}的前n项和为S n,且a1+a2=10,a3+a4=26,则过点P(n,a n)和Q(n+1,a n+1)(n∈N*)的直线的一个方向向量是()A.(﹣,﹣2)B.(﹣1,﹣2)C.(﹣,﹣4)D.(2,)考点:等差数列的前n项和.专题:等差数列与等比数列.分析:设等差数列{a n}的公差为d,则由题意可得 2a1+d=10,2a1+5d=26,解得a1=3,d=4,由此求出过点P(n,a n)和Q(n+1,a n+1)(n∈N*)的直线的斜率,从而求得直线的一个方向向量.解答:解:设等差数列{a n}的公差为d,则由题意可得 2a1+d=10,2a1+5d=26,解得a1=3,d=4.故过点P(n,a n)和Q(n+1,a n+1)(n∈N*)的直线的斜率等于d==4,故过点P(n,a n)和Q(n+1,a n+1)(n∈N*)的直线的一个方向向量应和向量(1,4)平行,故选:A.点评:本题主要考查等差数列的定义和性质,直线的斜率的求法,直线的方向向量,属于基础题.9.(5分)在△ABC中,内角A,B,C的对边分别为a,b,c,sin=,a=b=3,点P是边AB上的一个三等分点,则•+•=()A.0 B.6 C.9 D.12考点:平面向量数量积的运算;余弦定理.专题:平面向量及应用.分析:过点C作CO⊥AB,垂足为O.如图所示,.由sin=,可得=,CO,AO=OB=.分别取点P靠近点B,A的三等分点.可得P.利用向量的三角形法则、坐标运算、数量积运算即可得出.解答:解:过点C作CO⊥AB,垂足为O.如图所示,.∵sin=,∴==.∴CO=.∴AO=OB==.取点P靠近点B的三等分点.则P.∴•+•==2•=6.同理取点P靠近点A的三等分点答案也是6.∴•+•=6.故选:B.点评:本题考查了向量的三角形法则、坐标运算、数量积运算、同角三角函数基本关系式,考查了推理能力与计算能力,属于中档题.10.(5分)一个几何体的三视图如图所示,其中正视图是一个正三角形,则这个几何体的外接球的表面积为()A.B.C.D.考点:由三视图求面积、体积.专题:图表型.分析:由已知中几何体的三视图中,正视图是一个正三角形,侧视图和俯视图均为三角形,我们得出这个几何体的外接球的球心O在高线PD上,且是等边三角形PAC的中心,得到球的半径,代入球的表面积公式,即可得到答案.解答:解:由已知中知几何体的正视图是一个正三角形,侧视图和俯视图均为三角形,可得该几何体是有一个侧面PAC垂直于底面,高为,底面是一个等腰直角三角形的三棱锥,如图.则这个几何体的外接球的球心O在高线PD上,且是等边三角形PAC的中心,这个几何体的外接球的半径R=PD=.则这个几何体的外接球的表面积为S=4πR2=4π×()2=故选:A.点评:本题考查的知识点是由三视图求面积、体积,其中根据三视图判断出几何体的形状,分析出几何体的几何特征是解答本题的关键.11.(5分)已知y=f(x)为R上的可导函数,当x≠0时,,则关于x的函数的零点个数为()A.1 B.2 C.0 D.0或2考点:根的存在性及根的个数判断.专题:函数的性质及应用.分析:由题意可得,x≠0,因而 g(x)的零点跟 xg(x)的非零零点是完全一样的.当x>0时,利用导数的知识可得xg(x)在(0,+∞)上是递增函数,xg(x)>1恒成立,可得xg(x)在(0,+∞)上无零点.同理可得xg(x)在(﹣∞,0)上也无零点,从而得出结论.解答:解:由于函数,可得x≠0,因而 g(x)的零点跟 xg(x)的非零零点是完全一样的,故我们考虑 xg(x)=xf(x)+1 的零点.由于当x≠0时,,①当x>0时,(x•g(x))′=(xf(x))′=xf′(x)+f(x)=x(f′(x)+)>0,所以,在(0,+∞)上,函数x•g(x)单调递增函数.又∵=1,∴在(0,+∞)上,函数x•g(x)=xf(x)+1>1恒成立,因此,在(0,+∞)上,函数x•g(x)=xf(x)+1 没有零点.②当x<0时,由于(x•g(x))′=(xf(x))′=xf′(x)+f(x)=x(f′(x)+)<0,故函数x•g(x)在(﹣∞,0)上是递减函数,函数x•g(x)=xf(x)+1>1恒成立,故函数x•g(x)在(﹣∞,0)上无零点.综上可得,函在R上的零点个数为0,故选C.点评:本题考查了根的存在性及根的个数判断,导数与函数的单调性的关系,体现了分类讨论、转化的思想,属于中档题.12.(5分)已知函数f(x)=,若存在实数x1,x2,x3,x4,满足x1<x2<x3<x4,且f(x1)=f(x2)=f(x3)=f(x4),则的取值范围是()A.(0,12)B.(4,16)C.(9,21)D.(15,25)考点:分段函数的应用.专题:计算题;数形结合;函数的性质及应用.分析:画出函数f(x)的图象,确定x1x2=1,x3+x4=12,2<x3<4,8<x4<10,由此可得的取值范围.解答:解:函数的图象如图所示,∵f(x1)=f(x2),∴﹣log2x1=log2x2,∴log2x1x2=0,∴x1x2=1,∵f(x3)=f(x4),∴x3+x4=12,2<x3<x4<10∴=x3x4﹣2(x3+x4)+4=x3x4﹣20,∵2<x3<4,8<x4<10∴的取值范围是(0,12).故选:A.点评:本小题主要考查分段函数的解析式求法及其图象的作法、函数的值域的应用、函数与方程的综合运用等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想,属于中档题.二、填空题:本大题共4小题,每小题5分,共20分.13.(5分)已知双曲线=1的右焦点为(3,0),则该双曲线的离心率等于.考点:双曲线的简单性质.专题:圆锥曲线的定义、性质与方程.分析:利用双曲线=1的右焦点为(3,0),求出|a|,再利用双曲线的定义,即可求出双曲线的离心率.解答:解:∵双曲线=1的右焦点为(3,0),∴a2+5=9,∴|a|=2,∵c=3,∴双曲线的离心率等于.故答案为:.点评:本题考查双曲线的几何性质,考查学生的计算能力,确定双曲线的几何量是关键.14.(5分)若(2x﹣3)5=a0+a1x+a2x2+a3x3+a4x4+a5x5,则a1+2a2+3a3+4a4+5a5等于10.考点:二项式定理.专题:计算题.分析:对已知等式求导数,对求导后的等式中的x赋值1,求出a1+2a2+3a3+4a4+5a5的值.解答:解:对等式两边求导数得10(2x﹣3)4=a1+2a2x+3a3x2+4a4x3+5a5x4令x=1得10=a1+2a2+3a3+4a4+5a5,故答案为10点评:本题考查复合函数的求导法则、考查赋值法求展开式的系数和常用的方法.15.(5分)已知函数f(x)=e sinx+cosx﹣sin2x(x∈R),则函数f(x)的最大值与最小值的差是.考点:函数的最值及其几何意义.专题:函数的性质及应用.分析:令t=sinx+cosx=sin(x+),则t∈,且sin2x=t2﹣1,利用导数法分析y=e t﹣(t2﹣1)在上单调性,进而可得答案.解答:解:令t=sinx+cosx=sin(x+),则t∈,且sin2x=t2﹣1,则y=f(x)=e t﹣(t2﹣1),∵y′=e t﹣t>0在t∈时恒成立,故y=e t﹣(t2﹣1)在上为增函数,故函数f(x)的最大值与最小值的差是y|﹣y|=()﹣()=,故答案为:点评:本题主要考查函数求最值,常要借助函数的单调性,因为本题构成比较复杂,所以采用换元法简化函数的解析式.16.(5分)下列说法:①“∃x∈R,使2x>3”的否定是“∀x∈R,使2x≤3”;②函数y=sin(2x+)sin(﹣2x)的最小正周期是π,③命题“函数f(x)在x=x0处有极值,则f′(x0)=0”的否命题是真命题;④f(x)是(﹣∞,0)∪(0,+∞)上的奇函数,x>0时的解析式是f(x)=2x,则x<0时的解析式为f(x)=﹣2﹣x其中正确的说法是①④.考点:命题的否定;函数奇偶性的性质.专题:压轴题;规律型.分析:根据含量词的命题的否定形式判断出①对,根据二倍角正弦公式先化简函数,再利用三角函数的周期公式求出函数的周期判断出②错;写出否命题,利用特例即可判断③错;根据函数的奇偶性求出f(x)在x<0时的解析式,判断出④对.解答:解:对于①,根据含量词的命题的否定是量词互换,结论否定,故①对对于②,,所以周期T=,故②错对于③,“函数f(x)在x=x0处有极值,则f′(x0)=0”的否命题为“函数f(x)在x=x0处没有极值,则f′(x0)≠0”,例如y=x3,x=0时,不是极值点,但是f′(0)=0,所以③错对于④,设x<0,则﹣x>0,∴f(﹣x)=2﹣x,∵f(x)为奇函数,∴f(x)=﹣2﹣x,故④对故答案为①④点评:求含量词的命题的否定,应该将量词”任意“与”存在“互换,同时结论否定;函数的极值点要满足导数为0且左右两边的导数符号相反.三、解答题:本大题共5小题,共70分,解答应写出文字说明、证明过程或演算步骤.17.(12分)在△ABC中,a,b,c分别是角A,B,C的对边,且2cosAcosC(tanAtanC﹣1)=1.(Ⅰ)求B的大小;(Ⅱ)若,,求△ABC的面积.考点:余弦定理;三角函数中的恒等变换应用;正弦定理.专题:三角函数的求值.分析:(Ⅰ)已知等式括号中利用同角三角函数间基本关系切化弦,去括号后利用两角和与差的余弦函数公式化简,再由诱导公式变形求出cosB的值,即可确定出B的大小;(Ⅱ)由cosB,b的值,利用余弦定理列出关系式,再利用完全平方公式变形,将a+b以及b的值代入求出ac的值,再由cosB的值,利用三角形面积公式即可求出三角形ABC面积.解答:解:(Ⅰ)由2cosAcosC(tanAtanC﹣1)=1得:2cosAcosC(﹣1)=1,∴2(sinAsinC﹣cosAcosC)=1,即cos(A+C)=﹣,∴cosB=﹣cos(A+C)=,又0<B<π,∴B=;(Ⅱ)由余弦定理得:cosB==,∴=,又a+c=,b=,∴﹣2ac﹣3=ac,即ac=,∴S△ABC=acsinB=××=.点评:此题考查了余弦定理,三角形面积公式,两角和与差的余弦函数公式,熟练掌握余弦定理是解本题的关键.18.(12分)现有4个人去参加娱乐活动,该活动有甲、乙两个游戏可供参加者选择.为增加趣味性,约定:每个人通过掷一枚质地均匀的骰子决定自己去参加哪个游戏,掷出点数为1或2的人去参加甲游戏,掷出点数大于2的人去参加乙游戏.(1)求这4个人中恰有2人去参加甲游戏的概率;(2)求这4个人中去参加甲游戏的人数大于去参加乙游戏的人数的概率;(3)用X,Y分别表示这4个人中去参加甲、乙游戏的人数,记ξ=|X﹣Y|,求随机变量ξ的分布列与数学期望Eξ.考点:离散型随机变量的期望与方差;相互独立事件的概率乘法公式;离散型随机变量及其分布列.专题:概率与统计.分析:依题意,这4个人中,每个人去参加甲游戏的概率为,去参加乙游戏的人数的概率为设“这4个人中恰有i人去参加甲游戏”为事件A i(i=0,1,2,3,4),故P(A i)=(1)这4个人中恰有2人去参加甲游戏的概率为P(A2);(2)设“这4个人中去参加甲游戏的人数大于去参加乙游戏”为事件B,则B=A3∪A4,利用互斥事件的概率公式可求;(3)ξ的所有可能取值为0,2,4,由于A1与A3互斥,A0与A4互斥,求出相应的概率,可得ξ的分布列与数学期望.解答:解:依题意,这4个人中,每个人去参加甲游戏的概率为,去参加乙游戏的人数的概率为设“这4个人中恰有i人去参加甲游戏”为事件A i(i=0,1,2,3,4),∴P(A i)=(1)这4个人中恰有2人去参加甲游戏的概率为P(A2)=;(2)设“这4个人中去参加甲游戏的人数大于去参加乙游戏”为事件B,则B=A3∪A4,∴P(B)=P(A3)+P(A4)=(3)ξ的所有可能取值为0,2,4,由于A1与A3互斥,A0与A4互斥,故P(ξ=0)=P(A2)=P(ξ=2)=P(A1)+P(A3)=,P(ξ=4)=P(A0)+P(A4)=∴ξ的分布列是ξ 0 2 4P数学期望Eξ=点评:本题考查概率知识的求解,考查互斥事件的概率公式,考查离散型随机变量的分布列与期望,属于中档题.19.(12分)如图,在直三棱柱ABC﹣A1B1C1中,平面A1BC⊥侧面A1ABB1,且AA1=AB=2.(1)求证:AB⊥BC;(2)若直线AC与平面A1BC所成的角为,求锐二面角A﹣A1C﹣B的大小.考点:用空间向量求平面间的夹角;空间中直线与直线之间的位置关系.专题:空间位置关系与距离;空间角.分析:(1)取A1B的中点D,连接AD,由已知条件推导出AD⊥平面A1BC,从而AD⊥BC,由线面垂直得AA1⊥BC.由此能证明AB⊥BC.(2)连接CD,由已知条件得∠ACD即为直线AC与平面A1BC所成的角,∠AED即为二面角A ﹣A1C﹣B的一个平面角,由此能求出二面角A﹣A1C﹣B的大小.解答:(本小题满分14分)(1)证明:如右图,取A1B的中点D,连接AD,…(1分)因AA1=AB,则AD⊥A1B…(2分)由平面A1BC⊥侧面A1ABB1,且平面A1BC∩侧面A1ABB1=A1B,…(3分)得AD⊥平面A1BC,又BC⊂平面A1BC,所以AD⊥BC.…(4分)因为三棱柱ABC﹣﹣﹣A1B1C1是直三棱柱,则AA1⊥底面ABC,所以AA1⊥BC.又AA1∩AD=A,从而BC⊥侧面A1ABB1,又AB⊂侧面A1ABB1,故AB⊥BC.…(7分)(2)解:连接CD,由(1)可知AD⊥平面A1BC,则CD是AC在平面A1BC内的射影∴∠ACD即为直线AC与平面A1BC所成的角,则…(8分)在等腰直角△A1AB中,AA1=AB=2,且点D是A1B中点∴,且,∴…(9分)过点A作AE⊥A1C于点E,连DE由(1)知AD⊥平面A1BC,则AD⊥A1C,且AE∩AD=A∴∠AED即为二面角A﹣A1C﹣B的一个平面角,…(10分)且直角△A1AC中:又,∴,且二面角A﹣A1C﹣B为锐二面角∴,即二面角A﹣A1C﹣B的大小为.…(14分)点评:本题考查异面直线垂直的证明,考查二面角的大小的求法,解题时要认真审题,注意空间思维能力的培养.20.(12分)已知椭圆C的中心在原点,离心率等于,它的一个短轴端点点恰好是抛物线x2=8y的焦点.(1)求椭圆C的方程;(2)已知P(2,3)、Q(2,﹣3)是椭圆上的两点,A,B是椭圆上位于直线PQ两侧的动点,①若直线AB的斜率为,求四边形APBQ面积的最大值;②当A、B运动时,满足∠APQ=∠BPQ,试问直线AB的斜率是否为定值,请说明理由.考点:直线与圆锥曲线的综合问题;圆锥曲线的共同特征.专题:计算题;圆锥曲线的定义、性质与方程.分析:(Ⅰ)根据椭圆C的一个顶点恰好是抛物线的焦点,离心率等于.由此列式解出出a,b的值,即可得到椭圆C的方程.(Ⅱ)①设A(x1,y1),B(x2,y2),直线AB的方程为,将直线的方程代入椭圆的方程,消去y得到关于x的一元二次方程,再结合根系数的关系利用弦长公式即可求得四边形APBQ的面积,从而解决问题.②设直线PA的斜率为k,则PB的斜率为﹣k,PA的直线方程为y﹣3=k(x﹣2)将直线的方程代入椭圆的方程,消去y得到关于x的一元二次方程,再结合根系数的关系利用弦长公式即可求得x1+2,同理PB的直线方程为y﹣3=﹣k(x﹣2),可得x2+2,从而得出AB的斜率为定值.解答:解:(Ⅰ)设C方程为,则.由,得a=4∴椭圆C的方程为.…(4分)(Ⅱ)①解:设A(x1,y1),B(x2,y2),直线AB的方程为,代入,得x2+tx+t2﹣12=0由△>0,解得﹣4<t<4…(6分)由韦达定理得x1+x2=﹣t,x1x2=t2﹣12.∴==.由此可得:四边形APBQ的面积∴当t=0,.…(8分)②解:当∠APQ=∠BPQ,则PA、PB的斜率之和为0,设直线PA的斜率为k则PB的斜率为﹣k,直线PA的直线方程为y﹣3=k(x﹣2)由(1)代入(2)整理得(3+4k2)x2+8(3﹣2k)kx+4(3﹣2k)2﹣48=0∴…(10分)同理直线PB的直线方程为y﹣3=﹣k(x﹣2),可得∴…(12分)所以AB的斜率为定值.…(14分)点评:本题考查的知识点是椭圆的标准方程,直线与圆锥曲线的综合问题,其中根据已知条件计算出椭圆的标准方程是解答本题的关键.21.(12分)已知函数f(x)=(a+1)lnx+ax2+1(1)讨论函数f(x)的单调性;(2)设a<﹣1.如果对任意x1,x2∈(0,+∞),|f(x1)﹣f(x2)|≥4|x1﹣x2|,求a的取值范围.考点:利用导数研究函数的单调性.专题:计算题;压轴题.分析:(1)先确定函数的定义域然后求导数fˊ(x),在函数的定义域内解不等式fˊ(x)>0和fˊ(x)<0,求出单调区间.(2)根据第一问的单调性先对|f(x1)﹣f(x2)|≥4|x1﹣x2|进行化简整理,转化成研究g (x)=f(x)+4x在(0,+∞)单调减函数,再利用参数分离法求出a的范围.解答:解:(Ⅰ)f(x)的定义域为(0,+∞)..当a≥0时,f′(x)>0,故f(x)在(0,+∞)单调增加;当a≤﹣1时,f′(x)<0,故f(x)在(0,+∞)单调减少;当﹣1<a<0时,令f′(x)=0,解得.则当时,f'(x)>0;时,f'(x)<0.故f(x)在单调增加,在单调减少.(Ⅱ)不妨假设x1≥x2,而a<﹣1,由(Ⅰ)知在(0,+∞)单调减少,从而∀x1,x2∈(0,+∞),|f(x1)﹣f(x2)|≥4|x1﹣x2|等价于∀x1,x2∈(0,+∞),f(x2)+4x2≥f(x1)+4x1①令g(x)=f(x)+4x,则①等价于g(x)在(0,+∞)单调减少,即.从而故a的取值范围为(﹣∞,﹣2].(12分)点评:本小题主要考查函数的导数,单调性,极值,不等式等基础知识,考查综合利用数学知识分析问题、解决问题的能力.四、选考题(请考生在第22、23、24题中任选一题作答,如果多做,则按所做第一题记分.)选修4-1:几何证明选讲22.(10分)已知AB为半圆O的直径,AB=4,C为半圆上一点,过点C作半圆的切线CD,过点A作AD⊥CD于D,交半圆于点E,DE=1.(Ⅰ)求证:AC平分∠BAD;(Ⅱ)求BC的长.考点:圆的切线的性质定理的证明;圆內接多边形的性质与判定.专题:综合题.分析:(Ⅰ)连接OC,因为OA=OC,所以∠OAC=∠OCA,再证明OC∥AD,即可证得AC平分∠BAD.(Ⅱ)由(Ⅰ)知,从而BC=CE,利用ABCE四点共圆,可得∠B=∠CED,从而有,故可求BC的长.解答:(Ⅰ)证明:连接OC,因为OA=OC,所以∠OAC=∠OCA,(2分)因为CD为半圆的切线,所以OC⊥CD,又因为AD⊥CD,所以OC∥AD,所以∠OCA=∠CAD,∠OAC=∠CAD,所以AC平分∠BAD.(4分)(Ⅱ)解:由(Ⅰ)知,∴BC=CE,(6分)连接CE,因为ABCE四点共圆,∠B=∠CED,所以cosB=cos∠CED,(8分)所以,所以BC=2.(10分)点评:本题考查圆的切线,考查圆内接四边形,解题的关键是正确运用圆的切线性质及圆内接四边形的性质.五、选考题(请考生在第22、23、24题中任选一题作答,如果多做,则按所做第一题记分.)选修4-4:坐标素与参数方程23.已知在直角坐标系xOy中,直线l的参数方程为(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ2﹣4ρcosθ=0.(Ⅰ)求直线l的普通方程和曲线C的直角坐标方程;(Ⅱ)设点P是曲线C上的一个动点,求它到直线l的距离d的取值范围.考点:参数方程化成普通方程;简单曲线的极坐标方程.专题:计算题;坐标系和参数方程.分析:(Ⅰ)应用代入法,将t=x+3代入y=t,即可得到直线l的普通方程;将x=ρcosθ,y=ρsinθ,ρ2=x2+y2代入曲线C的极坐标方程,即得曲线C的直角坐标方程;(Ⅱ)由圆的参数方程设出点P(2+2cosθ,2sinθ),θ∈R,根据点到直线的距离公式得到d的式子,并应用三角函数的两角和的余弦公式,以及三角函数的值域化简,即可得到d 的范围.解答:解:( I)直线l的参数方程为(t为参数),将t=x+3代入y=t,得直线l的普通方程为x﹣y=0;曲线C的极坐标方程为ρ2﹣4ρcosθ=0,将x=ρcosθ,y=ρsinθ,ρ2=x2+y2代入即得曲线C的直角坐标方程:(x﹣2)2+y2=4;( II)设点P(2+2cosθ,2sinθ),θ∈R,则d==,∴d的取值范围是:.点评:本题考查参数方程化为普通方程,极坐标方程化为直角坐标方程,同时考查圆上一点到直线的距离的最值,本题也可利用圆上一点到直线的距离的最大(最小)是圆心到直线的距离加半径(减半径).六、选考题(请考生在第22、23、24题中任选一题作答,如果多做,则按所做第一题记分.)选修4-5:不等式选讲24.关于x的不等式lg(|x+3|﹣|x﹣7|)<m.(Ⅰ)当m=1时,解此不等式;(Ⅱ)设函数f(x)=lg(|x+3|﹣|x﹣7|),当m为何值时,f(x)<m恒成立?考点:对数的运算性质;绝对值不等式的解法.专题:计算题;压轴题;选作题.分析:(1)转化成绝对值不等式,令每项等于零,得到的值作为讨论的分区点,然后再分区间讨论绝对值不等式,最后应求出解集的并集.(2)解决恒成立问题,可将问题转化为研究函数f(x)的最大值小于m即可.解答:解:(1)当m=1时,原不等式可变为0<|x+3|﹣|x﹣7|<10,可得其解集为{x|2<x<7}.(2)设t=|x+3|﹣|x﹣7|,则由对数定义及绝对值的几何意义知0<t≤10,因y=lgx在(0,+∞)上为增函数,则lgt≤1,当t=10,x≥7时,lgt=1,故只需m>1即可,即m>1时,f(x)<m恒成立.点评:本题考查了对数的运算性质,以及绝对值不等式的解法,所谓零点分段法,即令每项等于零,得到的值作为讨论的分区点,然后再分区间讨论绝对值不等式,最后应求出解集的并集.。