新课标最新北师大版2018-2019学年高二上学期期中考试数学(文)模拟试题及答案解析
- 格式:docx
- 大小:462.01 KB
- 文档页数:8
(新课标)2017-2018学年北师大版高中数学选修1-1综合学习与测试(一)一、选择题(本大题共10小题,每题5分,共50分)1.以下四个命题,判断正确的是( )(1)原命题:若一个自然数的末位数字为零,则这个自然数能被5整除.(2)逆命题:若一个自然数能被5整除,则这个自然数的末位数字为零.(3)否命题:若一个自然数的末位数字不为零,则这个自然数不能被5整除.(4)逆否命题:若一个自然数不能被5整除,则这个自然数末位数字不为零.A.(1)与(3)为真,(2)与(4)为假B.(1)与(2)为真,(3)与(4)为假C.(1)与(4)为真,(2)与(3)为假D.(1)与(4)为假,(2)与(3)为真2.若a,b∈R,且a2+b2≠0,则(1)a、b全为零;(2)a、b不全为零;(3)a、b全不为零;(4)a、b至少有一个不为零,其中真命题的个数为( )A.0B. 1C.2D.33.设命题p:已知a、b为实数,若a+b是无理数.则a是无理数或b是无理数.则下列结论中正确的是( )A.p为真命题B.p的逆命题为真命题C.p 的否命题为真命题D. p 的逆否命题为假命题4.抛物线2y x =的焦点坐标是( )A .()1,0B .10,4⎛⎫ ⎪⎝⎭C . 1,04⎛⎫ ⎪⎝⎭D .10,8⎛⎫ ⎪⎝⎭5.若抛物线22(0)y px p =>上横坐标为6的点到焦点的距离等于8,则焦点到准线的距离是( )A .6B .2C .8D .46. 对任意实数a ,b ,c ,给出下列命题:①“b a =”是“bc ac =”充要条件;②“5+a 是无理数”是“a 是无理数”的充要条件③“a>b ”是“a 2>b 2”的充分条件;④“a<5”是“a<3”的必要条件.其中真命题的个数是 ( )A .1B .2C .3D .4 7.若椭圆22110036x y +=上一点P 到焦点F 1的距离等于6,则点P 到另一个焦点F 2的距离是( )A .4B .194C .94D .148.下列命题是真命题的是 ( )A “a(a-b)≤0”是“b a≥1”的必要条件 B “x ∈{1,2}”是“1-x =0”的充分条件C “A ∩B ≠φ”是“A ⊂B ”的充分条件D “x>5”是“x>2”的必要条件9.抛物线28x y =-的准线方程是 ( ) A 132x = B.y =2 C.14x = D.y=4 10.双曲线229436x y -=-的渐近线方程是( ) A 23y x =± B.32y x =± C.94y x =± D.49y x =± 二,填空题:(每小题5分,共20分)11.命题: 若a 、b 都是偶数,则a+b 是偶数. 其逆否命题为_______________.12.下列命题: ①5≥5 ②5>1且1<2 ③3>4或3<4 ④. x,y ∈R. “若x 2+y 2=0,则x,y 全为0”的否命题 ⑤“全等三角形是相似三角形”的逆命题 ⑥若ac 2>bc 2,则a>b. 其中假命题的序号是_______________.13.当a+b=10, c=25时的椭圆的标准方程是.14.已知一个圆的圆心为坐标原点,半径为2,从这个圆上任意一点P 向x 轴作垂线段PP ’,则线段PP ’的中点M 的轨迹方程为.三、解答题:15.(本小题满分5分)求经过点P(―3,27)和Q(―62,―7)且焦点在坐标轴上的双曲线的标准方程。
(新课标)2017-2018学年北师大版高中数学选修1-1 章末综合测评(三) 变化率与导数(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.若y=5x,则y′=( )A.15x4B.155x4C.5x43D.15x x【解析】y=x 15,则y′=15x-45=155x4.【答案】 B2.某质点沿直线运动的位移方程为f(x)=-2x2+1,那么该质点从x=1到x=2的平均速度为( )A.-4 B.-5C.-6 D.-7【解析】v=f(2)-f(1)2-1=-2×22+1-(-2×12+1)2-1=-6.【答案】 C3.如果物体做S(t)=2(1-t)2的直线运动,则其在t =4 s 时的瞬时速度为( )A .12B .-12C .4D .-4【解析】 S(t)=2(1-t)2=2t 2-4t +2,则S ′(t)=4t -4,所以S ′(4)=4×4-4=12.【答案】 A4.曲线y =e x 在点A(0,1)处的切线斜率为( ) A .1 B .2 C .eD .1e【解析】 由题意知y ′=e x ,故所求切线斜率k =e x |x =0=e 0=1. 【答案】 A5.设曲线y =1+cos x sin x 在点⎝ ⎛⎭⎪⎪⎫π2,1处的切线与直线x -ay +1=0平行,则实数a 等于( )A .-1B .12C .-2D .2【解析】 ∵y ′=-sin 2x -(1+cos x )cos x sin 2x =-1-cos xsin 2x ,又f ′⎝ ⎛⎭⎪⎪⎫π2=-1,∴1a =-1,∴a =-1,故选A. 【答案】 A6.(2016·淮北高二检测)若曲线y =f(x)=x 2+ax +b 在点(0,b)处的切线方程是x -y +1=0,则( )A .a =1,b =1B .a =-1,b =1C .a =1,b =-1D .a =-1,b =-1【解析】 y ′=2x +a ,∴f ′(0)=a =1,∴y =x 2+x +b ,又点(0,b)在切线上,故-b +1=0, ∴b =1. 【答案】 A7.若函数f(x)=x 2+bx +c 的图像的顶点在第四象限,则函数f ′(x)的图像是( )【解析】 f ′(x)=2x +b ,因为f(x)顶点⎝ ⎛⎭⎪⎪⎫-b 2,4c -b 24在第四象限.所以b<0,则f ′(x)图像与y 轴交于负半轴.【答案】 A 8.点P 在曲线y =x 3-x +23上移动,设点P 处切线的倾斜角为α,则α的取值范围是( )A.⎣⎢⎢⎡⎭⎪⎪⎫0,π2B .⎣⎢⎢⎡⎭⎪⎪⎫0,π2∪⎣⎢⎢⎡⎭⎪⎪⎫3π4,πC.⎣⎢⎢⎡⎭⎪⎪⎫3π4,π D .⎝ ⎛⎦⎥⎥⎤π2,3π4【解析】 y ′=3x 2-1≥-1,则tan α≥-1. ∵α∈[0,π),∴α∈⎣⎢⎢⎡⎭⎪⎪⎫0,π2∪⎣⎢⎢⎡⎭⎪⎪⎫3π4,π.【答案】 B9.抛物线y =x 2+bx +c 在点(1,2)处的切线与其平行直线bx +y +c =0间的距离是( )A.24B .22C.322D . 2【解析】 ∵抛物线过点(1,2),∴b +c =1.又∵f ′(1)=2+b ,由题意得2+b =-b ,∴b =-1,c =2. ∴所求的切线方程为y -2=x -1,即x -y +1=0,∴两平行直线x -y +1=0和x -y -2=0间的距离d =|1+2|2=322.【答案】 C 10.设函数f(x)=sin θ3x 3+3cos θ2x 2+tan θ,其中θ∈⎣⎢⎢⎡⎦⎥⎥⎤0,5π12,则导数f ′(1)的取值范围是( )A .[-2,2]B .[2,3]C .[3,2]D .[2,2]【解析】 ∵f ′(x)=x 2sin θ+3xcos θ,∴f ′(1)=sin θ+3cos θ=2sin ⎝⎛⎭⎪⎪⎫θ+π3因为θ∈⎣⎢⎢⎡⎦⎥⎥⎤0,5π12,所以θ+π3∈⎣⎢⎢⎡⎦⎥⎥⎤π3,3π4,所以sin ⎝ ⎛⎭⎪⎪⎫θ+π3∈⎣⎢⎢⎡⎦⎥⎥⎤22,1,故f ′(1)∈[2,2].【答案】 D11.过点(-1,0)作抛物线y =x 2+x +1的切线,则其中一条切线为( ) A .2x +y +2=0 B .3x -y +3=0 C .x +y +1=0D .x -y +1=0【解析】 y ′=2x +1,设所求切线的切点为(x 0,x 20+x 0+1). 则x 20+x 0+1x 0+1=2x 0+1,∴x 0=0或x 0=-2.当x 0=0时,曲线y =x 2+x +1在点(0,1)处的切线斜率为1,方程为y -1=x ,即x -y +1=0.当x 0=-2时,切线方程为3x +y +3=0.【答案】 D12.点P 是曲线x 2-y -2ln x =0上任意一点,则点P 到直线4x +4y +1=0的最短距离是( )A.22(1-ln 2)B .22(1+ln 2)C.22⎝ ⎛⎭⎪⎪⎫12+ln 2 D .12(1+ln 2)【解析】 将直线4x +4y +1=0平移后得直线l :4x +4y +b =0,使直线l 与曲线切于点P(x 0,y 0),由x 2-y -2lnx =0得y ′=2x -1x,∴直线l 的斜率k =2x 0-1x 0=-1解得x 0=12或x 0=-1(舍去),∴P ⎝ ⎛⎭⎪⎪⎫12,14+ln 2, 所求的最短距离即为点P ⎝ ⎛⎭⎪⎪⎫12,14+ln 2到直线4x +4y +1=0的距离d =|2+(1+4ln 2)+1|42=22(1+ln 2). 【答案】 B二、填空题(本大题共4小题,每小题5分,共20分,请把正确答案填在题中的横线上)13.若y =-3cot x ,则y ′=________.【导学号:63470074】【解析】 y ′=-3(cot x)′=-3·-1sin 2x =3sin 2x .【答案】3sin 2x14.下列四个命题中,正确命题的序号为________. ①若f(x)=x ,则f ′(0)=0;②(log a x)′=xln a ;③加速度是质点的位移s对时间t 的导数;④曲线y =x 2在点(0,0)处有切线.【解析】 ①因为f ′(x)=12x,当x 趋近于0时平均变化率不存在极限,所以函数f(x)在x =0处不存在导数,故错误;②(log a x)′=1xln a ,故错误;③瞬时速度是位移s 对时间t 的导数,故错误;④曲线y =x 2在点(0,0)处的切线方程为y =0,故正确.【答案】 ④15.已知直线y =kx 是曲线y =x 3+2的一条切线,则k 的值为________. 【解析】 设切点为M(x 0,y 0),则y 0=x 30+2, ① y 0=kx 0,② ∵y ′=3x 2,∴k =3x 20, ③ 将③代入②得y 0=3x 30, ④将④代入①得x 0=1, ∴y 0=3,代入②得k =3. 【答案】 316.(2016·临沂高二检测)设函数f(x)的导数为f ′(x),且f(x)=f ′⎝ ⎛⎭⎪⎪⎫π2sin x +cos x ,则f ′⎝ ⎛⎭⎪⎪⎫π4=________.【解析】 因为f(x)=f ′⎝ ⎛⎭⎪⎪⎫π2sin x +cos x ,所以f ′(x)=f ′⎝ ⎛⎭⎪⎪⎫π2cos x -sin x ,所以f ′⎝ ⎛⎭⎪⎪⎫π2=f ′⎝ ⎛⎭⎪⎪⎫π2cos π2-sin π2.即f ′⎝ ⎛⎭⎪⎪⎫π2=-1,所以f(x)=-sin x +cos x ,故f ′⎝ ⎛⎭⎪⎪⎫π4=-cos π4-sin π4=-2.【答案】 -2三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.(本小题满分10分)已知某运动着的物体的运动方程为s(t)=t -1t 2+2t 2(路程单位:m ,时间单位:s),求s ′(3),并解释它的实际意义.【导学号:63470075】【解】 ∵s(t)=t -1t 2+2t 2=tt 2-1t 2+2t 2=1t -1t 2+2t 2, ∴s ′(t)=-1t 2+2·1t 3+4t , ∴s ′(3)=-19+227+12=32327,即物体在t =3 s 时的瞬时速度为32327m/s.18.(本小题满分12分)求过曲线y =cos x 上点P ⎝ ⎛⎭⎪⎪⎫π3,12且与过这点的切线垂直的直线方程.【解】 ∵y =cos x ,∴y ′=-sin x. 曲线在点P ⎝ ⎛⎭⎪⎪⎫π3,12处的切线斜率是y ′|x =π3=-sin π3=-32.∴过点P 且与切线垂直的直线的斜率为23.∴所求直线方程为y -12=23⎝ ⎛⎭⎪⎪⎫x -π3. 19.(本小题满分12分)求满足下列条件的函数f(x).(1)f(x)是三次函数,且f(0)=3,f ′(0)=0,f ′(1)=-3,f ′(2)=0; (2)f(x)是二次函数,且x 2f ′(x)-(2x -1)f(x)=1. 【解】 (1)由题意设f(x)=ax 3+bx 2+cx +d(a ≠0), 则f ′(x)=3ax 2+2bx +c.由已知⎩⎪⎨⎪⎧f (0)=d =3,f ′(0)=c =0,f ′(1)=3a +2b +c =-3,f ′(2)=12a +4b +c =0,解得a =1,b =-3,c =0,d =3. 故f(x)=x 3-3x 2+3.(2)由题意设f(x)=ax 2+bx +c(a ≠0),则f ′(x)=2ax +b.所以x 2(2ax +b)-(2x -1)(ax 2+bx +c)=1, 化简得(a -b)x 2+(b -2c)x +c =1,此式对任意x 都成立,所以⎩⎪⎨⎪⎧a =b ,b =2c ,c =1,得a =2,b =2,c =1,即f(x)=2x 2+2x +1.20.(本小题满分12分)已知两曲线f(x)=x 3+ax 和g(x)=x 2+bx +c 都经过点P(1,2),且在点P 处有公切线,试求a ,b ,c 的值.【解】 ∵点P(1,2)在曲线f(x)=x 3+ax 上, ∴2=1+a ,∴a =1,函数f(x)=x 3+ax 和g(x)=x 2+bx +c 的导数分别为f ′(x)=3x 2+a 和g ′(x)=2x +b ,且在点P 处有公切线,∴3×12+a =2×1+b ,得b =2,又由点P(1,2)在曲线g(x)=x 2+bx +c 上可得2=12+2×1+c ,得c =-1. 综上,a =1,b =2,c =-1.21.(本小题满分12分)已知函数f(x)=x 在x =14处的切线为l ,直线g(x)=kx +94与l 平行,求f(x)的图像上的点到直线g(x)的最短距离.【解】 因为f(x)=x ,所以f ′(x)=12x.所以切线l 的斜率为k =f ′⎝ ⎛⎭⎪⎪⎫14=1, 切点为T ⎝ ⎛⎭⎪⎪⎫14,12. 所以切线l 的方程为x -y +14=0. 因为切线l 与直线g(x)=kx +94平行, 所以k =1,即g(x)=x +94. f(x)的图像上的点到直线g(x)=x +94的最短距离为切线l :x -y +14=0与直线x -y +94=0之间的距离, 所以所求最短距离为⎪⎪⎪⎪⎪⎪⎪⎪94-142= 2.22.(本小题满分12分)已知直线l 1为曲线f(x)=x 2+x -2在点P(1,0)处的切线,l 2为曲线的另一条切线,且l 2⊥l 1.(1)求直线l 2的方程;(2)求直线l 1,l 2与x 轴所围成的三角形的面积S.【解】 (1)设直线l 1,l 2的斜率分别为k 1,k 2,由题意可知k 1=f ′(1)=3,故直线l 1的方程为y =3x -3,由l 1⊥l 2,可知直线l 2的斜率为-13,设l 2与曲线相切于点Q(x 0,y 0),则k 2=f ′(x 0)=-13, 解得x 0=-23,代入曲线方程解得y 0=-209, 故直线l 2的方程为y +209=-13⎝⎛⎭⎪⎪⎫x +23,化简得到3x +9y +22=0. (2)直线l 1,l 2与x 轴交点坐标分别为(1,0),⎝ ⎛⎭⎪⎪⎫-223,0, 联立⎩⎪⎨⎪⎧ 3x -y -3=0,3x +9y +22=0解得两直线交点坐标为⎝ ⎛⎭⎪⎪⎫16,-52, 故所求三角形的面积S =12×⎪⎪⎪⎪⎪⎪⎪⎪-223-1×⎪⎪⎪⎪⎪⎪⎪⎪-52=12512.。
北师大版二年级上册数学期中检测一、单选题( 5分)1.不能表示下图的算式是()。
A.3+8 B.8×3C.8+8+82.某女装网店,第一天卖出43件毛衣,第二天比第一天少卖出15件。
两天一共卖出多少件毛衣?列式正确的是()。
A.43-15 B.43-15+43 C.15+43+433.一套儿童文学绘本《疯狂动物园》,价钱是98元,下面付钱方法中()最简便。
A.4张20元,3张5元,3张1元B.1张50元,2张20元,1张5元,3张1元C.4张10元,10张5元,8张1元4.淘气买1个杯子用去5元4角,还剩下3元6角,他原来有()。
A.8元B.8元6角C.9元5.下列算式中不能用2×6来表示的是()A.2个6相乘B.6个2相加C.6+6二、判断题(5分)6.4×5可以读作4乘5,也可以读作5乘4。
()7.1元比10角少。
()8.1+2+3+4+5可以改写成乘法算式1×5。
()9.3张可以换6张。
()10.操场上原来有82人在跳绳,走了18人,又来了16人,操场上现在的人数比原来多。
()三、填空题(27分)11.凯瑞小学图书馆中科普类书籍有26种,漫画类书籍有19种,名著类书籍有47种。
三类书籍一共有多少种?列式是,三类书籍一共有种。
12.一个玩具需要45元,乐乐带的钱都是10元的,他至少需要付张10元,找回元。
13.烧鹅店一天做70只烧鹅,上午卖出27只,下午卖出34只,还剩只。
14.一本故事书有95页,小丽上午看了27页,下午看了39页,还剩页没看。
15.1张10元可以换张2元;4元-2元6角=元角。
16.3元9角=角 7元-6角=元角9元+4角=元角 10元-6元2角=元角17.把加法算式改写成乘法算式,乘法算式改写成加法算式。
6+6+6=×5×3=++。
18.6×5读作,其中和是乘数,积是,它表示相加或相加。
四、连线题(9分)19.(6分)按要求连线。
北师大版七年级上册数学期中考试试题2022年7月一、单选题1.下列各数中,最小的数是()A .4-B .2-C .1D .32.据《吉林日报》2021年5月14日报道,第一季度一汽集团销售整车70060辆,数据70060用科学记数法表示为()A .37.00610⨯B .47.00610⨯C .370.0610⨯D .40.700610⨯3.下列运算正确的是()A .236=B .660a a --=C .2416-=-D .523xy xy -+=-4.单项式23a b π-的系数和次数分别是()A .3π,3B .3π-,3C .13-,4D .13,45.在代数式:234x ,3ab ,5x +,5yx ,4-,3y ,2a b a -中,整式有()A .4个B .5个C .6个D .7个6.有理数a 在数轴上的对应点的位置如图所示,若有理数b 满足-a <b <a ,则b 的值不可能是()A .2B .0C .-1D .-37.小明周末从家里去书店,需要先步行一段路程,然后再坐公交车到书店,步行的速度为4千米每小时,汽车的速度为45千米每小时,小明先步行x 分钟,再乘车y 分钟,则小明家离书店的路程是()千米A .454x y+B .445x y +C .344x y +D .13154x y +8.下列判断正确的是()A .两个数相加,和一定大于其中一个加数B .两数相减,差一定小于被减数C .两数相乘,积一定大于其中一个因数D .|a|一定是非负数9.如图,是由一些棱长为1cm 的小正方体构成的立体图形的三种视图,那么这个立体图形的体积是()A .33cmB .143cm C .53cm D .73cm 10.一根1m 长的绳子,第一次剪去绳子的23,第二次剪去剩下绳子的23,如此剪下去,第100次剪完后剩下绳子的长度是()A .9913m ⎛⎫ ⎪⎝⎭B .9923m ⎛⎫ ⎪⎝⎭C .10013m⎛⎫ ⎪⎝⎭D .10023m⎛⎫ ⎪⎝⎭二、填空题11.如果盈利80元记作+80元,那么亏损40元记作______元.12.﹣5的倒数是_____;12018-的相反数是_____.13.通常山的高度每升高100米,气温下降0.6C ︒,如地面气温是4C -︒,那么高度是2400米高的山上的气温是____________________.14.按照如图所示的操作步骤,若输入的值为-3,则输出的值为_______________.15.已知代数式235x x +-的值等于6,则代数式2268x x ++的值为_____________.16.一个正方体的每个面上都写有一个汉字,其平面展开图如图所示,那么在该正方体中和“文”相对的字是_____17.一条数轴上有点A 、B 、C ,其中点A 、B 表示的数分别是16-、9,现以点C 为折点,将放轴向右对折,若点A 对应的点A '落在点B 的右边,若3A B '=,则C 点表示的数是______.三、解答题18.计算:()3421415231211⎛⎫---⨯+-÷-+ ⎪⎝⎭19.某公司的某种产品由一商店代销,双方协议,不论这种产品销售情况如何,该公司每月给商店a 元代销费,同时,商店每销售一件产品有b 元提成,该商店一月份销售了m 件,二月份销售了n 件.(1)用代数式表示,这两个月公司分别应付给商店的钱数;(2)假设代销费为每月20元,每件产品的提成为2元,一月份销售了20件,二月份销售了25件,求该商店这两个月销售其总产品的总收益.20.如图是由几个小立方体所组成几何体从上面看到的形状图,其中小正方形中的数字表示该位置的小正方体的个数,请画出这个几何体从正面和从左面看到的形状图.21.已知多项式()()2223221M x xy y x x yx =++-+++.(1)当()2120x y -+-=,求M 的值;(2)若多项式M 与字母x 的取值无关,求y 的值.22.一辆出租车沿着南北方向的道路来回行驶接送客人,一天早晨从某商店门口出发,中午到达B 地,约定向南为正,向北为负,当天记录如下(单位:千米)18.3-,9.5-,+7.1,+14, 6.2-,+12,+6.8,8.5-(1)B 地在商店何处,相距多少千米?(2)第4个客人下车地点距离商店多少千米?(3)若汽车行驶每千米耗油0.1升,那么这天上午共耗油多少升?23.定义新运算:对于任意a ,b ,都有()()223a b a b a ab b b ⊕=+-+-,等式右边是通常的加法、减法、乘法及乘方运算,比如:()()223525255222⊕=+⨯-⨯+-7198=⨯-1338=-125=(1)求()32⊕-的值.(2)化简()()223a b a ab b b +-+-.24.观察下列等式:①11111323⎛⎫=⨯- ⎪⨯⎝⎭;②111135235⎛⎫=⨯- ⎪⨯⎝⎭;③111157257⎛⎫=⨯- ⎪⨯⎝⎭…根据上述等式的规律,解答下列问题:(1)请写出第④个等式:_____________;(2)写出第n 个等式(用含有n 的等式表示):_____________;(3)应用你发现的规律,计算:222221335577920192021++++⋅⋅⋅+⨯⨯⨯⨯⨯.25.“分类讨论”是一种重要数学思想方法,下面是运用分类讨论的数学思想解决问题的过程,请仔细阅读,并解答题目后提出的四个问题.例:三个有理数a ,b ,c 满足0abc >,求a b c a b c++的值.解:由题意得,a ,b ,c 三个有理数都为正数或其中一个为正数,另两个为负数.①当a ,b ,c 都是正数,即0a >,0b >,0c >时,则:1113a b c a b ca b c a b c++=++=++=,②当a ,b ,c 有一个为正数,另两个为负数时,设0a >,0b <,0c <,则:()()1111a b c a b c a b c a b c--++=++=+-+-=-.综上,a b c a b c++的值为3或-1.请根据上面的解题思路解答下面的问题:(1)已知3a =,1=b ,且a b <,求a b +的值;(2)已知a ,b 是有理数,当0ab >时,求a ba b+的值.(3)已知a ,b ,c 是有理数,0a b c ++=,0abc <,求a b c a b c++.参考答案1.A 【解析】【分析】根据有理数的大小比较即可求解.【详解】解:∵4213-<-<<,故选:A .【点睛】本题考查有理数的大小比较,掌握有理数的大小比较法则是解题的关键.2.B 【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正整数;当原数的绝对值<1时,n 是负整数.【详解】解:4700607.006010=⨯,故选:B .【点睛】此题考查科学记数法的表示方法,表示时关键要确定a 的值以及n 的值.3.C 【解析】【分析】A.根据有理数的乘方法则解题;B.根据合并同类项法则解题;C.根据有理数的乘方法则解题;D.根据合并同类项法则解题.【详解】A.239=,故A 错误;B.6612a a a --=-,故B 错误;C.2416-=-,故C 正确;D.523xy xy xy -+=-,故D 错误,故选:C .【点睛】本题考查乘方、合并同类项等知识,是基础考点,难度较易,掌握相关知识是解题关键.4.B 【解析】【分析】根据单项式系数和次数的概念分析即可,单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数.【详解】单项式23a b π-的系数和次数分别是3π-,3故选B 【点睛】本题考查了单项式系数和次数的概念,掌握概念是解题的关键.5.C 【解析】【分析】根据整式的概念辨析即可得到答案,单项式和多项式统称为整式.【详解】234x ,3ab ,5x +,5y x,4-,3y ,2a b a -是整式的有234x ,3ab ,5x +,4-,3y ,2a b a -,共6个故选:C 【点睛】此题考查了整式的概念,注意5yx分母中含有字母,是分式不是整式.6.D 【解析】【分析】先根据点在数轴上的位置得出a 的取值范围,从而可得出b 的取值范围,由此即可得.【详解】由数轴上点的位置得:23a <<32a ∴-<-<-23a ∴<<又a b a -<< 2b ∴≤观察四个选项,只有选项D 不符合故选择:D .【点睛】本题考查了用数轴上的点表示有理数,比较简单,正确表示取值范围是解题关键.7.D 【解析】【分析】首先根据速度×时间=路程,用小明步行的速度乘x ,求出从小明家到车站的路程是多少;然后根据速度×时间=路程,用公交车行驶的速度乘y ,求出从车站到学校的路程是多少;最后把它们相加即可.【详解】解:小明家离书店的路程为:134456060154x y x y ⨯+⨯=+故选:D .【点睛】此题主要考查了列代数式,注意行程问题中速度、时间和路程的关系:速度×时间=路程,路程÷时间=速度,路程÷速度=时间,要熟练掌握.8.D 【解析】【详解】试题分析:A 、(-1)+(-2)=-3,和小于每一个加数,故选项错误;B 、1-(-2)=3,差大于被减数,故选项错误;C 、1×(-2)=-2,积都不大于每一个因数,故选项错误;D 、|a|一定是非负数是正确的.故选D .9.A 【解析】【分析】首先根据三视图确定该几何体的形状,然后确定其体积即可.【详解】易得第一层有2个小正方体,第二层有1个小正方体,一共有3个,体积为:3×1×1×1=3(cm3).故选:A.【点睛】本题考查了学生的思考能力和对几何体三种视图的空间想象能力.10.C【解析】【分析】根据题意得每次减绳子后的长度都是上次剩下长度的13,根据乘方的定义我们可以得出关于x的关系式,代入100x=求解即可.【详解】∵第一次剪去绳子的23,还剩213⎛⎫-⨯⎪⎝⎭原长第二次剪去剩下绳子的23,还剩213⎛⎫-⨯⎪⎝⎭上次剩下的长度因此每次减绳子后的长度都是上次剩下长度的1 3根据乘方的定义,我们得出第n次剪去绳子的23,还剩13x⎛⎫⎪⎝⎭第100次剪去绳子的23,还剩10013⎛⎫⎪⎝⎭故答案为:C.【点睛】本题考查了乘方的定义,掌握乘方的定义从而确定它们的关系式是解题的关键.11.-40【解析】【分析】【详解】盈利80元记作+80元,那么亏损40元记为﹣40元.故答案为:﹣40.12.-1512018【解析】【分析】根据倒数和相反数的定义进行解答即可.【详解】解:-5的倒数是-15;12018-的相反数是12018.故答案为:-15;12018.【点睛】本题主要考查倒数和相反数,倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数;只有符号不同的两个数互为相反数.13.18.4C-︒【解析】【分析】从地面到高山上高度升高了2400米,用升高的高度除以100再乘以0.6得出下降的温度,再用地面的气温减去此值即可.【详解】解:由题意可得,高度是2400米高的山上的气温是:-4-2400÷100×0.6=-4-14.4=-18.4℃,故答案为:-18.4℃.【点睛】本题考查有理数的混合运算,解答本题的关键是根据题意列出正确的算式.14.55【解析】【分析】根据运算程序列式计算即可得解.【详解】解:由图可知,输入的值为-3时,()2-3=910<则()()2-32592555⎡⎤+⨯=+⨯=⎢⎥⎣⎦.故答案为:55.【点睛】本题考查了代数式求值,读懂题目运算程序是解题的关键.15.30【解析】【分析】将代数式化为:2(x 2+3x )+8,由于代数式x 2+3x-5的值等于6,那么x 2+3x=11,将其代入代数式并求出代数式的值.【详解】解:由题意得:x 2+3x-5=6,即:x 2+3x=11,∴2x 2+6x+8=2(x 2+3x )+8=2×11+8=30.故答案为:30.【点睛】本题考查代数式的求值,关键在于找出代数式与已知条件的关系,根据已知条件求出代数式中的未知项,代入求解.16.强【解析】【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这个特点作答即可.【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,∴“文”与“强”相对,“富”与“主”相对,“民”与“明”相对,故答案为:强.【点睛】本题考查了正方体的展开图,注意从相对面入手,分析及解答问题.17.2-【解析】【分析】根据3A B '=可得点A '为12,再根据A 与A '以C 为折点对折,即C 为A ,A '中点即可求解.【详解】解:翻折后A '在B 右侧,且3A B '=.所以点A '为12,∵A 与A '以C 为折点对折,则C 为A ,A '中点,即1216:22C -=-.【点睛】本题考查数轴上两点间的距离,得到C 为A ,A '中点是解题的关键.18.0【解析】【详解】解:()3421415231211⎛⎫---⨯+-÷-+ ⎪⎝⎭()()114188211=---⨯+-÷()()121=---+-1210=-+-=.【点睛】本题考查了有理数的混合运算,熟练掌握混合运算的顺序是解答本题的关键.混合运算的顺序是先算乘方,再算乘除,最后算加减;同级运算,按从左到右的顺序计算.19.(1)一月份:()a bm +元;二月份:()a bn +元(2)该商店这两个月销售其总产品的总收益为130元【解析】【分析】(1)每月应付费用为:a 元代销费+b×销售件数,所以这两个月公司应付给商店的钱数=2×a+b×两个月销售件数;(2)把a=200,b=2,m=200,n=250,代入(1)中的式子即可.【详解】(1)一月份:()a bm +元二月份:()a bn +元(2)当20a =,2b =,20m =,25n =时()()a bm a bn +++()2022020225=+⨯++⨯20402050130=+++=(元)答:该商店这两个月销售其总产品的总收益为130元.【点睛】本题考查列代数式和代数式求值,用代数式表示出代销费和提成是解题的关键.20.见解析【解析】【分析】由已知条件可知,从正面看有3列,每列小正方数形数目分别为4,3,1;从左面看有3列,每列小正方形数目分别为3,4,1,据此可画出图形.【详解】解:如图所示:【点睛】本题考查几何体的三视图画法.由几何体的俯视图及小正方形内的数字,可知主视图的列数与俯视数的列数相同,且每列小正方形数目为俯视图中该列小正方形数字中的最大数字.左视图的列数与俯视图的行数相同,且每列小正方形数目为俯视图中相应行中正方形数字中的最大数字.21.(1)M=2(2)2y =【解析】【分析】(1)先化简M ,进而根据非负数的性质求得,x y 的值,进而代入求解即可;(2)根据(1)中M 的化简结果变形,令含x 项的系数为0,进而求得y 的值解:()()2223221M x xy y x x yx =++-+++222322222x xy y x x yx -=++---222xy y x =+-- ()2120x y -+-=1,2x y ∴==原式12222122=⨯+⨯-⨯-=(2)M 222xy y x =+--()222y x y =-+-与字母x 的取值无关,20y ∴-=解得2y =【点睛】本题考查了整式加减化简求值,整式无关类型,掌握整式的加减运算是解题的关键.22.(1)B 点在商的北边2.6千米;(2)第4个客人下车地点距离商店6.7千米;(3)这天上午共耗油8.24升【解析】【分析】(1)把所给数据相加,若和为正,则说明B 地在商店的南边,若和为负,则说明B 地在商店的北边,再求出和的绝对值即可解答;(2)求出前4个数据相加的和的绝对值即可;(3)求出所有数据的绝对值的和,再乘以每千米的耗油量即可求解.(1)解:18.39.57.114 6.212 6.88.5 2.6--++-++-=-(千米),所以B 点在店的北边2.6千米;(2)解:18.39.57.114 6.7--++=-(千米),所以第4个客人下车地点距离商店6.7千米;解:18.39.57.114 6.212 6.88.582.4+++++++=(千米)82.40.18.24⨯=升.所以这天上午共耗油8.24升.【点睛】本题考查正负数的实际应用、有理数的混合运算的实际应用,理解相反意义的量的含义是解答的关键.23.(1)27;(2)3a 【解析】【分析】(1)先根据新定义运算的运算顺序运算即可;(2)先用乘法分配律算乘法,再合并同类项即可.【详解】解:(1)∵()()223a b a b a ab b b ⊕=+-+-,∴()2332(32)(3324)(2)⊕-=-+⨯+--=198+=27;(2)()()223a b a ab b b-+++=3222233a ab ab a b ab b b ++---+=3a .【点睛】本题考查了整式的混合运算,理解新定义运算顺序并正确运用运算法则进行计算是解此题的关键.24.(1)111179279⎛⎫=⨯- ⎪⨯⎝⎭(2)()()1111212122121n n n n ⎡⎤=⨯-⎢⎥-+-+⎣⎦(3)20202021【解析】【分析】(1)根据所给等式总结规律解答;(2)根据(1)中规律写出答案即可;(3)根据(2)中规律裂项相消即可;(1)解:∵①11111323⎛⎫=⨯- ⎪⨯⎝⎭;②111135235⎛⎫=⨯- ⎪⨯⎝⎭;③111157257⎛⎫=⨯- ⎪⨯⎝⎭,…,∴111179279⎛⎫=⨯- ⎪⨯⎝⎭,故答案是:17×9=12×−(2)解:由(1)可知,第n 个等式为:()()1111212122121n n n n ⎡⎤=⨯-⎢⎥-+-+⎣⎦,故答案是:()()1111212122121n n n n ⎡⎤=⨯-⎢⎥-+-+⎣⎦;(3)解:222221335577920192021++++⋅⋅⋅+⨯⨯⨯⨯⨯()1111121335577920192021=⨯++++⋅⋅⋅+⨯⨯⨯⨯⨯()1111111111212335577920192021=⨯⨯-+-+-+-+⋅⋅⋅+-112021=-20202021=.【点睛】本题考查了数字类规律探究,以及有理数的混合运算,通过观察,分析、归纳并发现其中的规律,并应用发现的规律解决问题是应该具备的基本能力.25.(1)-2或-4;(2)2±;(3)1【解析】【分析】(1)根据绝对值的意义和a <b ,确定a 、b 的值,再计算a+b ;(2)对a 、b 进行讨论,即a 、b 同正,a 、b 同负,根据绝对值的意义进行计算即可;(3)根据a ,b ,c 是有理数,a+b+c=0,0abc <,则a ,b ,c 两正一负,然后进行计算即可.【详解】解:(1)因为3a =,1=b ,且a b <,所以3a =-,1b =或1-,则2a b +=-或4a b +=-.(2)①当0a <,0b <时,112a b a b+=--=-;②当0a >,0b >时,112a b a b+=+=;综上,a b a b+的值为2±.(3)已知a ,b ,c 是有理数,0a b c ++=,0abc <.所以a ,b ,c 两正一负,不妨设0a >,0b >,0c <,所以1111a b c a b c++=+-=.【点睛】考查了绝对值的意义、分类讨论的思想方法.能不重不漏的分类,会确定字母的范围和字母的值是关键;。
(新课标)2017-2018学年北师大版高中数学选修1-1模块质量检测一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.与命题:“若a ∈P 则b ∉P ”等价的命题是( ) A .若a ∉P ,则b ∉P B .若b ∉P ,则a ∈P C .若a ∉P ,则b ∈PD .若b ∈P ,则a ∉P解析: 原命题的逆否命题是“若b ∈P ,则a ∉P ”. 答案: D2.条件甲:“a 、b 、c 成等差数列”是条件乙:“ab +cb =2”的( )A .必要不充分条件B .充分不必要条件C .充要条件D .既不充分也不必要条件解析: 甲⇒/乙,如a =-1,b =0,c =1; 乙⇒甲,故甲是乙的必要不充分条件. 答案: A3.曲线f(x)=x 3+x -2在点P 0处的切线平行于直线y =4x -1,则点P 0的坐标为( ) A .(1,0)B .(2,8)C .(1,0)和(-1,-4)D .(2,8)和(-1,-4)解析: f ′(x 0)=3x 20+1=4, ∴x 0=±1. 答案: C4.以x 24-y 212=-1的焦点为顶点,顶点为焦点的椭圆方程为( )A.x 216+y 212=1 B .x 212+y 216=1C.x 216+y 24=1 D .x 24+y 216=1解析: 双曲线x 24-y 212=-1,即x 212-y 24=1的焦点为(0,±4),顶点为(0,±23).所以对椭圆y 2a 2+x 2b 2=1而言,a 2=16,c 2=12.∴b 2=4,因此方程为y 216+x 24=1.答案: D 5.函数y =4x 2+1x的单调递增区间为( ) A .(0,+∞)B .(-∞,1) C.⎝ ⎛⎭⎪⎫12,+∞ D .(1,+∞)解析: 由已知定义域为{x|x ≠0}, y ′=8x -1x 2,令y ′>0得x >12,故选C.答案: C6.若k 可以取任意实数,则方程x 2+ky 2=1所表示的曲线不可能是( ) A .直线 B .圆 C .椭圆或双曲线D .抛物线解析: 本题主要考查圆锥曲线的一般形式:Ax 2+By 2=c 所表示的圆锥曲线问题,对于k =0,1及k >0且k ≠1,或k <0,分别讨论可知:方程x 2+ky 2=1不可能表示抛物线.答案: D7.函数f(x)=-13x 3+x 2在区间[0,4]上的最大值是( )A .0B .-163C.43D .163解析: f ′(x)=2x -x 2,令f ′(x)=0,解得x =0或2. 又∵f(0)=0,f(2)=43,f(4)=-163,∴函数f(x)在[0,4]上的最大值为43.答案: C8.若椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为32,则双曲线x 2a 2-y 2b 2=1的离心率为( )A.54 B .52C.32D .54解析: 因为椭圆x 2a 2+y 2b 2=1的离心率e 1=32,所以1-b 2a 2=e 21=34,即b 2a 2=14,而在双曲线x 2a 2-y 2b2=1中,设离心率为e 2,则e 22=1+b 2a 2=1+14=54,所以e 2=52.故选B. 答案: B9.已知f(2)=-2,f ′(2)=g(2)=1,g ′(2)=2,则函数 g (x )f (x )(f(x)≠0)在x =2处的导数为( )A .-54B .54C .-5D .5解析: 令h(x)=g (x )f (x ),则h ′(x)=g ′(x )f (x )-f ′(x )g (x )f 2(x ),∴h ′(2)=-54.故选A.答案: A10.已知命题p :|x -1|≥2,命题q :x ∈Z ,如果p 且q 、非q 同时为假,则满足条件的x 为( )A .{x|x ≤-1或x ≥3,x ∉Z}B .{x|-1≤x ≤3,x ∉Z}C .{-1,0,1,2,3}D .{0,1,2}解析: ∵p 且q 假,非q 为假, ∴p 假q 真,排除A ,B ,p 为假, 即|x -1|<2,∴-1<x <3且x ∈Z.∴x =0,1,2. 答案: D11.中心在原点,对称轴为坐标轴的双曲线C 的两条渐近线与圆x 2+(y -2)2=1都相切,则双曲线C 的离心率是( )A.3或62B .2或 3C.233或2D .233或62解析: 设圆的两条过原点的切线方程为y =kx. 由2k 2+1=1得k =±3.当ba =3时,e =ca=1+b 2a 2=2.当ab =3时,e =ca=1+b 2a 2=233.答案: C12.设f(x),g(x)分别是定义在R 上的奇函数和偶函数.当x <0时,f ′(x)g(x)+f(x)g ′(x)>0,且g(-3)=0,则不等式f(x)g(x)<0的解集是( )A .(-3,0)∪(3,+∞)B .(-3,0)∪(0,3)C .(-∞,-3)∪(3,+∞)D .(-∞,-3)∪(0,3)解析: f(x)为奇函数,g(x)为偶函数,则f(x)g(x)是奇函数.又当x <0时,f ′(x)g(x)+f(x)g ′(x)>0,即[f(x)g(x)]′>0,所以F(x)=f(x)·g(x)在(-∞,0)上是增函数,又g(-3)=g(3)=0,故F(-3)=F(3)=0.所以不等式f(x)g(x)<0的解集为(-∞,-3)∪(0,3). 答案: D二、填空题(本大题共4小题,每小题4分,共16分.把答案填在题中横线上)13.曲线y =13x 3-2在点⎝⎛⎭⎪⎫-1,-73处切线的倾斜角是________.解析: y ′=x 2,则曲线在x =-1处的导数为1,所以tan α=1,又因为α是切线的倾斜角,所以α=45°.答案: 45°14.已知双曲线的离心率为2,焦点是(-4,0)(4,0),则双曲线的方程为________. 解析: 由题意知c =4,e =ca =2,故a =2,所以b 2=c 2-a 2=12, 双曲线的方程为x 24-y 212=1.答案:x 24-y 212=1 15.函数f(x)=x +2cos x 在区间⎣⎢⎡⎦⎥⎤-π2,0上的最小值是________.解析: ∵f ′(x)=1-2sin x ,令f ′(x)>0,∴sin x <12.当x ∈⎣⎢⎡⎦⎥⎤-π2,0时,sin x <0<12,即f ′(x)在⎣⎢⎡⎦⎥⎤-π2,0上恒大于0,∴f(x)在区间⎣⎢⎡⎦⎥⎤-π2,0上为增函数,∴f(x)min =f ⎝ ⎛⎭⎪⎫-π2=-π2.答案: -π216.已知:①命题“若xy =1,则x ,y 互为倒数”的逆命题; ②命题“所有模相等的向量相等”的否定;③命题“若m ≤1,则x 2-2x +m =0有实根”的逆否命题; ④命题“若A ∩B =A ,则AB ”的逆否命题.其中能构成真命题的是________(填上你认为正确的命题的序号). 解析: ①逆命题:若x ,y 互为倒数,则xy =1.是真命题. ②的否定是:“存在模相等的向量不相等”.是真命题. 如,a =(1,1),b =(-1,1)有|a|=|b|=2,但a ≠b.③命题“若m ≤1,则x 2-2x +m =0”是真命题.这是因为当m <0时Δ=(-2)2-4m =4-4m >0恒成立.故方程有根.所以其逆否命题也是真命题.④若A ∩B =A ,则A ⊆B ,故原命题是假命题,因此其逆否命题也是假命题. 答案: ①②③三、解答题(本大题共6小题,共74分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(12分)已知p :1≤x ≤2,q :a ≤x ≤a +2,且¬p 是¬q 的必要不充分条件,求实数a 的取值范围.解析: ∵¬p 是¬q 的必要不充分条件, ∴q 是p 的充分不必要条件.∴{x|1≤x ≤2}{x|a ≤x ≤a +2},∴⎩⎪⎨⎪⎧a ≤1,a +2≥2,∴0≤a ≤1.18.(12分)已知命题p :方程x 22m -y 2m -1=1表示焦点在y 轴上的椭圆,命题q :双曲线y 25-x 2m=1的离心率e ∈(1,2),若p ∨q 为真命题,p ∧q 为假命题,求实数m 的取值范围. 解析: p :0<2m <1-m ⇒0<m <13,q :1<5+m5<2⇒0<m <15, p 且q 为假,p 或q 为真⇒p 假q 真,或p 真q 假.p 假q 真⇒⎩⎪⎨⎪⎧m ≤0或m ≥130<m <15⇒13≤m <15, q 假p 真⇒⎩⎪⎨⎪⎧0<m <13m ≤0或m ≥15m ∈∅.综上可知13≤m <15.19.(12分)已知动圆过定点⎝ ⎛⎭⎪⎫p 2,0,与直线x =-p2相切,其中p >0,求动圆圆心的轨迹方程.解析: 如图,设M 为动圆圆心,⎝ ⎛⎭⎪⎫p 2,0记为点F.过点M 作直线x =-p2的垂线,垂足为N ,由题意知|MF|=|MN|,即动点M 到定点F与到定直线x =-p2的距离相等,由拋物线的定义,知点M 的轨迹为拋物线,其中F ⎝ ⎛⎭⎪⎫p 2,0为其焦点,x =-p2为其准线,所以动圆圆心的轨迹方程为y 2=2px(p >0).20.(12分)已知函数f(x)=2ax 3+bx 2-6x 在x =±1处取得极值. (1)求f(x)的解析式,并讨论f(1)和f(-1)是函数f(x)的极大值还是极小值; (2)试求函数f(x)在x =-2处的切线方程. 解析: (1)f ′(x)=6ax 2+2bx -6, 因为f(x)在x =±1处取得极值,所以x =±1是方程3ax 2+bx -3=0的两个实根.所以⎩⎪⎨⎪⎧-b3a =0,-33a =-1,解得⎩⎪⎨⎪⎧a =1,b =0.所以f(x)=2x 3-6x ,f ′(x)=6x 2-6.令f ′(x)>0,得x >1或x <-1; 令f ′(x)<0,得-1<x <1.所以f(-1)是函数f(x)的极大值,f(1)是函数f(x)的极小值.(2)由(1)得f(-2)=-4,f ′(-2)=18,即f(x)在x =-2处的切线的斜率为18. 所以所求切线方程为y -(-4)=18[x -(-2)], 即18x -y +32=0. 21.(12分)设函数f(x)=x 3-92x 2+6x -a. (1)对于任意实数x ,f ′(x)≥m 恒成立,求m 的最大值; (2)若方程f(x)=0有且仅有一个实根,求a 的取值范围. 解析: (1)f ′(x)=3x 2-9x +6=3(x -1)(x -2).因为x ∈(-∞,+∞),f ′(x)≥m ,即3x 2-9x +(6-m)≥0恒成立,所以Δ=81-12(6-m)≤0,解得m ≤-34,即m 的最大值为-34.(2)因为当x <1时,f ′(x)>0;当1<x <2时,f ′(x)<0; 当x >2时,f ′(x)>0.所以当x =1时,f(x)取极大值f(1)=52-a ;当x =2时,f(x)取极小值f(2)=2-a ,故当f(2)>0或f(1)<0时,f(x)=0仅有一个实根. 解得a <2或a >52.22.(14分)某椭圆的中心是原点,它的短轴长为22,一个焦点为F(c,0)(c >0),x轴上有一点A ⎝ ⎛⎭⎪⎫a 2c ,0且满足|OF|=2|FA|,其中a 为长半轴长,过点A 的直线与该椭圆相交于P ,Q 两点.求:(1)该椭圆的方程及离心率;(2)若OP →·OQ →=0,求直线PQ 的方程.解析: (1)依题意可设椭圆的方程为x 2a 2+y 22=1(a >2),由已知得⎩⎪⎨⎪⎧a 2-c 2=2,c =2⎝ ⎛⎭⎪⎫a 2c -c ,解得⎩⎪⎨⎪⎧a =6,c =2.所以椭圆的方程为x 26+y 22=1,离心率e =63.(2)由(1)可得点A(3,0),由题意知直线PQ 的斜率存在,设为k , 则直线PQ 的方程为y =k(x -3),由方程组⎩⎪⎨⎪⎧x 26+y22=1,y =k (x -3),得(3k 2+1)x 2-18k 2x +27k 2-6=0,依题意知,Δ=12(2-3k 2)>0,得-63<k <63. 设P(x 1,y 1),Q(x 2,y 2),则x 1+x 2=18k 23k 2+1,x 1x 2=27k 2-63k 2+1,从而得y 1=k(x 1-3),y 2=k(x 2-3), 于是y 1y 2=k 2(x 1-3)(x 2-3).因为OP →·OQ →=0,所以x 1x 2+y 1y 2=0, 解得5k 2=1,从而k =±55∈⎝ ⎛⎭⎪⎪⎫-63,63,所以直线PQ 的方程为x -5y -3=0或x +5y -3=0.。
北师大版高中数学必修五高二上学期期中考试试题一、选择题(每小题5分,共50分)1、已知数列1,3,5,7,…,2n -1,…,则35是它的( )A .第22项B .第23项C .第24项D .第28项2、在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,且a 2+ab +b 2=c 2,则角C 等于( )A.π6B.π3C.2π3D.π2 3、已知△ABC 的面积为32,且b =2,c =3,则sinA =( )A .23 B .21C .43D .34、下列结论正确的是()A .若ac>bc ,则a>bB .若a 2>b 2,则a>bC .若a>b,c<0,则 a+c<b+cD .若a <b ,则a<b 5、在等差数列{a n }中,a 6=2,a 8=4,则a 10+a 4= ( )A .9B .10C .6D .86、已知实数x 、y 满足⎩⎨⎧y ≤2xy ≥-2x.x ≤3则z =x -2y 的最小值是( )A.-9B.15C.0D.以上答案都不正确7、已知等比数列{a n }的首项为151,前4项的和是1,则数列的公比为( ) A .3 B .2 C .21D .2 8、(文)在△ABC 中,若B b A a cos cos =,则△ABC 的形状是( )A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰或直角三角形 (理)在△ABC 中,已知C B A sin cos sin 2=,那么△ABC 一定是 ( ) A .直角三角形 B .正三角形 C .等腰直角三角形 D .等腰三角形 9、(文)若2()1f x x ax =-+能取到负值,则a 的范围是()A.2a ≠±B.-2<a<2C.a>2或a<-2D.1<a<3(理)不等式22214x a x ax ->++对一切∈x R 恒成立,则实数a 的取值范围是( )A .(,2)-∞B .(,2)-∞⋃(2,)+∞C .(2,)+∞D .(0,2)10、 (文)已知锐角三角形的边长分别为2、3、x ,则x 的取值范围是( )A .51<<xB .135<<xC .50<<xD .513<<x(理)设ABC ∆的内角C B A ,,所对应的边分别为c b a ,,,则下列命题中①若B A sin sin >,则b a >; ②若2c ab >,则3π>C ;③若c b a 2>+,则3π<C ; ④若ab c b a 2)(>+,则2π>C ;则其中真命题为( )A .①②④B .①②③C .②③④D .①③④二、填空题(每小题5分,共25分;请将答案直接填写在答题卡的相应位置上)11、数列1,12,14,18,116,…的一个通项公式为________.12、已知△ABC 的三个内角之比为A ∶B ∶C =3∶2∶1,那么对应三边之比a ∶b ∶c 等于。
2024--2025学年河南省郑州市北师大版七年级上册数学期中试卷(A )1.在-(-2)、|-1|、-|0|,-22,(-3)2,-(-4)5中正数有()A .1个B .2个C .3个D .4个2.下列各组数中,结果相等的是()A.与B.与C.与D.与3.人类已知最大的恒星是盾牌座UY,它的规模十分巨大,如果将盾牌座UY 放在太阳系的中心,它的表面将接近土星轨道,半径约等于1.43344937×109km.那么这个数的原数是()A .143344937kmB .1433449370kmC .14334493700kmD .1.43344937km4.下列选项中,两个单项式属于同类项的是()A .a 3与b 3B .-2a 2b与ba2C .x2y 与-xy2D .3x 2y 与-4x2yz5.已知整式的值为6,则整式的值为()A .0B .12C .14D .186.如图是一个正方体的表面展开图,则这个正方体是()A.B.C.D .7.如图,从边长为的正方形纸片中剪去一个边长为3的正方形,剩余部分沿虚线又剪拼成一个如图所示的长方形(不重叠,无缝隙),则拼成的长方形的另一边长是()A.B .C .D .68.若,则多项式的值为()A .B .5C.D .9.如图,将数轴上-6与6两点间的线段六等分,这五个等分点所对应数依次为,,,,,则下列正确的是()A.B.C.D.10.如图,一个立方体的六个面上分别标着连续的自然数,若相对两个面上所标之数的和相等,则这六个数的和为()A.69B.75C.78D.8111.在体育课的跳远比赛中,以4.00米为标准,若小东跳出了4.22米,可记作+0.22,那么小东跳出了3.85米,记作______.12.一个棱柱有12个顶点,所有的侧棱长的和是48cm,则每条侧棱长是____cm.13.已知多项式x|m|+(m﹣2)x﹣10是二次三项式,m为常数,则m的值为_____.14.将一个边长为a的正方形纸片[如图(1)]剪去两个小长方形,得到一个如图(2)所示的“”形图案,则这个“”形图案的周长为____.15.如果关于的多项式与多项式的次数相同,则=_________.16.计算(1)(2).17.化简,求值:,其中,.18.一个几何体由几个完全相同的小立方块搭成,从上面观察这个几何体,看到的形状如图所示,其中小正方形中的数字表示该位置的小正方体的个数.(1)请画出从正面看、从左面看到的这个几何体的形状图;(2)若小正方体的棱长为1,求这个几何体的表面积.19.某种箱装水果的标准质量为每箱10千克,现抽取8箱样品进行检测,称重如下(单位:千克):10.2,9.9,9.8,10.1,9.6,10.1,9.7,10.2.为了求得这8箱样品的总质量,我们可以选取一个基准质量进行简化运算.(1)你认为选取的这个恰当的基准质量为______千克;(2)根据你选取的基准质量,用正、负数填写下表;(超过基准质量的部分记为正数,不足基准质量的部分记为负数)原质量(千克)10.29.99.810.19.610.19.710.2与基准质量的差距(千克)(3)这8箱样品的总质量是多少?20.如图,两摞完全相同的课本整齐地叠放在讲台上,请根据图中所给出的信息,回答下列问题:(1)每本课本的厚度为cm.(2)若有一摞上述规格的课本x本整齐地叠放在讲台上,请用含x的代数式表示出这摞课本的顶部距离地面的高度.(3)当时,求课本的顶部距离地面的高度.21.【问题情境】某综合实践小组计划进行废物再利用的环保小卫士活动.他们准备用废弃的宣传单制作成装垃圾的无盖纸盒.【操作探究】(1)若准备制作一个无盖的正方体纸盒,如图(1),图形经过折叠能围成一个无盖正方体纸盒.(填A,B,C,或D)(2)如图(2)是小明的设计图,把它折成一个无盖正方体纸盒后与“保”字所在面相对的面上的文字是.(3)如图(3),有一张边长为20cm的正方形废弃宣传单,小华将其四个角各剪去一个边长为4cm小正方形后,折成无盖长方体纸盒.求这个无盖长方体纸盒的底面积和容积.22.某中学准备在网上订购一批篮球和跳绳,查阅后发现篮球每个售价为120元,跳绳每根售价为25元.现有甲、乙两家网店均提供包邮服务,并提出了各自的优惠方案.甲网店:买一个篮球送一根跳绳;乙网店:篮球和跳绳都按定价的付款.已知要购买篮球40个,跳绳x根.(1)若在甲网店购买,则需付款元;若在乙网店购买,则需付款元;(用含x的代数式表示)(2)当时,在哪家网店购买较为合算?(3)当时,你认为还有更为省钱的购买方案吗?如果没有,请说明理由;如果有,请写出你的购买方案,并计算需要付款的金额.23.已知点A,B在数轴上分别表示a,b.任务要求(1)对照数轴填写下表:a 83b 404A ,B 两点间的距离48124问题探究(2)若A ,B 两点间的距离记为d ,试问d 和a ,b 有何数量关系.问题拓展(3)当x 等于多少时,的值最小,最小值是多少?(4)若点C 表示的数为x ,当点C 在什么位置时,|x-1|+|x-5|的值最小,最小值是多少?。
2024-2025学年九年级数学上学期第一次月考模拟卷(考试时间:120分钟试卷满分:120分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.测试范围:第1章~第3章(北师版)。
5.考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷一.单项选择题(本题共12小题,每小题3分,共36分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1.下列方程中,是一元二次方程的是()A.xx2−3xx−5=−5B.2xx2−yy−1=0C.xx2−xx(xx+2.5)=0D.aaxx2+bbxx+cc=02.下列命题为真命题的是()A.有两边相等的平行四边形是菱形B.有一个角是直角的平行四边形是菱形C.对角线互相垂直的平行四边形是矩形D.有三个角是直角的四边形是矩形3.若关于xx的方程xx2+mmxx−6=2.则mm为()A.−2B.1 C.4 D.−34.a是方程xx2+2xx−1=0的一个根,则代数式aa2+2aa+2020的值是()A.2018 B.2019 C.2020 D.20215.如图,在正方形AAAAAAAA中,EE为AAAA上一点,连接AAEE,AAEE交对角线AAAA于点FF,连接AAFF,若∠AAAAEE=35°,则∠AAFFAA的度数为()A.80°B.70°C.75°D.45°6.有一块长40m,宽32m的矩形种植地,修如图等宽的小路,使种植面积为1140m2,求小路的宽.设小路的宽为x,则可列方程为()A.(40﹣2x)(32﹣x)=1140 B.(40﹣x)(32﹣x)=1140C.(40﹣x)(32﹣2x)=1140 D.(40﹣2x)(32﹣2x)=11407.在一个不透明的袋子中放有若干个球,其中有6个白球,其余是红球,这些球除颜色外完全相同.每次把球充分搅匀后,任意摸出一个球记下颜色再放回袋子.通过大量重复试验后,发现摸到白球的频率稳定在0.25左右,则红球的个数约是()A.2 B.12 C.18 D.248.如图,在菱形AAAAAAAA中,对角线AAAA,AAAA相交于点OO,EE是AAAA的中点,若菱形的周长为20,则OOEE的长为()A.10 B.5 C.2.5D.19.在一次新年聚会中,小朋友们互相赠送礼物,全部小朋友共互赠了110件礼物,若假设参加聚会小朋友的人数为xx人,则根据题意可列方程为()A.xx(xx−1)=110B.xx(xx+1)=110C.(xx+1)2=110D.(xx−1)2=11010.关于xx的一元二次方程kkxx2−2xx−1=0有两个不相等的实数根,则kk的取值范围是()A.kk>−1B.kk>−1且kk≠0C.kk<1D.kk<1且kk≠011.如图,在菱形纸片ABCD中,AB=2,∠A=60°,将菱形纸片翻折,使点A落在CD的中点E处,折痕为FG,点F,G分别在边AB,AD上,则EF的长为()A.74B.95C.1910D.76�312.如图,在正方形AAAAAAAA中,AAAA=4,E为对角线AAAA上与点A,C不重合的一个动点,过点E作EEFF⊥AAAA于点F,EEEE⊥AAAA与点G,连接AAEE,FFEE,有下列结论:①AAEE=FFEE.②AAEE⊥FFEE.③∠AAFFEE=∠AAAAEE.④FFEE的最小值为3,其中正确结论的序号为()A.①②B.②③C.①②③D.①③④第Ⅱ卷二.填空题(本题共6小题,每小题3分,共18分.)13.一元二次方程5xx2+2xx−1=0的一次项系数二次项系数常数项.14.xx1,xx2为一元二次方程xx2−2xx−10=0的两根,则1xx1+1xx2=.15.如图,矩形ABCD中,对角线AC、BD相交于点O,若OB=2,∠ACB=30°,则AB的长度为.16.如图所示,菱形AAAAAAAA的对角线AAAA、AAAA相交于点OO.若AAAA=6,AAAA=8,AAEE⊥AAAA,垂足为EE,则AAEE的长为.17.如图,将一张长方形纸片AAAAAAAA沿AAAA折起,重叠部分为ΔΔAAAAEE,若AAAA=6,AAAA=4,则重叠部分ΔΔAAAAEE的面积为.18.如图,在正方形AAAAAAAA中,AAAA=6,点E,F分别在边AAAA,AAAA上,AAEE=AAFF=2,点M在对角线AAAA上运动,连接EEEE和EEFF,则EEEE+EEFF的最小值等于.三、解答题(本题共8小题,共66分.解答应写出文字说明、证明过程或演算步骤.)19.(6分)解下列方程:(1)3xx2−4xx−1=0;(2)2�xx−3�2=xx2−920.(8分)已知方程xx2+�kk+1−6=0是关于xx的一元二次方程.(1)求证:对于任意实数kk方程中有两个不相等的实数根.(2)若xx1,xx2是方程的两根,kk=6,求1xx1+1xx2的值.21.(8分)如图,在菱形AAAAAAAA中,对角线AAAA,AAAA交于点OO,AAEE⊥AAAA交AAAA延长线于EE,AAFF∥AAEE交AAAA延长线于点FF.(1)求证:四边形AAEEAAFF是矩形;(2)若AAEE=4,AAAA=5,求AAAA的长.22.(10分)“端午节”是我国的传统佳节,民间历来有吃“粽子”的习俗,某食品公司为了解市民对去年销量较好的肉馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A、B、C、D表示)这四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查情况绘制成如图两幅统计图.请根据以上信息回答:(1)参加本次调查的有______人,若该居民区有8000人,估计整个居民区爱吃D粽的有______人.(2)请将条形统计图补充完整;(3)食品公司推出一种端午礼盒,内有外形完全相同的A、B、C、D粽各一个,小王购买了一个礼盒,并从中任意取出两个食用,请用列表或画树状图的方法,求他恰好能吃到C粽的概率.23.(8分)阅读材料,回答问题.材料1:为了解方程�xx2�2−13xx2+36=0,如果我们把xx2看作一个整体,然后设yy=xx2,则原方程可化为yy2−13yy+36=0,经过运算,原方程的解为xx1,2=±2,xx3,4=±3,我们把以上这种解决问题的方法通常叫做换元法.材料2:已知实数mm,nn满足mm2−mm−1=0,nn2−nn−1=0,且mm≠nn,显然mm,nn是方程xx2−xx−1=0的两个不相等的实数根,由韦达定理可知mm+nn=1,mmnn=−1.根据上述材料,解决以下问题:(1)为解方程xx4−xx2−6=0,可设yy=____,原方程可化为____.经过运算,原方程的解是____.(2)应用:若实数aa,bb满足:2aa4−7aa2+1=0,2bb4−7bb2+1=0且aa≠bb,求aa4+bb4的值;24.(10分)中秋期间,某商场以每盒140元的价格购进一批月饼,当每盒月饼售价为180元时,每天可售出60盒.为了扩大销售,商场决定采取适当降价的方式促销,经调查发现,如果每盒月饼降价2元,那么商场每天就可以多售出5盒.(1)设售价每盒下降xx元,则每天能售出______盒(用含xx的代数式表示);(2)当月饼每盒售价为多少元时,每天的销售利润恰好能达到2550元;(3)该商场每天所获得的利润是否能达到2700元?请说明理由.25.(12分)在数学实验课上,老师让学生以“折叠筝形”为主题开展数学实践探究活动.定义:两组邻边分别相等的四边形叫做“筝形”.(1)概念理解:如图1,将一张纸对折压平,以折痕为边折出一个三角形,然后把纸展平,折痕为四边形AAAAAAAA.判断四边形AAAAAAAA的形状:筝形(填“是”或“不是”);(2)性质探究:如图2,已知四边形AAAAAAAA纸片是筝形,请用测量、折叠等方法猜想筝形的角、对角线有什么几何特征,然后写出一条性质并进行证明;(3)拓展应用:如图3,AAAA是锐角△AAAAAA的高,将△AAAAAA沿边AAAA翻折后得到△AAAAEE,将△AAAAAA沿边AAAA翻折后得到△AAAAFF,延长EEAA,FFAA交于点G.①若∠AAAAAA=50°,当△AAAAEE是等腰三角形时,请直接写出∠AAAAAA的度数;②若∠AAAAAA=45°,AAAA=2,AAAA=5,AAEE=EEEE=FFEE,求AAAA的长.26.(12分)探究式学习是新课程倡导的重要学习方式,某兴趣小组学习正方形以后做了以下探究:在正方形AAAAAAAA中,E,F为平面内两点.【初步感知】(1)如图1,当点E在边AAAA上时,AAEE⊥AAFF,且B,C,F三点共线.请写出AAEE与FFAA的数量关系______;【深入探究】(2)如图2,当点E在正方形AAAAAAAA外部时,AAEE⊥AAFF,AAEE⊥EEFF,E,C,F三点共线.若AAEE=2,AAEE=4,求AAEE的长;【拓展运用】(3)如图3,当点E在正方形AAAAAAAA外部时,AAEE⊥EEAA,AAEE⊥AAFF,AAEE⊥AAEE,且D,F,E三点共线,猜想并证明AAEE,AAEE,AAFF之间的数量关系.2024-2025学年九年级数学上学期第一次月考模拟卷(考试时间:120分钟试卷满分:120分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
北师大版高中数学必修五高二理科期中联考试题1、若直线l 的方向向量为a ,平面α的法向量为n ,能使l ∥α的是( ) A .a =(1,0,0),n =(-2,0,0)B .a =(1,3,5),n =(1,0,1) C .a =(0,2,1),n =(-1,0,-1)D .a =(1,-1,3),n =(0,3,1)2、已知命题p :0x ∀>,44x x+≥;命题q :0x R ∃∈,021x =-.则下列判断正确的是( ) A .p 是假命题 B .q 是真命题C .()p q ∧⌝是真命题 D .()p q ⌝∧是真命题 3、已知条件p :1x >,q :11x<,则p q 是的 () A.充分不必要条件 B.必要不充分条件 C.充要条件 D .既不充分也不必要条件 4、设定点M 1(0,-3),M 2(0,3),动点P 满足条件|PM 1|+|PM 2|=a +a9(其中a 是正常数),则点P 的轨迹是( )A .椭圆B .线段C .椭圆或线段D .不存在5、已知,x y 是正数,且满足224x y <+<.那么22x y +的取值范围是( )A 416(,)55 B 4(,16)5 C (1,16) D 16(,4)56、如图,E 、F 分别是三棱锥P-ABC 的棱AP 、BC 的中点,PC=10,AB=6,EF=7,则异面直线AB 与PC 所成的角为( )A. 90°B. 60°C. 45°D. 30°7、ABC ∆的内角,,A B C 的对边分别是a ,b ,c ,若2B A =,1a =,3b =,则c =()A .23B .2C .2D .18、已知各项不为0的等差数列{}n a 满足2478230a a a -+=,数列{}n b 是等比数列,且77b a =,则2811b bb 等于( )A .1B .2C .4D .89、在如图所示的空间直角坐标系xyz O -中,一四面体的顶点坐标分别是(0,0,2),(2,2,0),(1,2,1),(2,2,2),给出编号①、②、③、④的四个图,则该四面体的正视图和俯视图分别为( )A.①和②B.③和①C. ④和③D.④和②10、已知ABC ∆中,D BC 是边的中点,过点D 的直线分别交直线AB 、AC 于点E 、F ,若AE AB λ=,AF AC μ=,其中0,0λμ>>,则λμ的最小值是()A .1B .12C .13 D .1411、设F 1,F 2分别是椭圆22221(0)x y a b a b+=>>的左、右焦点,与直线y b =相切的2F 交椭圆于点E ,且E 是直线EF 1与2F 的切点,则椭圆的离心率为( )A .32 B .33C .54 D .5312、设1a >,定义111()122f n n n n=+++++,如果对任意的*n N ∈且2n ≥,不等式()1127log 77log a a f n b b ++>+恒成立,则实数b 的取值范围是( )A . 292,17⎛⎫ ⎪⎝⎭B . ()0,1C . ()0,4D .()1,+∞ 二、填空题:本大题共4小题,每小题5分.13、已知数列{}n a 中,1,273==a a ,且数列⎭⎬⎫⎩⎨⎧+11n a 是等差数列,则11a = 14、椭圆221(0)9x y b b+=>的焦距为2,则实数b 的值为 15、已知正实数,x y 满足3x y xy ++=,若对任意满足条件的,x y ,都有2()()10x y a x y +-++≥恒成立,则实数a 的取值范围是. 16、不等式2215(2x 3)2x 9log xx -->--的解集为_____________三、解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤.17、(本小题满分10分)已知非空集合203x A xx ⎧-⎫=<⎨⎬-⎩⎭,()(){}220B x x m x m =---<. (1)当12m =时,求A B ⋂; (2)命题:p x A ∈,命题:q x B ∈,若p ⌝是q ⌝的必要不充分条件,求实数m 的取值范围.18、(本小题满分12分)已知函数b x a x x f lg )2(lg )(2+++=满足2)1(-=-f 且对于任意R x ∈, 恒有x x f 2)(≥成立.(1)求实数b a ,的值; (2)解不等式5)(+<x x f .19、(本小题满分12分)已知向量(sin ,2cos )a x x ωω=,23(cos ,cos )3b x x ωω=-(0)ω>,函数()(3)1f x a b a =+-,且函数()f x 的最小正周期为2π。
北师大乌海附校2018~2019学年第一学期高二年级期中考试数学试卷(文科)注意事项:1、答题前,考生务必先将自己的姓名、准考证号填写在答题卡上,认真核对条形码上的姓名、准考证号,并将条形码粘贴 在答题卡上的指定位置上。
2、选择题答案使用2B 铅笔填涂,如蒞改动,用橡皮搽干净后,再选涂其它答案的标号;非选择题答案使用0.5毫米的黑色中性(签字)笔或碳素笔书写,字体工整、笔迹清楚。
3、做选考题时,考生按照题目要求作答,并用铅笔在答题卡上把所选题目对应的题号涂黑。
一. 选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.设命题p :∃n ∈N ,n 2>2n ,则p 为( )A .∀n ∈N ,n 2>2nB .∃n ∈N ,n 2≤2nC .∀n ∈N ,n 2≤2nD .∃n ∈N ,n 2=2n 2..设,则“a >1”是“a 2>1”的( )A .充分非必要条件B .必要非充分条件C .充要条件D .既非充分也非必要条件 3. 在如图所示的“茎叶图”表示的数据中,众数和中位数分别( ) A .23与26 B .31与26 C .24与30 D .26与304.要从已编号(1~50)的50枚最新研制的某型号导弹中随机抽取5枚来进行发射试验,用每部分选取的号码间隔一样的系统抽样方法,确定所选取的5枚导弹的编号可能是( ) A.5,10,15,20,25 B.3,13,23,33,43 C.1,2,3,4,5D.2,4,8,16,225. 为了解一片速生林的生长情况,随机测量了其中100株树木的底部12 42 03 5 6 3 0 1 14 12周长(单位:cm ).根据所得数据画出了样本的频率分布直方图(如右), 那么在这100株树木中,底部周长小于110cm 的株数是( ) A .30 B .60 C .70 D .806.用更相减损术可求得78与36的最大公约数是( )A .24B .18C .12D .67. 从装有除颜色外完全相同的2个红球和2个白球的口袋内任取2个球,那么互斥而不对立的两个事件是( )A .至少有1个白球与都是白球B .至少有1个白球与至少有1个红球C .恰有1个白球与恰有2个白球D .至少有1个白球与都是红球 8.执行如图所示的程序框图,若输入n 的值为7,则输出的s 的值为( ) A .22 B .16 C .15 D .119.用辗转相除法求294和84的最大公约数时,需要做除法的次数是( ) A .1 B .2 C .3 D .410.某商品销售量y (件)与销售价格x (元/件)负相关,则其回归方程可能是( )A .20010ˆ+-=x yB .20010ˆ+=x yC .20010ˆ--=x yD .20010ˆ-=x y 11.已知两个变量x 、y 之间具有线性相关关系,4次试验的观测数据如下:经计算得回归方程a x by ˆˆ+=的系数7.0ˆ=b ,则=aˆ( ) A .45.0 B .45.0- C .35.0 D .35.0-12.在一个袋子中装有分别标注数字1,2,3,4,5的五个小球,这些小球除标注的数字外完全相同.现从中随机取出2个小球,则取出的小球标注的数字之和为3或6的概率是( )A .121 B .101 C .51 D .103二、填空题(本大题共4小题,每小题5分,共20分。
北师大版高中数学必修五
高二文科上学期期中模拟试题
时间:120分钟 总分:150分
参考公式:回归直线方程为ˆ,y
bx a =+其中1
2
21
n
i i
i n
i
i x y nx y
b x
nx
==-=-∑∑, .a y bx =-
()()()()
∑∑∑===----=
n
i i
n
i i
n
i i i
y
y
x
x
y
y x x
r 1
2
1
2
1
χ2
=n(ad -bc)
2
(a +b)(c +d)(a +c)(b +d)
.
一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一个选项是符合题目要求的。
1.下列说法正确的是 ( )
A. 任何事件的概率总是在(0,1)之间
B. 频率是客观存在的,与试验次数无关
C. 随着试验次数的增加,频率一般会越来越接近概率
D. 概率是随机的,在试验前不能确定
2.在本届校运动会上高二田径队有男运动员48人,女运动员36人,若用分层抽样的方法从该队的全体运动员中抽取一个容量为21的样本,则抽取男运动员的人数为( ) A. 9 B .10 C.11 D.12
3. 10名工人某天生产同一零件,生产的件数是15,17,14,10,15,17,17,16,14,12.设其平均数为a ,中位数为b ,众数为c ,则有( ).
A .c>b>a
B .b>c>a
C .c>a>b
D .a>b>c 4.如图所示的框图中是结构图的是( )
5.某产品的广告费用x 与销售额y 的统计数据如下表
广告费用x (万元) 2 3 4 5
销售额y (万元) 26 39 49 54
根据上表可得回归方程ˆ
ˆˆy
bx a =+中的ˆ
b 为9.4,据此模型预报广告费用为6万元时销售额为( ) A .63.6万元B .65.5万元 C .67.7万元D .72.0万元
6.在一段时间内,甲去某地的概率是
14,乙去此地的概率是1
5
,假定两人在行动相互之间没有影响,那么这段时间内两人至少有1人去此地的概率为( ) A .
320B .15 C .25D .9
20
7.阅读右边的程序框图,运行相应的程序,则输出i 的值为
A.3
B.4
C.5
D.6 8.变量X 与Y 相对应的一组数据为
(10,1),(11.3,2),(11.8,3),(12.5,4),(13,5);变量U 与V 相对应的一组数据为(10,5),(11.3,4),(11.8,3),(12.5,2),(13,1).1r 表示变量Y 与X
之间的线性相关系数,2r 表示变量V 与U 之间的线性相关系数,则 A.012<<r r B. 120r r << C.120r r << D. 12r
r = 9.在区间[-1,1]上随机取一个数x ,则sin πx 4的值介于-12与2
2
之间的概率为
A.14
B.13
C.23
D.5
6
10.从一个箱子中,一同学从4个不同黑球和2个不同白球共6个球中任取3个球,则所选的球中既有白球又有黑球的概率为( )
A.
15 B.12 C.23 D.45
二.填空题:本大题共5个小题,每小题5分,共25分,把答案填在题中的横线上 11.执行右图所示的算法框图,若输入x =4,则输出y 的值为_____.
12.一组数据的平均数是2.8,方差是3.6,若将这组数据中的每一个 数据都加上60,得到 一组新数据,则所得新数据的平均数和方差分
别
13.某班男生占18人,女生占40人,身高在一米七以上有25人, 其中男生16人,女生9人,现在在班上任选一人,如果已知抽到的 是男生,则他身高在一米七以上的概率是
14.已知矩形ABCD 中,AB=6,AD=8,在矩形内任取一点P ,则∠APB>90°的概率为。
15.下图l 是某校参加2012年高考的学生身高条形统计图,从左到右的各条形表示的学生人数依次记
为1A 、2A 、…、m A (如2A 表示身高(单位:cm )在[
)155150,内的学生人数).图2是统计图l 中
身高在一定范围内学生人数的一个算法流程图.现要统计身高在160~180cm (含160cm ,不含180cm )的学生人数,那么在流程图中的判断框内应填写的条件是 _
三、解答题(本题共六个小题,第16、17、18、19各12分,第20题13分,第21题14分,共75分) 16.甲、乙、丙三人各进行一次射击,如果甲、乙两人击中目标的概率都为0.8,丙击中目标的概率为
0.6,计算:
(1)三人都击中目标的概率; (2)至少有两人击中目标的概率; (3)其中恰有一人击中目标的概率。
17.请设计并画出求=P 135723132⨯⨯⨯⨯⨯⨯⨯⨯(n-1)的值的算法流程图及用Do loopwhile
语句写出程序语言。
18.某社区为了选拔若干名2010年上海世博会的义务宣传员,从社区300名志愿者中随机抽取了50名
进行世博会有关知识的测试,成绩(均为整数)按分数段分成六组:第一组[40,50),第二组
[50,60),…,第六组[90,100],第一、二、三组的人数依次构成等差数列,下图是按上述分组方法得到的频率分布直方图的一部分.规定成绩不低于66分的志愿者入选为义务宣传员.
(1)求第二组、第三组的频率并补充完整频率分布直方图;
(2)由所抽取志愿者的成绩分布,估计该社区有多少志愿者可以入选为义务宣传员.
19.为了分析某个高二学生的学习状态,对其下一阶段的学习提供指导性建议.现对他前7次考试的数学成绩x 、地理成绩y 进行分析.下面是该生7次考试的成绩:
数学 88 83 117 92 108 100 112 地理 94 91 108 96 104 101 106
(1)他的数学成绩与地理成绩哪个更稳定?请给出你的证明;
(2)已知该生的地理成绩y 与数学成绩x 是线性相关的,若该生的地理成绩达到115分,请你估计他的数学成绩大约是多少?并请你根据地理成绩与数学成绩的相关性,给出该生在学习数学、地理上的合理性建议.
20.某企业两个分厂生产某种零件,按规定内径尺寸(单位:mm)的值落在[29.94,30.06)的零件为优质
品.从两个分厂生产的零件中各抽出了500件,量其内径尺寸,得结果如下表: 甲厂:
分组 [29.86,29.90) [29.90,29.94) [29.94,29.98) 频数 12 63 86 分组 [29.98,30.02) [30.02,30.06) [30.06,30.10)
频数
182
92
61
分组 [30.10,30.14) 频数
4
乙厂:
分组 [29.86,29.90) [29.90,29.94) [29.94,29.98) 频数 29 71 85 分组 [29.98,30.02) [30.02,30.06) [30.06,30.10) 频数 159 76 62 分组 [30.10,30.14)
频数
18
(1)试分别估计两个分厂生产零件的优质品率;
(2)由以上统计数据填下面2×2列联表,并问是否有99%的把握认为“两个分厂生产的零件的质量有差异”.
甲厂 乙厂 合计 优质品 非优质品 合计
21.已知关于x 的一次函数y =mx +n.
(1)设集合P ={-2,-1,1,2,3}和Q ={-2,3},分别从集合P 和Q 中随机取一个数作为m 和n ,求函数y =mx +n 是增函数的概率; (2)实数m ,n 满足条件⎩⎪⎨⎪
⎧
m +n -1≤0-1≤m ≤1-1≤n ≤1,求函数y =mx +n 的图象经过一、二、三象限的概率.
高二数学参考答案(文科)
18.18.解:(1)二.三两组的人数和为50(0.0040.0440.0120.008)105016
-+++⨯⨯=设公差为d,第一组人数为0.00410502
⨯⨯=人
22216
d d
∴+++=
解得4
d=
∴第二组的频率是24
0.12
50
+
=;第三组的频率是
28
0.20
50
+
=
补全频率分布直方图如下图所示
20.解 (1)甲厂抽查的产品中有360件优质品,从而甲厂生产的零件的优质品率估计为
360
500
×100%=72%;乙厂抽查的产品中有320件优质品,从而乙厂生产的零件的优质品率估计为
320
500
×100%=64%. (2)
甲厂 乙厂 合计 优质品 360 320 680 非优质品 140 180 320 合计
500
500
1 000
χ2=1 000×(360×180-320×140)2
500×500×680×320
≈7.35>6.635,所以有99%的把握认为“两个分厂生产
的零件的质量有差异”.。