第4章VNM效用函数与风险升水
- 格式:ppt
- 大小:656.00 KB
- 文档页数:44
2009年厦门大学806宏微观经济学考研真题详解跨考网独家整理最全经济学考研真题资料库,您可以在这里查阅历年经济学考研真题,经济学考研资料,经济学参考书等内容,更有跨考考研历年辅导的经济学学哥学姐的经济学考研经验,从前辈中获得的经验对初学者来说是宝贵的财富,这或许能帮你少走弯路,躲开一些陷阱。
以下内容为跨考网独家整理,如您还需更多考研资料,可选择经济学一对一在线咨询进行解答。
《微观经济学》(共80分)一、名词解释(每小题4分,共计16分)1.劣等品(inferior good)【分析】作答时,应首先介绍劣等品的定义,然后说明劣等品的特征,还可进一步解释劣等品中的特殊例子——吉芬商品。
【答案】商品按其需求的收入弹性系数值可分为正常品和劣等品。
劣等品是指需求收入弹性值为负的商品,即劣等品需求量随着收入增加而减少,随着收入减少而增加。
劣等品的一个重要特征是商品降价的收入效应为负。
商品降价使得消费者实际收入增加,再根据劣等品定义,收入增加使得劣等品需求量减少,因此劣等品降价的收入效应为负。
由于商品降价的替代效应始终是正,因此劣等品的收入效应减弱了替代效应。
劣等品中有一类特殊的物品——吉芬商品。
吉芬商品的特殊性就在于:它的收入效应的作用很大,以至于超过了替代效应的作用,从而使得总效应与价格成同方向的变动。
这也就是吉芬商品的需求曲线呈现出向右上方倾斜的特殊形状的原因。
2.风险溢价(risk premium)【分析】该概念可参见平狄克《微观经济学》(第7版)第5章。
作答时,先写概念,还需要画图说明。
【答案】风险溢价(risk premium)是风险规避者为规避风险而愿意付出的最大货币额。
通常来说,风险溢价的大小取决于他面临的风险性选择。
图1-1 风险溢价如图1-1所示,风险溢价CF表示一个人为了在风险性选择和确定性选择之间保持无差异而愿意放弃的收入额。
这里,风险溢价为4000美元,因为一份16000美元(位于C点)的确定性收入与一份期望收入为20000美元的不确定性收入(0.5的概率位于A点,0.5的概率位于E 点)给该人带来的效用相等(都为14)。
第四讲效用函数与风险升水第一节不确定状态的描述一、两个变量1、结果:(兀],兀2,…兀”)(非现金变量)(必』2…,儿)(钱数)2、概率分布(卩,02,…几)工门=1 Pi、0(i = \2・・・n)i=l二、彩票(Lottery)/赌局(gamble):单赌与复赌n单赌:Lt =(P]%、卩2。
2「*、卩評斤)| 工i=l单赌:结果与出发点只有一个环节复赌:单赌当中的结果又是一张彩票(compound Lottery)复赌公理:如果卩=+(1 一。
2)* 04,则厶=厶2二、不确泄条件下选择公理公理1:[连续性公理]如A>B>C,则ape (0,1)使得"4 + (l_")・C〜B注意:A与B相差很大(1000$—10$)如A=2$, B=l$,理性条件下则公理一般不成立公理2:[独立性公理]如A>B,考虑“C”则对Vpw(O,l) pA + (\-p)C> pE + Q_p)C对A,B之间偏好关系不受独立于(A,B)外的事件C的影响。
意味着,偏好关系不随时间,地点等而改变。
可以推广到『=("(,•••,”:), :b =(pf, C=(-X…x2,.--xJ在『与/间是相同的,『 >『〉r连续性:3CTG(0,1),使仅『+(1 —G)r〜/独立性:如『詔,则a^a + (1 -a)C >+ (1 -公理3:[次序完全公理]如存在4与B,偏好A>B,或者B>A,或者A〜B同时,如A>B,并且B>C,则A>C第二节期望效用理论一、期望Eg = p}x} + p2x2+ …+ p n x n问题:有些事件E(x)=8,但V(X)< OO二、圣彼得堡悖论(1738)Daniel BernoulliNicolas Bernoulli(1717)一枚均质硬币(丄)2如掷一次,第一次就背面朝上,获1兀1 1= 1 • • =002 2 实际发现v(x) < 20D. Bernoulli E(x):客观的,评价可以一致;V(x):主观的,人与人不同。
平新乔《微观经济学十八讲》第4讲 VNM 效用函数与风险升水1.(单项选择)一个消费者的效用函数为()bw u w ae c -=-+,则他的绝对风险规避系数为:(A )a (B )a b + (C )b (D )c 【答案】C【解析】由消费者的效用函数()bw u w ae c -=-+,可得()bw u'w abe -=,()2bw u w ab e -''=-,则可得该消费者的风险规避系数为:()()()2bwa bwab e R w u w w b abe ---=-"'=-=。
2.证明:若一个人的绝对风险规避系数为常数c ,则其效用函数形式必为()cw u w e -=-,这里w 代表财产水平。
证明:这是一个求积分的问题,即由绝对风险规避系数来倒求效用函数。
根据绝对风险规避系数的定义,就有:()()()a u w R w c u w "=-='对等式(1)最后一个等号两边积分得:()()d d u w w c w u w "=-⎰⎰' 即:()ln u w cw C '=-+。
进一步整理得:()cw C cw u w e Ce -+-'== ①其中0C C e =>,对①式两边积分得:()1cwC u w e C c-=-+ 其中1C 为任意实数。
根据效用函数的单调递增特性可知0c >(因为如果0c <,就说明财富越少,消费者的效用就越高,这不符合正常的情况)。
又因为效用函数的单调变换不改变它所代表的偏好,所以()1cwC u w e C c-=-+表示的偏好也可以用()cw u w e -=-表示。
3.若一个人的效用函数为2u w aw =-,证明:其绝对风险规避系数是财富的严格增函数。
证明:由效用函数()2u w w aw =-,可得()12u'w w α=-,()2u w α''=-,则该消费者的绝对风险规避系数为:()()()212a u w R w u w wαα"=-='-其中12w α≠。
第四讲VNM效用函数与风险升水确定性条件下的选择:消费束不确定性条件下的选择:概率分布——赌局一、不确定性条件下的选择:概率分布——赌局1、假设期末考试成绩简单分为三档:{}0,60,1002、假设成绩简单分为两种①{}60,80,1000,60,100和②{}两种情况下获得各个分数的概率都为A:{}0.8,0.1,0.1选择:②①{}0.8,0.1,0,0.1800,60,,100,概率分布为A1:{}②{},0.8,00.1,0.10,0,100,概率分布为A2:{}60,8选择:A2二、单赌与复赌1、单赌定义:设事件有n 种结果,记{}1,...,n A a a =,A 上的概率分布:111,...,0,1,1,...,ns n n i i i G p a p a p p i n =⎧⎫=≥==⎨⎬⎩⎭∑被称为简单赌局的集合或简单的概率分布的集合。
2、复合赌局定义:赌局的结果为赌局 彩票: 复合彩票:三、不确定条件下选择的公理 确定性条件下的选择:()()max u B ∈x x x 不确定条件下的选择:()()max s g G g g u ∈不确定性条件下,消费者在概率分布集合G 上有偏好关系,满足以下定理: 1:完备性公理 2:传递性公理 3:连续性公理 4:单调性公理 5:替代性公理6:复合赌局简单化公理'。
对于赌局集合G中的任何两个赌局g和g',或者有g g',或者g g例子假设期末考试成绩简单分为三档:{}0,60,100获得各个分数的概率为:A:{}0.8,0.1,0.1B:{}0.2,0.6,0.2选择:A B或B A对于赌局集合G 中的任何三个赌局g 、g '和g '',如果有g g '且g g ''',则有g g ''。
例子: 假设12...n a a a在1α=时,有()()1,1n a a g αα-:最好的结果肯定发生在0α=时,有()()1,1n g a a αα-:最差的结果肯定发生对于G 中的任何赌局g ,存在某个概率[]0,1α∈,使得()()1,1n ga a αα-(含义:差异很大的不确定的两个结果的某种加权结果=某个确定的中间结果) 例子:假设期末考试成绩简单分为三档{}0,60,100A = 最好的结果为100分,最差的结果为0分。
第四讲 效用函数与风险升水第一节 不确定状态的描述一、两个变量1、结果:12(,,)n x x x (非现金变量)12(,,)n y y y (钱数)2、概率分布121(,,) 1 0(1,2,)nn i i i p p p p p i n ==≥=∑二、彩票(Lottery )/赌局(gamble ):单赌与复赌 单赌:11221(,,,)1,0ns n n i i i L p a p a p a p p ===≥∑单赌:结果与出发点只有一个环节复赌:单赌当中的结果又是一张彩票(compound Lottery ) 复赌公理:如果12324(1)p p p p p =⋅+-⋅,则12L L =三、不确定条件下选择公理公理1:[连续性公理]如A B C ≥≥,则(0,1)p ∍∈使得(1)~p A p C B ⋅+-⋅注意:A 与B 相差很大(1000$—10$)如A=2$,B=1$,理性条件下则公理一般不成立 公理2:[独立性公理]如A B ≥,考虑“C ”则对(0,1) (1)(1)p pA p C pB p C ∀∈+-≥+-对,A B 之间偏好关系不受独立于(,A B )外的事件C 的影响。
意味着,偏好关系不随时间,地点等而改变。
可以推广到b 11(,,), (,,) a a a b bn n p p p p ζζ== c 12(,,)n x x x ζ= 在a ζ与b ζ间是相同的,a b c ζζζ>>连续性:(0,1)α∃∈,使(1)~a c b αζαζζ+-独立性:如a b ζζ≥,则(1)(1)a c b c αζαζαζαζ+-≥+-公理3:[次序完全公理]如存在A 与B ,偏好A B ≥,或者B A ≥,或者~A B 同时,如A B ≥,并且B C ≥,则A C ≥第二节 期望效用理论一、期望 1122()n n E x p x p x p x =+++问题:有些事件()E x =∞,但()V x <∞二、圣彼得堡悖论(1738)Daniel BernoulliNicolas Bernoulli(1717) 一枚均质硬币(12)获利赌局-1 2n n ⎧⎪⎪⎪⎨⎪⎪⎪⎩如掷一次,第一次就背面朝上,获1元 如 二 2 如 三 4 如11111()2()222n n n E x ∞-===++=∞∑ 实际发现()20v x <D .Bernoulli ():E x 客观的,评价可以一致; ()V x :主观的,人与人不同。
平新乔《微观经济学十八讲》第4讲 VNM 效用函数与风险升水1.(单项选择)一个消费者的效用函数为()bw u w ae c -=-+,则他的绝对风险规避系数为:(A )a (B )a b + (C )b (D )c 【答案】C【解析】由消费者的效用函数()bw u w ae c -=-+,可得()bw u'w abe -=,()2bw u w ab e -''=-,则可得该消费者的风险规避系数为:()()()2bwa bwab e R w u w w b abe ---=-"'=-=。
2.证明:若一个人的绝对风险规避系数为常数c ,则其效用函数形式必为()cw u w e -=-,这里w 代表财产水平。
证明:这是一个求积分的问题,即由绝对风险规避系数来倒求效用函数。
根据绝对风险规避系数的定义,就有:()()()a u w R w c u w "=-='对等式(1)最后一个等号两边积分得:()()d d u w w c w u w "=-⎰⎰' 即:()ln u w cw C '=-+。
进一步整理得:()cw C cw u w e Ce -+-'== ①其中0C C e =>,对①式两边积分得:()1cwC u w e C c-=-+ 其中1C 为任意实数。
根据效用函数的单调递增特性可知0c >(因为如果0c <,就说明财富越少,消费者的效用就越高,这不符合正常的情况)。
又因为效用函数的单调变换不改变它所代表的偏好,所以()1cwC u w e C c-=-+表示的偏好也可以用()cw u w e -=-表示。
3.若一个人的效用函数为2u w aw =-,证明:其绝对风险规避系数是财富的严格增函数。
证明:由效用函数()2u w w aw =-,可得()12u'w w α=-,()2u w α''=-,则该消费者的绝对风险规避系数为:()()()212a u w R w u w wαα"=-='-其中12w α≠。