4金融经济学(第四章 效用函数与风险厌恶)
- 格式:ppt
- 大小:1.72 MB
- 文档页数:154
FRM模型丨效用函数和风险偏好的辨析1.效用历史沿革效用的概念是丹尼尔·伯努利(不是数学家伯努利,但是他们都是伯努利家族的。
)在解释圣彼得堡悖论时提出的,目的是挑战以金额期望值作为决策的标准,证明期望收益并不是人们在做决策时的唯一衡量标准。
经济学家对于效用的理解是有一个过程的。
●19世纪的威廉姆·斯坦利·杰文斯、里昂·瓦尔拉斯和阿尔弗雷德·马歇尔等早期经济学家认为效用如同人们的身高和体重一样是可以测量的。
●而约翰·希克斯则尝试了只在序数性效用的假定下,也取得了很多的研究成果。
希克斯认为,效用的数值表现只是为了表达偏好的顺序,并非效用的数值。
因此,从分析消费者行为的方法来看,基数效用论者采用边际效用分析方法,序数效用论者采用无差异曲线分析方法。
从教科书等内容判断,现在比较通用的应该是后者的序数性效用。
1.1.效用概念的提出——圣彼得堡悖论圣彼得堡悖论是尼古拉·伯努利在1738年提出的一个概率期望值悖论。
它来自于一种掷币游戏,圣彼得堡游戏。
游戏规则为:掷出正面或者反面为成功,游戏者如果投掷成功,得奖金2元,游戏结束;若不成功,继续投掷,二次成功得奖金4元,游戏结束;这样,游戏者如果投掷不成功就反复继续投掷,直到成功,游戏结束。
如果n 次投掷成功,得奖金2n 元,游戏结束。
首先,我们用公式1()k kk E X x p ∞==∑来计算这个游戏收益的数学期望值:23423411111()2222222222n n E X n n ==⨯+⨯+⨯+⨯++⨯= 从理论上来说,该游戏的期望值是无穷大的。
按照概率的理论,多次试验的结果将会接近于其数学期望。
这就出现了计算的期望值与实际情况的“矛盾”。
如果仅仅以期望值标准,我们将无法给这个游戏进行定价。
圣彼得堡悖论反映了决策理论和实际之间的差别。
人们总是不自觉地把模型与实际问题进行比较,但决策理论模型与实际问题并不是一个东西;圣彼得堡问题的理论模型是一个概率模型,它不仅是一种理论模型,而且本身就是一种统计的 “近似的”模型。
风险厌恶效用函数曲线描述了投资者对风险的态度和偏好。
以下是几个常见的风险厌恶效用函数曲线:
平方根效用函数:该函数假设投资者对风险的厌恶程度与资产价值的平方根成正比。
因此,投资者更倾向于选择风险较小的投资组合。
线性效用函数:该函数假设投资者对风险的厌恶程度与资产价值的线性关系成正比。
在这种情况下,投资者可能会选择中等风险的投资组合,以在风险和回报之间取得平衡。
指数效用函数:该函数假设投资者对风险的厌恶程度与资产价值的指数关系成正比。
在这种情况下,投资者可能会选择高风险的投资组合,以获得更高的回报。
对数效用函数:该函数假设投资者对风险的厌恶程度与资产价值的对数关系成正比。
在这种情况下,投资者可能会选择低风险的投资组合,以在风险和回报之间取得平衡。
这些效用函数曲线描述了投资者在不同情况下对风险的态度和偏好。
在实际应用中,投资者可以根据自己的风险承受能力和投资目标选择合适的效用函数曲线,以制定合适的投资策略。
效用、风险与风险态度简介效用、风险与风险态度简介在现代社会中,效用、风险及风险态度是经济学、金融学等领域中非常重要的概念。
效用是指个体对于某种物品、行为或决策的满意程度,而风险则是指不确定因素对于结果的影响程度。
而个体对于风险的态度则是指个体对于风险的认知、评估和处理的方式以及个体在面临风险时的心理反应。
本文将对效用、风险和风险态度进行简要介绍。
首先,在经济学中,效用是指个体对一种物品、行为或决策所获得的满意程度。
经济学家利用效用函数来度量个体的效用水平,并通过最大化效用来指导个体的决策行为。
效用函数一般具有边际递减的特点,即随着个体在某种物品、行为或决策上的消费或参与程度的增加,其所获得的附加满意度将递减。
其次,风险是指不确定因素对于结果的影响程度。
在经济学和金融学中,风险往往是指在投资或决策过程中可能发生的损失或不确定性。
风险具有概率性和不确定性,个体在进行决策时需要综合考虑风险的大小和发生的概率。
风险的存在对于个体的决策行为具有重要影响,不同的个体对于相同的风险可能有不同的反应。
最后,个体对于风险的态度是指个体对于风险的认知、评估和处理的方式以及个体在面临风险时的心理反应。
个体的风险态度可以分为不同类型,如风险厌恶型、风险中立型和风险偏好型。
不同的个体在面对相同的风险时可能会有不同的态度和决策行为。
风险态度的形成受到多种因素的影响,包括个体的经济状况、教育水平、性别、年龄等。
在实际应用中,效用、风险和风险态度的概念在个体和组织的决策行为以及金融市场的研究中具有重要价值。
例如,在投资决策中,个体在面对不同的投资选项时会综合考虑效用和风险,选择对个体来说效用最大、风险最小的投资组合。
而在金融市场中,个体的风险态度对于金融资产的定价和市场波动具有重要影响。
然而,效用、风险和风险态度也存在一定的风险和限制。
首先,个体的效用函数往往是主观的,难以准确度量个体的满意程度。
其次,风险的概率和大小往往是不确定的,个体的风险态度和决策行为可能受到信息不对称、认知偏差等因素的影响。
效用、损失与风险函数效用函数(Utility Function)是一种经济学概念,用于评估个人或组织对不同选择的偏好程度。
它衡量的是个体对于不同结果的满意程度或福利水平。
损失函数(Loss Function)是一种数学函数,用于评估模型预测结果与实际结果之间的差距。
风险函数(Risk Function)则是指损失函数的期望值,用于评估模型的整体表现。
效用函数的应用范围非常广泛,不仅限于经济学领域。
在经济学中,效用函数可以用来评估个体在消费决策中的偏好。
例如,一个消费者在购买商品时,可以根据效用函数来判断对于不同商品的满意程度,从而做出最优的购买选择。
在生产决策中,效用函数也可用于评估企业的利润或效益。
此外,效用函数在公共政策制定中也有重要的应用。
政府可以通过对不同政策措施的效用函数分析,来选择最优的政策方案。
然而,效用函数也存在一定的局限性。
首先,效用函数是基于个人的主观偏好进行评估,因此不同个体对于相同选择可能有不同的效用函数。
这使得在集体决策中,如何综合不同个体的效用函数成为了一个问题。
其次,效用函数往往是根据个体的经验和认知进行建模的,因此可能忽视了一些隐含的因素。
例如,某个人可能会根据过去的经验来评估未来的效用,但如果未来情况发生变化,这种评估就会失效。
损失函数在机器学习中有着广泛的应用。
在监督学习任务中,模型通过学习数据集中的样本和相应的标签,来预测新样本的标签。
损失函数用于衡量模型预测结果与实际结果之间的差距。
常见的损失函数有均方差损失函数和交叉熵损失函数等。
通过最小化损失函数,可以找到最优的模型参数,从而提高模型的预测准确性。
然而,损失函数的选择也是有风险的。
不同的损失函数适用于不同的情况,选择不当可能导致模型产生误导性的结果。
例如,在处理分类问题时,使用错误的损失函数可能导致模型过于关注错误分类的样本,而忽视其他分类结果。
此外,某些损失函数对异常值(Outlier)较为敏感,一旦输入数据中存在异常值,模型的训练过程就可能受到影响。
第三讲:期望效用函数和风险厌恶者的投资行为一、金融市场不确定性(一)金融市场的重要特征:不确定性1、不确定性何以存在(1)政治因素:外交关系紧张、地区冲突等。
(2)经济因素①宏观经济状况②经济政策如提高准备金率、公布国有股减持方案。
③微观主体运营状况等3、意外事件:疾病、恐怖袭击等其中政治因素和经济因素为既存风险。
意外事件为突发危机。
二者的影响有所不同。
2、金融市场的测不准原理索罗斯:1997年亚洲金融危机时,马哈蒂尔称我为金融大鳄。
其实,我只是很多投资者中的一个,世人对我有很多误解。
在这一危机中,我也亏了很多钱,其实我也测不准,我也被证明出错了。
所以,我现在不预测短期的股市走向,因为这太容易被迅速证明是个错误。
我什么也不害怕,也不害怕丢钱,但我害怕不确定性。
3、不确定性和风险(1)观点一:确定性的实质就是风险不确定性”的实质就是风险,风险积聚到一定程度就有可能演化为危机,风险为常态,危机则是偶发。
(2)观点二:风险是不确定性及暴露于不确定性的程度风险是不确定性,以及暴露于不确定性的程度,是个人的,极大部分视你对某议题的了解程度及处理方式而定。
例:蹦级者例:金融市场上的投资者:投资的种类和数量,投资者的技能。
4、“不确定性”对金融市场的影响(1)不确定性情况下的非理性反应:恐慌一是毫无根据的“非理性恐慌”。
例:1981年美国总统里根遇刺事件导致投资者大量拋售美元。
二是能够证明其合理性的恐慌或称“自我实现恐慌”。
例:“羊群效应”导致的银行挤兑。
(2)不确定性情况下的理性行为:谨慎投资①投资目标的确定②投资决策准则二、常用的投资决策准则(一)收益最大准则:1、适用性:确定性情况下的决策方法例:生产者的最优生产决策问题:利润最大化准则。
π(Q)=PQ-C(Q)maxπ(Q)例:金融投资者在确定性情况下的投资决策。
收益率概率A 6 1B 7 1-6 0.25C 0 0.550 0.25-11 0.2D 11 0.225 0.435 0.2只能比较A和B,不能进行四者之间的比较。
风险厌恶与效用函数1.风险厌恶型投资者的效用函数为( )A. 凸函数B. 凹函数,C. 线性函数 D 二次函数解答:设投资者的效用函数为()u x .则风险厌恶型投资者的效用函数为:凹函数,即()0u x ''≤;风险爱好型投资者的效用函数为:凸函数,即()0u x ''≥;风险中性投资者的效用函数为:线性函数,即()0u x ''=;2.设投资者的效用函数为均值-方差效用函数即22(())(,),(),()E u x u E x Var x m s m s ===,则: A. 20,0u u m s 抖>>抖;B 20,0u u m s 抖<>抖;C,20,0u u m s 抖><抖;D ;20,0u u m s抖<<抖 解:由投资者的效用函数为均值方差效用函数,故投资者是遵循随机占优原则:一阶随机占优和二阶随机占优原则.即投资者为收益偏好型与风险厌恶型.故20,0u u m s 抖><抖 3. 设一投资者的效用函数为负指数效用函数()ax u x e -=-,则其风险容忍函数()T x =( );其绝对风险厌恶函数()A x =( );相对风险厌恶函数()R x =( )A.a B. 1/a , C. ax . D. 2ax a e --设投资者的效用函数为幂效用函数()/r u x x r =,则其风险容忍函数()T x =( ) ;()A x =( );相对风险厌恶函数()R x =( )4. 设一投资者的效用函数为2()231u x x x =-+-,则该投资者属于( );设一投资者的效用函数为2()436u x x x =-+,则该投资者属于( );设一投资者的效用函数为()52u x x =-,则该投资者属于( )A.风险爱好者 B 。
风险厌恶者 C 。
风险中性者 D.无法判断。