−1 1
解:以 ω 和 ω 分别表示冲孔前后的飞轮的角速度
1 2
ω = (1 − 0 .2 )ω = 0.8ω
2 1
2
2
2πn ω = = 8πrad ⋅ s 60
1 1
−1
1
1 1 1 由转动动能定理 A = Jω − Jω = Jω (0 .8 − 1) 2 2 2 1 又 J = mr A = −5 .45 × 10 J 2
课后习题 3-8
θ1
θ2
二、刚体的转动动能和重力势能
1.绕定轴转动刚体的动能 绕定轴转动刚体的动能 绕定轴转动刚体的
∆ ,∆ ,⋅⋅⋅,∆ ,⋅⋅⋅,∆ m m m m r r r r r, r ,⋅⋅⋅, r ⋅⋅⋅, r r r r r v ,v ,⋅⋅⋅,v ,⋅⋅⋅,v
1 2 i
1 2 i, N
N
Q = rω v 1 E= ∆ v m 2
2 2 2
1 1
2
3
质量M的圆盘滑轮可绕通过盘心的水平轴转 例3-7半径R质量 的圆盘滑轮可绕通过盘心的水平轴转 半径 质量 滑轮上绕有轻绳,绳的一端悬挂质量为m的物体 的物体。 动,滑轮上绕有轻绳,绳的一端悬挂质量为 的物体。 当物体从静止下降距离h时 物体速度是多少? 当物体从静止下降距离 时,物体速度是多少? 以滑轮、 解:以滑轮、物体和地球组成系统为研究对 由于只有保守力做功,故机械能守恒。 象。由于只有保守力做功,故机械能守恒。 设终态时重力势能为零 初态:动能为零,重力势能为mgh 初态:动能为零,重力势能为 末态: 末态:动能包括滑轮转动动能和物体平动动能 由机械能守恒
i i
i i i
2
1
2
i
N