2007数学建模论文
- 格式:doc
- 大小:294.00 KB
- 文档页数:12
2007高教社杯全国大学生数学建模竞赛题目(请先阅读“对论文格式的统一要求”)A题:中国人口增长预测中国是一个人口大国,人口问题始终是制约我国发展的关键因素之一。
根据已有数据,运用数学建模的方法,对中国人口做出分析和预测是一个重要问题。
近年来中国的人口发展出现了一些新的特点,例如,老龄化进程加速、出生人口性别比持续升高,以及乡村人口城镇化等因素,这些都影响着中国人口的增长。
2007年初发布的《国家人口发展战略研究报告》(附录1) 还做出了进一步的分析。
关于中国人口问题已有多方面的研究,并积累了大量数据资料。
附录2就是从《中国人口统计年鉴》上收集到的部分数据。
试从中国的实际情况和人口增长的上述特点出发,参考附录2中的相关数据(也可以搜索相关文献和补充新的数据),建立中国人口增长的数学模型,并由此对中国人口增长的中短期和长期趋势做出预测;特别要指出你们模型中的优点与不足之处。
附录1 《国家人口发展战略研究报告》附录2 人口数据(《中国人口统计年鉴》中的部分数据)及其说明中国人口增长预测与控制辛鑫,刘厦,袁隽琳,指导教师:许勇摘要针对中国人口的实际特点,建立了中国人口增长的数学模型,得到了中国人口随年份变化的增长率,解决了中国人口中短期和长期的人口预测与控制问题,包括人口总数、年龄结构、性别比、城乡比变化等各因素的预测与控制研究。
首先,将人口增长的预测问题转化为对出生率、死亡率和城镇乡转移率的预测。
通过原题附录3数据的分析研究,发现影响人口增长的主要因素可以归结为出生率、死亡率和城镇乡转移率,并依此建立了不同参数随时间变化的递推数学模型,讨论了各个参数对人口增长的影响。
其次,利用Compertz密度函数和Gamma密度函数分别拟合死亡率和生育率、城镇乡转移率对年龄的分布。
建立了差分数学模型,将死亡率、生育率与城镇乡转移率的预测归结到总和死亡率、总和生育率与城镇乡总和转移率的预测,由于概率分布是相对稳定的,模型参数整体健壮。
关于中国人口增长趋势的研究【摘要】本文从中国的实际情况和人口增长的特点出发,针对中国未来人口的老龄化、出生人口性别比以及乡村人口城镇化等,提出了Logistic、灰色预测、动态模拟等方法进行建模预测。
首先,本文建立了Logistic阻滞增长模型,在最简单的假设下,依照中国人口的历史数据,运用线形最小二乘法对其进行拟合,对2007至2020年的人口数目进行了预测,得出在2015年时,中国人口有13.59亿。
在此模型中,由于并没有考虑人口的年龄、出生人数男女比例等因素,只是粗略的进行了预测,所以只对中短期人口做了预测,理论上很好,实用性不强,有一定的局限性。
然后,为了减少人口的出生和死亡这些随机事件对预测的影响,本文建立了GM(1,1) 灰色预测模型,对2007至2050年的人口数目进行了预测,同时还用1990至2005年的人口数据对模型进行了误差检验,结果表明,此模型的精度较高,适合中长期的预测,得出2030年时,中国人口有14.135亿。
与阻滞增长模型相同,本模型也没有考虑年龄一类的因素,只是做出了人口总数的预测,没有进一步深入。
为了对人口结构、男女比例、人口老龄化等作深入研究,本文利用动态模拟的方法建立模型三,并对数据作了如下处理:取平均消除异常值、对死亡率拟合、求出2001年市镇乡男女各年龄人口数目、城镇化水平拟合。
在此基础上,预测出人口的峰值,适婚年龄的男女数量的差值,人口老龄化程度,城镇化水平,人口抚养比以及我国“人口红利”时期。
在模型求解的过程中,还对政府部门提出了一些有针对性的建议。
此模型可以对未来人口做出细致的预测,但是需要处理的数据量较大,并且对初始数据的准确性要求较高。
接着,我们对对模型三进行了改进,考虑人为因素的作用,加入控制因子,使得所预测的结果更具有实际意义。
在灵敏度分析中,首先针对死亡率发展因子θ进行了灵敏度分析,发现人口数量对于θ的灵敏度并不高,然后对男女出生比例进行灵敏度分析得出其灵敏度系数为0.8850,最后对妇女生育率进行了灵敏度分析,发现在生育率在由低到高的变化过程中,其灵敏度在不断增大。
American Airlines' Next Top ModelSara J. BeckSpencer D. K'BurgAlex B. TwistUniversity of Puget SoundTacoma, WAAdvisor: Michael Z. SpiveySummaryWe design a simulation that replicates the behavior of passengers boarding airplanes of different sizes according to procedures currently implemented, as well as a plan not currently in use. Variables in our model are deterministic or stochastic and include walking time, stowage time, and seating time. Boarding delays are measured as the sum of these variables. We physically model and observe common interactions to accurately reflect boarding time.We run 500 simulations for various combinations of airplane sizes and boarding plans. We analyze the sensitivity of each boarding algorithm, as well as the passenger movement algorithm, for a wide range of plane sizes and configurations. We use the simulation results to compare the effectiveness of the boarding plans. We find that for all plane sizes, the novel boarding plan Roller Coaster is the most efficient. The Roller Coaster algorithm essentially modifies the outside-in boarding method. The passengers line up before they board the plane and then board the plane by letter group. This allows most interferences to be avoided. It loads a small plane 67% faster than the next best option, a midsize plane 37% faster than the next best option, and a large plane 35% faster than the next best option.IntroductionThe objectives in our study are:To board (and deboard) various sizes of plane as quickly as possible."* To find a boarding plan that is both efficient (fast) and simple for the passengers.With this in mind:"* We investigate the time for a passenger to stow their luggage and clear the aisle."* We investigate the time for a passenger to clear the aisle when another passenger is seated between them and their seat.* We review the current boarding techniques used by airlines.* We study the floor layout of planes of three different sizes to compare any difference between the efficiency of a given boarding plan as plane size increases and layouts vary."* We construct a simulator that mimics typical passenger behavior during the boarding processes under different techniques."* We realize that there is not very much time savings possible in deboarding while maintaining customer satisfaction."* We calculate the time elapsed for a given plane to load under a given boarding plan by tracking and penalizing the different types of interferences that occur during the simulations."* As an alternative to the boarding techniques currently employed, we suggest an alternative plan andassess it using our simulator."* We make recommendations regarding the algorithms that proved most efficient for small, midsize, and large planes.Interferences and Delays for BoardingThere are two basic causes for interference-someone blocking a passenger,in an aisle and someone blocking a passenger in a row. Aisle interference is caused when the passenger ahead of you has stopped moving and is preventing you from continuing down the aisle towards the row with your seat. Row interference is caused when you have reached the correct row but already-seated passengers between the aisle and your seat are preventing you from immediately taking your seat. A major cause of aisle interference is a passenger experiencing rowinterference.We conducted experiments, using lined-up rows of chairs to simulate rows in an airplane and a team member with outstretched arms to act as an overhead compartment, to estimate parameters for the delays cause by these actions. The times that we found through our experimentation are given in Table 1.We use these times in our simulation to model the speed at which a plane can be boarded. We model separately the delays caused by aisle interference and row interference. Both are simulated using a mixed distribution definedas follows:Y = min{2, X},where X is a normally distributed random variable whose mean and standard deviation are fixed in our experiments. We opt for the distribution being partially normal with a minimum of 2 after reasoning that other alternative and common distributions (such as the exponential) are too prone to throw a small value, which is unrealistic. We find that the average row interference time is approximately 4 s with a standard deviation of 2 s, while the average aisle interference time is approximately 7 s with a standard deviation of 4 s. These values are slightly adjusted based on our team's cumulative experience on airplanes.Typical Plane ConfigurationsEssential to our model are industry standards regarding common layouts of passenger aircraft of varied sizes. We use an Airbus 320 plane to model a small plane (85-210 passengers) and the Boeing 747 for a midsize plane (210-330 passengers). Because of the lack of large planes available on the market, we modify the Boeing 747 by eliminating the first-class section and extending the coach section to fill the entire plane. This puts the Boeing 747 close to its maximum capacity. This modified Boeing 747 has 55 rows, all with the same dimensions as the coach section in the standard Boeing 747. Airbus is in the process of designing planes that can hold up to 800 passengers. The Airbus A380 is a double-decker with occupancy of 555 people in three different classes; but we exclude double-decker models from our simulation because it is the larger, bottom deck that is the limiting factor, not the smaller upper deck.Current Boarding TechniquesWe examine the following industry boarding procedures:* random-order* outside-in* back-to-front (for several group sizes)Additionally, we explore this innovative technique not currently used by airlines:* "Roller Coaster" boarding: Passengers are put in order before they board the plane in a style much like those used by theme parks in filling roller coasters.Passengers are ordered from back of the plane to front, and they board in seatletter groups. This is a modified outside-in technique, the difference being that passengers in the same group are ordered before boarding. Figure 1 shows how this ordering could take place. By doing this, most interferencesare avoided.Current Deboarding TechniquesPlanes are currently deboarded in an aisle-to-window and front-to-back order. This deboarding method comes out of the passengers' desire to be off the plane as quickly as possible. Any modification of this technique could leadto customer dissatisfaction, since passengers may be forced to wait while others seated behind them on theplane are deboarding.Boarding SimulationWe search for the optimal boarding technique by designing a simulation that models the boarding process and running the simulation under different plane configurations and sizes along with different boarding algorithms. We then compare which algorithms yielded the most efficient boarding process.AssumptionsThe environment within a plane during the boarding process is far too unpredictable to be modeled accurately. To make our model more tractable,we make the following simplifying assumptions:"* There is no first-class or special-needs seating. Because the standard industry practice is to board these passengers first, and because they generally make up a small portion of the overall plane capacity, any changes in the overall boarding technique will not apply to these passengers."* All passengers board when their boarding group is called. No passengers arrive late or try to board the plane early."* Passengers do not pass each other in the aisles; the aisles are too narrow."* There are no gaps between boarding groups. Airline staff call a new boarding group before the previous boarding group has finished boarding the plane."* Passengers do not travel in groups. Often, airlines allow passengers boarding with groups, especially with younger children, to board in a manner convenient for them rather than in accordance with the boarding plan. These events are too unpredictable to model precisely."* The plane is full. A full plane would typically cause the most passenger interferences, allowing us to view the worst-case scenario in our model."* Every row contains the same number of seats. In reality, the number of seats in a row varies due to engineering reasons or to accommodate luxury-class passengers.ImplementationWe formulate the boarding process as follows:"* The layout of a plane is represented by a matrix, with the rows representing rows of seats, and each column describing whether a row is next to the window, aisle, etc. The specific dimensions vary with each plane type. Integer parameters track which columns are aisles."* The line of passengers waiting to board is represented by an ordered array of integers that shrinks appropriately as they board the plane."* The boarding technique is modeled in a matrix identical in size to the matrix representing the layout of the plane. This matrix is full of positive integers, one for each passenger, assigned to a specific submatrix, representing each passenger's boarding group location. Within each of these submatrices, seating is assigned randomly torepresent the random order in which passengers line up when their boarding groups are called."* Interferences are counted in every location where they occur within the matrix representing the plane layout. These interferences are then cast into our probability distribution defined above, which gives ameasurement of time delay."* Passengers wait for interferences around them before moving closer to their assigned seats; if an interference is found, the passenger will wait until the time delay has finished counting down to 0."* The simulation ends when all delays caused by interferences have counted down to 0 and all passengers have taken their assigned seats.Strengths and Weaknesses of the ModelStrengths"* It is robust for all plane configurations and sizes. The boarding algorithms that we design can be implemented on a wide variety of planes with minimal effort. Furthermore, the model yields reasonable results as we adjust theparameters of the plane; for example, larger planes require more time to board, while planes with more aisles can load more quickly than similarlysized planes with fewer aisles."* It allows for reasonable amounts of variance in passenger behavior. While with more thorough experimentation a superior stochastic distribution describing the delays associated with interferences could be found, our simulationcan be readily altered to incorporate such advances."* It is simple. We made an effort to minimize the complexity of our simulation, allowing us to run more simulations during a greater time period and mini mizing the risk of exceptions and errors occurring."* It is fairly realistic. Watching the model execute, we can observe passengers boarding the plane, bumping into each other, taking time to load their baggage, and waiting around as passengers in front of them move out of theway. Its ability to incorporate such complex behavior and reduce it are key to completing our objective. Weaknesses"* It does not account for passengers other than economy-class passengers."* It cannot simulate structural differences in the boarding gates which couldpossibly speed up the boarding process. For instance, some airlines in Europeboard planes from two different entrances at once."* It cannot account for people being late to the boarding gate."* It does not account for passenger preferences or satisfaction.Results and Data AnalysisFor each plane layout and boarding algorithm, we ran 500 boarding simulations,calculating mean time and standard deviation. The latter is important because the reliability of plane loading is important for scheduling flights.We simulated the back-to-front method for several possible group sizes.Because of the difference in thenumber of rows in the planes, not all group size possibilities could be implemented on all planes.Small PlaneFor the small plane, Figure 2 shows that all boarding techniques except for the Roller Coaster slowed the boarding process compared to the random boarding process. As more and more structure is added to the boarding process, while passenger seat assignments continue to be random within each of the boarding groups, passenger interference backs up more and more. When passengers board randomly, gaps are created between passengers as some move to the back while others seat themselves immediately upon entering the plane, preventing any more from stepping off of the gate and onto the plane. These gaps prevent passengers who board early and must travel to the back of the plane from causing interference with many passengers behind them. However, when we implement the Roller Coaster algorithm, seat interference is eliminated, with the only passenger causing aisle interference being the very last one to boardfrom each group.Interestingly, the small plane's boarding times for all algorithms are greater than their respective boarding time for the midsize plane! This is because the number of seats per row per aisle is greater in the small plane than in the midsize plane.Midsize PlaneThe results experienced from the simulations of the mid-sized plane areshown in Figure 3 and are comparable to those experienced by the small plane.Again, the Roller Coaster method proved the most effective.Large PlaneFigure 4 shows that the boarding time for a large aircraft, unlike the other plane configurations, drops off when moving from the random boarding algorithm to the outside-in boarding algorithm. Observing the movements by the passengers in the simulation, it is clear that because of the greater number of passengers in this plane, gaps are more likely to form between passengers in the aisles, allowing passengers to move unimpeded by those already on board.However, both instances of back-to-front boarding created too much structure to allow these gaps to form again. Again, because of the elimination of row interference it provides for, Roller Coaster proved to be the most effective boarding method.OverallThe Roller Coaster boarding algorithm is the fastest algorithm for any plane pared to the next fastest boarding procedure, it is 35% faster for a large plane, 37% faster for a midsize plane, and 67% faster for a small plane. The Roller Coaster boarding procedure also has the added benefit of very low standard deviation, thus allowing airlines a more reliable boarding time. The boarding time for the back-to-front algorithms increases with the number of boarding groups and is always slower than a random boarding procedure.The idea behind a back-to-front boarding algorithm is that interference at the front of the plane is avoided until passengers in the back sections are already on the plane. A flaw in this procedure is that having everyone line up in the plane can cause a bottleneck that actually increases the loading time. The outside-in ("Wilma," or window, middle, aisle) algorithm performs better than the random boarding procedure only for the large plane. The benefit of the random procedure is that it evenly distributes interferences throughout theplane, so that they are less likely to impact very many passengers.Validation and Sensitivity AnalysisWe developed a test plane configuration with the sole purpose of implementing our boarding algorithms on planes of all sizes, varying from 24 to 600 passengers with both one or two aisles.We also examined capacities as low as 70%; the trends that we see at full capacity are reflected at these lower capacities. The back-to-front and outside-in algorithms do start to perform better; but this increase inperformance is relatively small, and the Roller Coaster algorithm still substantially outperforms them. Underall circumstances, the algorithms we test are robust. That is, they assign passenger to seats in accordance with the intention of the boarding plans used by airlines and move passengers in a realistic manner.RecommendationsWe recommend that the Roller Coaster boarding plan be implemented for planes of all sizes and configurations for boarding non-luxury-class and nonspecial needs passengers. As planes increase in size, its margin of success in comparison to the next best method decreases; but we are confident that the Roller Coaster method will prove robust. We recommend boarding groups that are traveling together before boarding the rest of the plane, as such groups would cause interferences that slow the boarding. Ideally, such groups would be ordered before boarding.Future WorkIt is inevitable that some passengers will arrive late and not board the plane at their scheduled time. Additionally, we believe that the amount of carry-on baggage permitted would have a larger effect on the boarding time than the specific boarding plan implemented-modeling this would prove insightful.We also recommend modifying the simulation to reflect groups of people traveling (and boarding) together; this is especially important to the Roller Coaster boarding procedure, and why we recommend boarding groups before boarding the rest of the plane.。
优秀的数学建模论文范文第1篇摘要:将数学建模思想融入高等数学的教学中来,是目前大学数学教育的重要教学方式。
建模思想的有效应用,不仅显著提高了学生应用数学模式解决实际问题的能力,还在培养大学生发散思维能力和综合素质方面起到重要作用。
本文试从当前高等数学教学现状着手,分析在高等数学中融入建模思想的重要性,并从教学实践中给出相应的教学方法,以期能给同行教师们一些帮助。
关键词:数学建模;高等数学;教学研究一、引言建模思想使高等数学教育的基础与本质。
从目前情况来看,将数学建模思想融入高等教学中的趋势越来越明显。
但是在实际的教学过程中,大部分高校的数学教育仍处在传统的理论知识简单传授阶段。
其教学成果与社会实践还是有脱节的现象存在,难以让学生学以致用,感受到应用数学在现实生活中的魅力,这种教学方式需要亟待改善。
二、高等数学教学现状高等数学是现在大学数学教育中的基础课程,也是一门必修的课程。
他能为其他理工科专业的学生提供很多种解题方式与解题思路,是很多专业,如自动化工程、机械工程、计算机、电气化等必不可少的基础课程。
同时,现实生活中也有很多方面都涉及高数的运算,如,银行理财基金的使用问题、彩票的概率计算问题等,从这些方面都可以看出人们不能仅仅把高数看成是一门学科而已,它还与日常生活各个方面有重要的联系。
但现在很多学校仍以应试教育为主,采取填鸭式教学方式,加上高数的教材并没有与时俱进,将其与生活的关系融入教材内,使学生无法意识到高数的重要性以及高数在日常生活中的魅力,因此产生排斥甚至对抗的心理,只是在临考前突击而已。
因此,对高数进行教学改革是十分有必要的,而且怎么改,怎么让学生发现高数的魅力,并积极主动学习高数也是作为教师所面临的一个重大问题。
三、将数学建模思想融入高等数学的重要性第一,能够激发学生学习高数的兴趣。
建模思想实际上是使用数学语言来对生活中的实际现象进行描述的过程。
把建模思想应用到高等数学的学习中,能够让学生们在日常生活中理解数学的实际应用状况与解决日常生活问题的方便性,让学生们了解到高数并不只是一门课程,而是整个日常生活的基础。
基于网络拓扑的公交查询方案摘 要公交、地铁线路和站点组成了一个极其复杂的网络结构,如何从这个网络的任意两 个节点找到一条最优的乘车方案,传统遍历算法是很费时甚至不可行的,必须采取一种 高效的方法。
本文运用了网络拓扑的知识来分析问题,结合隐含枚举,双向搜索遍历, 动态规划方法减少运算量,较好的解决了这一问题。
对于问题一,我们采用了网络拓扑进行分析,采用隐含枚举,双向搜索的方法,建 立了两点之间线路搜索的动态规划多目标模型,设计了基于直达站点间点—点最优距离 的广度优先搜索算法,得出了较好的结果,如:L436L176 311L15L201L41 4135S3359S1828S3359S 1784S 1828 S3359S 1327S 1790S 1828 ® ¾¾¾®¾¾¾® ¾¾®¾¾¾®¾¾¾ ® : 对于问题二,我们在问题一已经给出的纯公交路径基础上,采取了增加地铁连通站 点集合(两两可达)的方法,建立了求经地铁中转的最优线路的多目标模型,设计了基 于搜索地铁出入站点的最优路径算法,得到了令人满意的结果,如:T2 8S0087S3676S0087D27D36S3676 ® ®¾¾®® : 对于问题三,我们采用了网络拓扑进行分析,确立了两点之间的距离正比于步行时 间的原则,在此基础上,建立了基于归并相邻站点的最优线路的改良模型。
综合我们使用的各种方法,可以把原来很难实现的求解过程复杂度缩小数个数量 级,使算法可行并可以搜索更多的区域,最终得到了令人满意的路径。
关键词:网络拓扑 隐含遍历 动态规划 点—点最优距离 广度优先搜索 最优路径1.问题提出与分析2008年奥运会在京举行期间,将有大量游客到北京,北京公共交通系统的发展极大 的满足了游客们在京的出行需求,同时也产生了多条公交线路的选择问题。
数学建模全国⼀等奖论⽂系列(27)乘公交,看奥运摘要由于可供选择的车次很多,各种车辆的换乘⽅式也很多,为了避免上下⾏站点不⼀样的车次等对路线产⽣的影响,我们以由易到难的思路来完成模型。
⾸先分析⼀辆车可以直接到达的情况,在这其中⼜考虑到环线的特殊性对其单独进⾏判断讨论;由于⼀辆车可使乘客到达⽬的地的可能性太⼩,我们接下来讨论要进⾏⼀次换乘的情况,在这⾥巧妙地利⽤矩阵来判断两辆车是否含有共同站这个思想,避免了⾄少两重循环,使运算速度⼤⼤提⾼;虽然这样就已经能够解决不少的问题,但并不完全,因此我们继续计算换乘两次的乘车路线,经过⼤量的运算,我们发现基本所有的站点间都可以通过换乘两次到达,⾄此对公交线路的讨论基本完成。
对加⼊地铁的讨论与只有公交车时类似,从最简单的两辆地铁换乘的情况开始考虑,由浅⼊深。
论⽂中并没有运⽤⼤量的符号,⽽是⽤⽂字来说明程序的主要步骤,这样可以让不了解程序的读者也清楚地知道模型的思路,⽽且,只要知道起始与终点,利⽤程序就可以计算所有可能路线,并可以在结果中为读者提供路线的相关信息,⽐如路费及所需时间,以供选择。
对于最优的解释,我们除了以时间最少、车费最省为原则,还对时间与车费进⾏了加权平均,⽽权数便是乘客对时间与⾦钱的偏好程度,当输⼊⾃⼰愿⽤1元钱去换多少分钟乘车时间时,程序会根据个⼈的不同喜好,来选择出适合每个⼈的最优路线。
这样将程序⼈性化,可以更符合实际中⼈们的需要。
关键词:公交线路选择最优化矩阵加权平均数组分类讨论⾃主查询问题重述北京是中国的⾸都,是政治、⽂化中⼼,同时也是国际交往的中⼼。
在成功取得2008年第29届夏季奥运会的举办权后,北京市城市建设的步伐将进⼀步加快。
众所周知,可靠的交通保障是成功举办奥运会的关键之⼀,公共客运交通服务系统尤为重要。
在保持公车票价⼀直相对较低的情况下,北京市⼜已经实⾏机动车单双号出⾏,⽬的就是为了⿎励⼈们乘公共汽车出⾏,缓解交通阻塞状况。
承诺书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。
我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。
我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。
如有违反竞赛规则的行为,我们将受到严肃处理。
我们参赛选择的题号是(从A/B/C/D中选择一项填写): B我们的电子文件名:B0302所属学校(请填写完整的全名):广西师范学院参赛队员(打印并签名) :1. 钟兴智2. 尹海军3. 斯婷指导教师或指导教师组负责人(打印并签名):韦程东日期: 2007 年 9 月 24 日赛区评阅编号(由赛区组委会评阅前进行编号):编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):乘公交,看奥运摘要我们基于最小换乘次数算法,设计了公交查询系统,能够分别从时间和花费出发考虑,选择最优路径,以满足查询者的各种不同需求。
问题一:采用最小换乘次数算法,求出任意两站的最小换乘次数,在次数一定的情况下,分别选取花费最少和时间最少作为优化目标,建立两种模型:最少时间模型:∑∑==+-+⨯=31315)))1(((3),(min i i i i i i i x q x n x B A f ;最少花费模型:))1((),(min '''31i i i y x x B A g -+=∑;利用两种模型求出6组数局的最佳路线如下(两地铁的线路转化成公交的问题,改进问题一中的模型求出此问题的最少时间模型++-+⨯=∑∑∑===)))5)))1(((3((),(min 313131i i i i i i i i i x q x n x y B A f++-+⨯-∑∑∑===)4))))1(((5.2)(1((3131'31i i i i i i i i i x q x n x y ∑=-31i )z 1(7i i y +∑=31i z 6i i y最小换乘算法进行了改进。
•摘要:明年8月第29届奥运会将在北京举行,届时有大量观众到现场观看奥运比赛,这将对北京的交通带来巨大的影响。
本文以给出的北京地区公交路线为参考资料,根据公交网络换乘问题构建了公共交通网络模型。
对三个问题的解决方案如下:(1)针对问题1,本文首先利用MATLAB编程将公交线路读出,求出各站点间的邻接矩阵。
再根据所求的邻接矩阵。
对求得的邻接矩阵进行处理;判断起点和终点之间有没有直达的线路,如有就确定为最优线路,没有就在通过程序寻找一个合适的数值(记为M)作为限制(即找出邻接点最多的那部分站点),找出通过次数超过这个数值的站点。
下一步则寻找换乘站点。
通过把求得的站点与要求的起点和终点,建立循环逐个修改开始站点与最终站点的值可求出通过各站点的路线,再将经过所求得的站点的路线与经过起点和终点的路线进行比较,寻找相同的路线,若存在,则这个站点可以作为所给的这对起点与终点的中转站(但根据人们乘车的习惯,假设中转的次数不超过2次)。
如果的站点中无法找到中转站,则调整M的值,直到可以找到可行的乘车路线为止。
根据得到的可行乘车线路,利用路过分别与费用和时间的函数关系,计算出按照吸收较小转车次数的原则,比较用钱少、费时少的线路,最终得到最优的乘车方案。
(2)针对问题2,将换乘地铁站和公汽站视为对等的,与问题1相似,利用相同的方法求出最优线路,但是情况比问题1更复杂,特别是地铁与地铁之间还可以换乘,这需要单独进行考虑。
此时,站点数、费用和时间的函数发生了变化,因此,利用新的函数表达式求解再比较得到最优线路。
(3)针对问题3,考虑步行时,可先利用图论中的Floyd算法求出任意两站点间的最短道路,并在此基础上求出这段路步行所需要的时间。
再在第二问的基础上,对时间加一个阈值T。
当计算出的两点间最短路的步行时间<阈值T时,就选择步行,否则,选择问题2中求得的最优线路。
本文所考虑的算法,可以查询任意两个站点间的乘车最优路径。
中国人口增长预测摘要人口系统是一个复杂的动态系统,人口变化对未来经济,社会发展有着直接的影响。
我国作为人口大国,人口问题一直是制约我国发展的重要因素。
本题要求对中短期和长期的中国人口增长趋势作出预测和分析。
针对题目所提要求,我们建立了两个中国人口预测模型,分别用于对中国人口的发展趋势做短期和中长期的预测为了对中国人口发展做短期的预测,考虑到题目所给的数据资料的不全面,我们由马尔萨斯的人口指数增长模型得到启发,通过网络查阅出2001年~2005 年全国每年总人数数据,通过拟合得到指数模型(模型一):x e y 007257.094273.0*10使得建立的人口增长短期预测模型不仅符合中国人口的发展特点,而且简单易用,能在未知总人口数的情况下预测人口的相对发展变化,这一优点使得可以方便且准确的用于预测中国人口短期内的发展趋势,且偏差很小(见表1)。
为了对中国人口发展做中长期的预测,考虑到短期模型在预测人口中长期发展中的局限性以及影响人口发展的众多因素的不确定性和它们之间关系的复杂性,我们利用灰色动态模型的特点,从《中国统计年鉴》中查到了中国近年的人口总数(见附表一),把人口数做为灰色量,确定最优预测模型,从而建立了中长期预测中国人口增长的灰色动态系统人口模型,对中国人口进行了中长期的预测。
在对中国总人口进行短期和中长期的总体预测后,我们从所給数据中提取出城、镇、乡三地人口、男女出生性别比、妇女生育率、老龄人口比率等相关数据,对中国未来城、镇、乡三地人口比例、男女出生性别比、妇女生育率、老龄人口比率等影响人口发展的主要因素做趋势预测,从而达到了对中国人口全方位的预测。
关键词马尔萨斯指数增长模型、灰色动态模型、出生率与死亡率、性别比、生育率、人口发展方程一、问题重述中国是一个人口大国,人口问题始终是制约我国发展的关键因素之一。
根据已有数据,运用数学建模的方法,对中国人口做出分析和预测是一个重要问题。
近年来中国的人口发展出现了一些新的特点,例如,老龄化进程加速、出生人口性别比持续升高,以及乡村人口城镇化等因素,这些都影响着中国人口的增长。
2007年初发布的《国家人口发展战略研究报告》(附录1) 还做出了进一步的分析。
关于中国人口问题已有多方面的研究,并积累了大量数据资料。
附录2就是从《中国人口统计年鉴》上收集到的部分数据。
试从中国的实际情况和人口增长的上述特点出发,参考附录2中的相关数据(也可以搜索相关文献和补充新的数据),建立中国人口增长的数学模型,并由此对中国人口增长的中短期和长期趋势做出预测;特别要指出你们模型中的优点与不足之处。
二、问题假设(1)将所研究的社会人口作为一个整体,当作一个系统,且抽取样本代表总体; (2)表征和影响人口变化的因素都是在整个社会人口平均意义下定义的; (3)自然状态下影响人口变化的因素有:时间的流逝,人口的死亡和国民的迁移,但在这里为简化模型;(4)流入流出人口不改变该地区的人口性别、年龄结构; (5)妇女的总和生育率设为1.8;(6)忽略经济,社会环境,资源等因素对人口的影响。
三、符号说明具体符号说明,在文中给出。
四、模型的建立与求解4.1短期预测与分析:4.1.1模型准备(人口指数增长模型):马尔萨斯生物总数增长定律指出:在孤立的生物群体中,生物总数)(t N 的变化率与生物总数成正比,其数学模型为:⎪⎩⎪⎨⎧==00)()()(N t N t rN dt t dN (4.1)其中r 为常数. 方程(1)的解为:)(00)(t t r e N t N -= (4.2) 因此,遵循马尔萨斯生物总数增长定律得任何生物都是随时间按指数方式增长,在此意义下,马尔萨斯方程(4.1)又称指数增长模型。
人作为特殊的生物总群,人口的增长也应满足马尔萨斯生物总数增长定律,此时的(4.1)式称为马尔萨斯人口方程。
现利用该方程根据查阅有关数据,对我们短期人口进行预测。
4.1.2模型建立:根据网上查阅数据2001~2005年每年总人数数据,用matlab 做指数函数拟合,得到每年人口数与时间的指数模型:x e y 007257.094273.0*10=其中y 表示人口数,x 表示年份。
为了便于模型检验,我们对模型)*(^*x b e a y =进行变形,两边同时取对数得出e bx a y lg lg lg +=,则y lg 和x 是线性关系,则原模型变化为:94273.00030797.0lg +=x y ,因此首先对每年人数取lg 值,然后模型检验:增加(约2007年以后),偏差有所偏大,但差值很小不影响短期预测效果。
但是注意到当∞→x 时,∞→y ,而地球是有限的,故指数增长模型(Malthus 模型)对长期未来人口总数预测不合理。
4.2中长期预测分析:4.2.1模型准备(灰色预测模型):灰色系统是指既含有已知信息、又含有未知信息或非确知信息的系统,也称为贫信息系统。
灰色模型是根据关联度、生成数灰导数、灰微分等观点和一系列数学方法建立起来的连续性的微分方程。
灰色预测是灰色系统理论的一个重要方面,它利用这些信息,建立灰色预测模型,从而确定系统未来的变化趋势。
灰色预测模型能够根据现有的少量信息进行计算和推测。
灰色建模的思路是:从序列角度剖析微分方程,是了解其构成的主要条件,然后对近似满足这些条件的序列建立近似的微分方程模型。
而对序列而言(一般指有限序列)只能获得有限差异信息,因此,用序列建立微分方程模型,实质上对按累减生成还原,计算后得到预测数据。
显然这里只需一次累减。
4.2.2模型建立鉴于影响人口发展的众多不确定因素,我们应用灰色动态模型GM(1,1)为了得到最准确的预测结果,在选取数据年份和年数上,我们进行了认真的分析验证。
于是,我们利用1999年-2004年的中国人口数据,然后根据最小二乘法原理运用Matlab 软件编程(程序见附录)对参数求解可以得到: a=0.0225527,u=0.3975155初始序列的第一个元素为-0.10543793. 因此可得白化形式微分方程的离散解为:0225527.0/3975155.0]0225527.0/3975155.010543793.0[)1(025527.0)1(^+--=+-e kk x 即得到灰色动态人口模型:0225527.073150933.176260714.17)(--=e t N (规定1999年时t=0)并用该模型预测人口数如下:表3-灰色模型预测 (单位:百万) 年份 2007 2008 2009 2010 2015 2020 预测人口数 13302.8 13373.4 13440.4 13504.2 13778.0 13988.8 年份 2025 2030 2035 2040 2045 2050 趋于中国的极限承载人口数(约17亿),发展趋势如图所示:图1-人口发展总趋势4.3 性别比及生育率对人口数的影响:由附件所给1994~2005年的性别比数据和妇女生育率数据用Excel 绘制趋势图得:4.3.1性别比数据图线图2-性别比例数据图线4.3.2妇女生育率趋势图线图3-妇女生育率趋势图线由图象可看出:自1997年后,男性出生比例总体处于上升趋势,尤其是在占人口比例较大的乡镇。
女性出生比例的相对下降,与此同时,妇女的生育率却在1998年左右开始缓慢下降,这无疑对中国未来总人口的发展有比较大的影响。
这些数据表明在未来一定时期内人口的增长率将逐年降低,随着时间的推移,相应政策的实施及高生育率的乡镇人口往城市迁移,预计未来几十年后,人口将趋于零增长甚至负增长。
五、模型优缺点分析及改进方向5.1模型优点:5.1.1指数模型的优点:模型是在知对应年份内总人数,忽略了其他因素(死亡率,出生率,迁入迁出)对人口变化的影响,直接通过函数拟合得到指数模型,使得所建立的模型简单,而且能更准确的在短期内预测出中国人口的增长。
是一个较实用的中国人口短期预测模型。
5.1.2灰色系统人口模型的优点:对于影响人口系统的因素,除了出生率和死亡率外,还有净迁入量,社会经济,自然环境, 科学技术等一系列方面, 这些众多的因素, 不是用几个指标所能表达清楚的.而且, 它们之间的结构关系错综复杂, 它们对人口增长的作用更是无法精确计算.多数因素都在动态变化之中, 其运行机制和变化规律难以完全明白. 所以,将灰色模型用到人口预测中不仅简单且能达到比较准确的预测效果。
5.2模型的缺点:5.2.1指数模型的缺点: (1)、只是简单跟据年份和人数关系得出函数关系,没有考虑死亡率,出生率,迁入,迁出对对人口的影响,影响预测的准确度;(2)、未考虑出生人口性别比的不断增大对人口发展的影响;(3)、没有分年龄、男女对人口进行预测,使得预测不够详细具体。
5.2.3灰色预测模型的缺点:(1)灰色GM(1,1)模型在其使用条件上存在着一定的限制,它是描述按指数规律变化的事物的模型,因此,它使用于呈指数规律发展变化的系统进行预测。
也就是说我们默认了人口的指数增长方式。
(2)在1的前提下,人口的发展速度却可能由于各种因素的影响而出现阶段性增长的特征,呈“波浪”型发展,那么利用GM(1,1)模型进行预测时,由于累加生成数列的缘故,也会对其发展的规律产生影响,削弱人口系统发展的阶段性规律。
六、模型改进6.1人口发展方程:6.1.1连续型人口发展方程模型:考虑到年龄在[r r r ∆+,]内的人口从时刻t 到时刻t t ∆+,有的活着,有的死亡,活着的人的年龄成为[t r r t r ∆+∆+∆+,],死亡的人数为t r t r p t r u ∆∆),(),(。
于是:t r t r p t r u r t t t r p r t r p ∆∆=∆∆+∆+-∆),(),(),(),( (6.1) 其中:)0(),(m r r rFt r p ≤≤∂∂=,称为年龄密度函数;),(t r F 称为连续可微的人口分布函数;),(t r u 表示t 年中年龄为r 的人口的死亡率;m r 为人类所能活到的最高年龄。
即:),(),(),(),(),(),(t r p t r u tt r p t t r p t t t r p t t t r p -=∆-∆++∆∆+-∆+∆+ (6.2)故当时间增长t ∆,年龄也增长t ∆时,即,r t ∆=∆令0→∆=∆r t 得:),(),(),(),(t r p t r u tt r p r t r p -=∂∂+∂∂ (6.3) 为了从上述方程求出人口密度函数),(t r p ,还必须有初始条件和边界条件,即:⎩⎨⎧--=--=)(),0()()0,(0t f t p r p r p因此,连续的人口发展方程为:⎪⎪⎩⎪⎪⎨⎧=≥=≤≤=-=∂∂+∂∂0),(0),(),0(0),()0,(),(),(),(),(0t r p t t f t p r r r p r p t r p t r u t t r p r t r p m m(6.4)这个方程的求解是很复杂的,但在理想情况下(如社会安定、在不太长的时间内)可以认为死亡率与时间无关,即可视为)(),(r u t r u =,此时求解(式6.4)可得:⎪⎩⎪⎨⎧>⎰-≤≤⎰-=--r t e r t f rt e t r p t r p dss u ds s u rrt r ,)(0,)(),(0)()(0 (6.5) 从而可知任意时刻各年龄段的人口数为:⎰=rds t s p t r F 0),(),( (6.6)上面讨论的人口发展方程(连续性的),即年龄r 和时间t 都是连续变化的,这种模型在理论分析中往往比较方便,但不适合作数值计算。