2017-2018学年八年级数学12月月考试题
- 格式:doc
- 大小:5.54 MB
- 文档页数:13
某某省某某市鄂城区汀祖中学2015-2016学年八年级数学上学期第一次月考试题一.选择题(每题3分,共30分)1.若三角形的一个内角等于另外两个内角之差,则这个三角形是()A.锐角三角形B.直角三角形C.钝角三角形D.不能确定2.若△ABC的三个内角满足3∠A>5∠B,3∠C<2∠B,则三角形是()A.钝角三角形B.直角三角形C.锐角三角形D.都有可能3.如图,AD是△ABC的角平分线,点O在AD上,且OE⊥BC于点E,∠BAC=60°,∠C=80°,则∠EOD的度数为()A.20° B.30° C.10° D.15°4.将一副直角三角板如图所示放置,使含30°角的三角板的一条直角边和含45°角的三角板的一条直角边重合,则∠1的度数为()A.45° B.60° C.75° D.85°5.如图,已知BD是△ABC的中线,AB=5,BC=3,△ABD和△BCD的周长的差是()A.2 B.3 C.6 D.不能确定6.把一X形状是多边形的纸片剪去其中某一个角,剩下的部分是一个四边形,则这X纸片原来的形状不可能是()A.六边形B.五边形C.四边形D.三角形7.(北师大版)将五边形纸片ABCDE按如图方式折叠,折痕为AF,点E、D分别落在E′、D′,已知∠AFC=76°,则∠CFD′等于()A.31° B.28° C.24° D.22°8.将长为15cm的木棒截成长度为整数的三段,使它们构成一个三角形的三边,则不同的截法有()A.5种B.6种C.7种D.8种9.有一边长为4m的正六边形客厅,用边长为50cm的正三角形瓷砖铺满,而需要这种瓷砖()块.A.216 B.288 C.384 D.51210.如图,小明从A点出发,沿直线前进8米后左转30°,再沿直线前进8米又左转30°,照这样走下去,他第一次回到出发点A时,一共走了()米.A.48米B.160米C.80米D.96米二.填空题:(每题3分,共24分)11.如图,△ABC中,高BD,CE相交于点H,若∠A=60°,则∠BHC=度.12.不等边三角形的两条边上的高分别为4和12,若第三条边上的高的长也是整数,则这个整数的最大值是.13.如图,在△ABC中,∠ABC=∠ACB,∠A=40°,P是△ABC内一点,且∠1=∠2,则∠BPC=.14.一个凸n边形,除去一个内角外其余的内角和是2570°,求这个多边形对角线条数为.15.设△ABC三边为a、b、c,其中a、b满足|a+b﹣6|+(a﹣b+4)2=0,则第三边c的取值X围.16.如图,小李制作了一X△ABC纸片,点D、E分别在边AB、AC上,现将△ABC沿着DE折叠压平,使点A落在点A′位置.若∠A=75°,则∠1+∠2=.17.如图,在△ABC中,∠A=α.∠ABC与∠ACD的平分线交于点A1,得∠A1;∠A1BC与∠A1CD 的平分线相交于点A2,得∠A2;…;∠A2011BC与∠A2011CD的平分线相交于点A2012,得∠A2012,则∠A2012=.18.如图,求图中∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H+∠I度数的和为.三.解答题19.如图,P为△ABC内任意一点,求证:AB+AC>PB+PC.20.如图,BP平分∠ABC交CD于点F,DP平分∠ADC交AB于点E,AB于CD相交于点O,若∠A=40°,∠C=36°,求∠P的度数.21.如图四边形ABCD中,已知AB∥CD,AD∥BC,AE⊥B C于E,AF⊥CD于F,求证:∠BAD+∠EAF=180°.22.如图,已知DC∥AB,∠BAE=∠BCD,AE⊥DE,∠D=130°,求∠B的度数.23.如图,已知∠MON=α,点A、B分别在射线ON、OM上移动(不与点O重合),AC平分∠OAB,BD平分∠ABM,直线AC、BD交于点C.试问:随着A、B点的移动变化,∠ABM,直线AC、BD交于点C.试问:随着A、B点的移动变化,∠ACB的大小是否也随之变化?若改变,说明理由;若不改变,求出其值.24.如图,已知四边形ABCD中,∠A+∠DCB=180°,两组对边延长后,分别交于P、Q两点,∠APD、∠AQB的平分线交于M,求证:PM⊥QM.2015-2016学年某某省某某市鄂城区汀祖中学八年级(上)第一次月考数学试卷参考答案与试题解析一.选择题(每题3分,共30分)1.若三角形的一个内角等于另外两个内角之差,则这个三角形是()A.锐角三角形B.直角三角形C.钝角三角形D.不能确定【考点】三角形内角和定理.【分析】根据已知及三角形的内角和定理得出.【解答】解:设此三角形的三个内角分别是∠1,∠2,∠3(其中∠3最大),根据题意得∠1=∠3﹣∠2,∴∠1+∠2=∠3,又∵∠1+∠2+∠3=180°,∴2∠3=180°,∴∠3=90°.故选B.2.若△ABC的三个内角满足3∠A>5∠B,3∠C<2∠B,则三角形是()A.钝角三角形B.直角三角形C.锐角三角形D.都有可能【考点】三角形内角和定理.【分析】三角形分锐角,直角,钝角三角形三种.判断种类只需看最大角即可.【解答】解:∵3∠A>5∠B,3∠C≤2∠B,得∠B<∠A,∠C≤∠B,∴∠C<∠A,∴∠B+∠C<∠A.∵∠A+∠B+∠C=180°,∴2(∠B+∠C)<180°,∴∠B+∠C<90°,∴﹣(∠B+∠C)>﹣90°,∴180°﹣(∠B+∠C)>180°﹣90°=90°,即∠A>90°.∴△ABC是钝角三角形,故选A.3.如图,AD是△ABC的角平分线,点O在AD上,且OE⊥BC于点E,∠BAC=60°,∠C=80°,则∠EOD的度数为()A.20° B.30° C.10° D.15°【考点】三角形的角平分线、中线和高;垂线;三角形内角和定理.【分析】首先根据三角形的内角和定理求得∠B,再根据角平分线的定义求得∠BAD,再根据三角形的一个外角等于和它不相邻的两个内角和求得∠ADC,最后根据直角三角形的两个锐角互余即可求解.【解答】解:∵∠BAC=60°,∠C=80°,∴∠B=40°.又∵AD是∠BAC的角平分线,∴∠BAD=∠BAC=30°,∴∠ADE=70°,又∵OE⊥BC,∴∠EOD=20°.故选A.4.将一副直角三角板如图所示放置,使含30°角的三角板的一条直角边和含45°角的三角板的一条直角边重合,则∠1的度数为()A.45° B.60° C.75° D.85°【考点】三角形内角和定理.【分析】根据三角形三内角之和等于180°求解.【解答】解:如图.∵∠2=60°,∠3=45°,∴∠1=180°﹣∠2﹣∠3=75°.故选:C.5.如图,已知BD是△ABC的中线,AB=5,BC=3,△ABD和△BCD的周长的差是()A.2 B.3 C.6 D.不能确定【考点】三角形的角平分线、中线和高.【分析】根据三角形的中线得出AD=CD,根据三角形的周长求出即可.【解答】解:∵BD是△ABC的中线,∴AD=CD,∴△ABD和△BCD的周长的差是:(AB+BD+AD)﹣(BC+BD+CD)=AB﹣BC=5﹣3=2.故选A.6.把一X形状是多边形的纸片剪去其中某一个角,剩下的部分是一个四边形,则这X纸片原来的形状不可能是()A.六边形B.五边形C.四边形D.三角形【考点】多边形.【分析】一个n边形剪去一个角后,剩下的形状可能是n边形或(n+1)边形或(n﹣1)边形.【解答】解:当剪去一个角后,剩下的部分是一个四边形,则这X纸片原来的形状可能是四边形或三角形或五边形,不可能是六边形.故选:A.7.(北师大版)将五边形纸片ABCDE按如图方式折叠,折痕为AF,点E、D分别落在E′、D′,已知∠AFC=76°,则∠CFD′等于()A.31° B.28° C.24° D.22°【考点】翻折变换(折叠问题).【分析】根据折叠前后部分是全等的,可知角的关系,再结合三角形内角和定理,即可求∠CFD′的度数.【解答】解:∵折叠前后部分是全等的又∵∠AFC+∠AFD=180°∴∠AFD′=∠AFD=180°﹣∠AFC=180°﹣76°=104°∴∠CFD′=∠AFD′﹣∠AFC=104°﹣76°=28°故选B.8.将长为15cm的木棒截成长度为整数的三段,使它们构成一个三角形的三边,则不同的截法有()A.5种B.6种C.7种D.8种【考点】三角形三边关系.【分析】已知三角形的周长,分别假设三角形的最长边,从而利用三角形三边关系进行验证即可求得不同的截法.【解答】解:∵长棒的长度为15cm,即三角形的周长为15cm∴①当三角形的最长边为7时,有4种截法,分别是:7,7,1;7,6,2;7,5,3;7,4,4;②当三角形的最长边为6时,有2种截法,分别是:6,6,3;6,5,4;③当三角形的最长边为5时,有1种截法,是:5,5,5;④当三角形的最长边为4时,有1种截法,是4,3,8,因为4+3<8,所以此截法不可行;∴不同的截法有:4+2+1=7种.故选C.9.有一边长为4m的正六边形客厅,用边长为50cm的正三角形瓷砖铺满,而需要这种瓷砖()块.A.216 B.288 C.384 D.512【考点】平面镶嵌(密铺).【分析】根据正六边形的面积除以一个正三角形的面积,可得答案.【解答】解:正六边形的面积为×4×2×6=24m2,一个正三角形的面积××=m2,需要这种瓷砖24÷=384(块).故选:C.10.如图,小明从A点出发,沿直线前进8米后左转30°,再沿直线前进8米又左转30°,照这样走下去,他第一次回到出发点A时,一共走了()米.A.48米B.160米C.80米D.96米【考点】多边形内角与外角.【分析】根据题意,小明走过的路程是正多边形,先用360°除以30°求出边数,然后再乘以8米即可.【解答】解:∵小明每次都是沿直线前进8米后向左转30度,∴他走过的图形是正多边形,∴边数n=360°÷30°=12,∴他第一次回到出发点A时,一共走了12×8=96(米).二.填空题:(每题3分,共24分)11.如图,△ABC中,高BD,CE相交于点H,若∠A=60°,则∠BHC=120 度.【考点】多边形内角与外角.【分析】根据高的性质以及四边形内角和定理的相关知识解答.【解答】解:已知∠A=60°,高BD,CE相交于点H,∴∠EHD=360°﹣∠A﹣∠AEC﹣∠ADH=120°,又∵∠EHD=∠BHC,∴∠BHC=120°.12.不等边三角形的两条边上的高分别为4和12,若第三条边上的高的长也是整数,则这个整数的最大值是 5 .【考点】三角形的面积.【分析】设角形三边分别为a,b,c,面积为S,根据三角形面积公式分别用含S的代数式表示出a、b、c,根据三角形三边之间的关系得a﹣b<c<a+b,列出不等式后解不等式可得.【解答】解:设三角形三边分别为a,b,c,面积为S,则a=,b=,c=,∵a﹣b<c<a+b,∴,解得:3<h<6,故h=4或5,又∵三角形是不等边三角形,故答案为:5.13.如图,在△ABC中,∠ABC=∠ACB,∠A=40°,P是△ABC内一点,且∠1=∠2,则∠BPC= 110°.【考点】等腰三角形的性质.【分析】先根据等腰三角形两底角相等求出∠ACB,再求出∠2+∠3,再根据三角形内角和定理列式计算即可得解.【解答】解:∵∠ABC=∠ACB,∠A=40°,∴∠ACB==70°,∵∠1=∠2,∴∠2+∠3=∠1+∠3=∠ACB=70°,在△BPC中,∠BPC=180°﹣(∠2+∠3)=180°﹣70°=110°.故答案为:110°.14.一个凸n边形,除去一个内角外其余的内角和是2570°,求这个多边形对角线条数为119 .【考点】多边形内角与外角.【分析】设出相应的边数和未知的那个内角度数,利用内角和公式列出相应等式,根据边数为整数求出边数,然后根据对角线的条数的公式进行计算即可求解即可.【解答】解:设这个内角度数为x,边数为n,则(n﹣2)×180°﹣x=2570°,180°•n=2930°+x,∵n为正整数,∴n=17,∴这个多边形的对角线的条数是n×17×(17﹣3)=119.故答案为:119.15.设△ABC三边为a、b、c,其中a、b满足|a+b﹣6|+(a﹣b+4)2=0,则第三边c的取值X围4<c<6 .【考点】三角形三边关系;非负数的性质:绝对值;非负数的性质:偶次方;解二元一次方程组.【分析】首先根据非负数的性质计算出a、b的值,再根据三角形两边之和大于第三边,三角形的两边差小于第三边可得c的取值X围.【解答】解:由题意得:,解得,根据三角形的三边关系定理可得5﹣1<c<5+1,即4<c<6.故答案为:4<c<6.16.如图,小李制作了一X△ABC纸片,点D、E分别在边AB、AC上,现将△ABC沿着DE折叠压平,使点A落在点A′位置.若∠A=75°,则∠1+∠2=150°.【考点】三角形内角和定理;翻折变换(折叠问题).【分析】先根据图形翻折变化的性质得出△ADE≌△A′DE,∠AED=∠A′ED,∠ADE=∠A′DE,再根据三角形内角和定理求出∠AED+∠ADE及∠A′ED+∠A′DE的度数,然后根据平角的性质即可求出答案.【解答】解:∵△A′DE是△ABC翻折变换而成,∴∠AED=∠A′ED,∠ADE=∠A′DE,∠A=∠A′=75°,∴∠AED+∠ADE=∠A′ED+∠A′DE=180°﹣75°=105°,∴∠1+∠2=360°﹣2×105°=150°.故答案为:150°.17.如图,在△ABC中,∠A=α.∠ABC与∠ACD的平分线交于点A1,得∠A1;∠A1BC与∠A1CD 的平分线相交于点A2,得∠A2;…;∠A2011BC与∠A2011CD的平分线相交于点A2012,得∠A2012,则∠A2012=.【考点】三角形的角平分线、中线和高;三角形的外角性质.【分析】根据角平分线的定义可得∠A1BC=∠ABC,∠A1CD=∠ACD,再根据三角形的一个外角等于与它不相邻的两个内角的和可得∠A+∠ABC=∠ACD,∠A1+∠A1BC=∠A1CD,然后整理即可得到∠A1与∠A的关系,同理得到∠A2与∠A1的关系并依次找出变化规律,从而得解.【解答】解:∵∠ABC与∠ACD的平分线交于点A1,∴∠A1BC=∠ABC,∠A1CD=∠ACD,根据三角形的外角性质,∠A+∠ABC=∠ACD,∠A1+∠A1BC=∠A1CD,∴∠A1+∠A1BC=∠A1+∠ABC=(∠A+∠A BC),整理得,∠A1=∠A=,同理可得,∠A2=∠A1=×=,…,∠A2012=.故答案为:.18.如图,求图中∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H+∠I度数的和为540°.【考点】多边形内角与外角;三角形内角和定理.【分析】如图所示,由三角形外角的性质可知:∠A+∠B+∠C=∠IKD,∠E+∠F+∠G=∠HND,然后由多边形的内角和公式可求得答案.【解答】解:如图所示:由三角形的外角的性质可知:∠A+∠B=∠AJC,∠AJC+∠C=∠IKD,∴∠A+∠B+∠C=∠IKD.同理:∠E+∠F+∠G=∠HND.∴∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠I+∠H=∠IKD+∠D+∠HND+∠I+∠H=(5﹣2)×180°=3×180°=540°,故答案为:540°.三.解答题19.如图,P为△ABC内任意一点,求证:AB+AC>PB+PC.【考点】三角形三边关系.【分析】首先延长BP交AC于点D,再在△ABD中可得PB+PD<AB+AD,在△PCD中,PC<PD+CD 然后把两个不等式相加整理后可得结论.【解答】证明:延长BP交AC于点D,在△ABD中,PB+PD<AB+AD①在△PCD中,PC<PD+CD②①+②得PB+PD+PC<AB+AD+PD+CD,即PB+PC<AB+AC,即:AB+AC>PB+PC.20.如图,BP平分∠ABC交CD于点F,DP平分∠ADC交AB于点E,AB于CD相交于点O,若∠A=40°,∠C=36°,求∠P的度数.【考点】三角形内角和定理;三角形的外角性质.【分析】根据角平分线的定义可得∠ADP=∠PDF,∠CBP=∠PBA,再根据三角形的内角和定理列出等式整理即可得解.【解答】解:∵BP平分∠ABC,DP平分∠ADC,∴∠ADP=∠PDF,∠CBP=∠PBA,∵∠A+∠ADP=∠P+∠ABP,∠C+∠CBP=∠P+∠PDF,∴∠A+∠C=2∠P,∵∠A=40°,∠C=36°,∴∠P=(40°+36°)=38°.21.如图四边形ABCD中,已知AB∥CD,AD∥BC,AE⊥BC于E,AF⊥CD于F,求证:∠BAD+∠EAF=180°.【考点】平行线的性质.【分析】先证明四边形ABCD是平行四边形,得出对角相等∠BAD=∠C,再由四边形内角和定理和已知条件求出∠C+∠EAF=180°,即可得出结论.【解答】证明:∵AB∥CD,AD∥BC,∴四边形ABCD是平行四边形,∴∠BAD=∠C,∵AE⊥BC于E,AF⊥CD于F,∴∠AEC=∠AFC=90°,∴∠C+∠EAF=360°﹣90°﹣90°=180°,∴∠BAD+∠EAF=180°.22.如图,已知DC∥AB,∠BAE=∠BCD,AE⊥DE,∠D=130°,求∠B的度数.【考点】平行线的性质;多边形内角与外角.【分析】可连接AC,得出AE∥BC,进而利用同旁内角互补求解∠B的大小.【解答】解:如图,连接AC,∵AB∥CD,∴∠DCA=∠BAC,又∠BAE=∠BCD,∴∠EAC=∠ACB,∴AE∥BC,在四边形ACDE中,∠D=130°,∠E=90°,∴∠EAC+∠ACD=140°,即∠EAB=140°,又∵∠B+∠EAB=180°,∴∠B=40°.23.如图,已知∠MON=α,点A、B分别在射线ON、OM上移动(不与点O重合),AC平分∠OAB,BD平分∠ABM,直线AC、BD交于点C.试问:随着A、B点的移动变化,∠ABM,直线AC、BD交于点C.试问:随着A、B点的移动变化,∠ACB的大小是否也随之变化?若改变,说明理由;若不改变,求出其值.【考点】三角形内角和定理;三角形的外角性质.【分析】先根据三角形外角的性质∠MON+∠OAB=∠ABM,再由角平分线的性质及三角形内角和定理即可得出结论.【解答】解:∠ACB=为一定值.理由:∵∠ABM是△AOB的外角,∴∠MNO+∠OAB=∠ABM,∠MON=α,∴∠ABM﹣∠OAB=∠MON=α.∵AC平分∠OAB,BD平分∠ABM,∴∠BA C=∠OAB,∠ABD=∠ABM=(∠MNO+∠OAB),∵∠ABD是△ABC的外角,∴∠ABD=∠C+∠BAC,即∠C=∠ABD﹣∠BAC=(∠ABM﹣∠OAB)=.24.如图,已知四边形ABCD中,∠A+∠DCB=180°,两组对边延长后,分别交于P、Q两点,∠APD、∠AQB的平分线交于M,求证:PM⊥QM.【考点】三角形内角和定理;多边形内角与外角.【分析】连接PQ,由三角形内角和定理可得出∠QCP=180°﹣∠1﹣∠2,∠A=180°﹣∠AQP ﹣∠APQ=180°﹣∠1﹣∠2﹣∠AQB﹣∠APD,再根据∠APD、∠AQB的平分线交于点M可知∠AQB=2∠3,∠APD=2∠4,再由三角形外角的性质可得出∠QMP=(∠BCD+∠A),进而得出结论.【解答】证明:连接PQ,∵∠QCP=180°﹣∠1﹣∠2,∠A=180°﹣∠AQP﹣∠APQ=180°﹣∠1﹣∠2﹣∠AQB﹣∠APD,又∵∠APD、∠AQB的平分线交于点M,∴∠AQB=2∠3,∠APD=2∠4,∴∠QCP+∠A=+=360°﹣2∠1﹣2∠2﹣2∠3﹣2∠4,∴(∠QCP+∠A)=180°﹣∠1﹣∠2﹣∠3﹣∠4,又∵∠BCD=∠QCP,∴(∠BCD+∠A)=180°﹣∠1﹣∠2﹣∠3﹣∠4,又∵∠QMP=180°﹣∠MQP﹣∠MPQ=180°﹣∠1﹣∠3﹣∠2﹣∠4,∴∠QMP=(∠BCD+∠A)=×180°=90°,即PM⊥QM.。
八年级(下)第三次月考数学试卷一、选择题(每小题3分.共30分)1.下列长度的线段不能构成直角三角形的是()A.8.15.17 B.1.5.2.3 C.6.8.10 D.5.12.132.在△ABC中.AB=.BC=.AC=.则()A.∠A=90°B.∠B=90°C.∠C=90°D.∠A=∠B 3.如图所示.AB=BC=CD=DE=1.AB⊥BC.AC⊥CD.AD⊥DE.则AE=()A.1 B.C.D.24.如图.在▱ABCD中.AB=4.BC=6.∠B=30°.则此平行四边形的面积是()A.6 B.12 C.18 D.245.下列命题是假命题的是()A.四个角相等的四边形是矩形B.对角线相等的平行四边形是矩形C.对角线垂直的四边形是菱形D.对角线垂直的平行四边形是菱形6.已知等腰梯形的两底之差等于腰长.则腰与下底的夹角为()A.15°B.30°C.45°D.60°7.如图.在△ABC中.D、E、F三点将BC分成四等分.XG:BX=1:3.H为AB中点.则△ABC的重心是()A.X B.Y C.Z D.W8.已知如图.在△ABC中.AB=AC=10.BD⊥AC于D.CD=2.则BD的长为()A.4 B.5 C.6 D.89.用配方法解方程:x2﹣2x﹣3=0时.原方程变形为()A.2=4 C.2=310.在下面图形中.每个大正方形网格都是由边长为1的小正方形组成.则图中阴影部分面积最大的是()A.B.C.D.二、填空(每小题4分.共24分)11.已知两条线段的长为3cm和4cm.当第三条线段的长为cm时.这三条线段能组成一个直角三角形.12.在Rt△ABC中.∠C=90°.若a=15.c=25.则b=.13.▱ABCD的周长是30.AC、BD相交于点O.△OAB的周长比△OBC的周长大3.则AB=.14.如图.矩形ABCD中.AB=8.BC=4.点E在边AB上.点F在边CD上.点G、H在对角线AC 上.若四边形EGFH是菱形.则AE的长是.15.梯形中位线长6cm.下底长8cm.则上底的长为cm.16.在一张三角形纸片中.剪去其中一个50°的角.得到如图所示的四边形.则图中∠1+∠2的度数为度.三、解答题(一)(本大题3小题.每小题6分.共18分)17.如图所示.四边形ABCD中.AB=3cm.AD=4cm.BC=13cm.CD=12cm.∠A=90°.求四边形ABCD的面积.18.如图.已知线段a和b.a>b.求作直角三角形ABC.使直角三角形的斜边AB=a.直角边AC=b.(用尺规作图.保留作图痕迹.不要求写作法)19.(6分)(2016丹东模拟)如图.在▱ABCD中.E是CD的中点.AE的延长线与BC的延长线相交于点F.求证:BC=CF.四、解答题(二)(本大题3小题.每小题7分.共21分)20.如图.在矩形ABCD中.对角线AC.BD相交于点O.点E.F分别在边AD.BC上.且DE=CF.连接OE.OF.求证:OE=OF.21.梯形ABCD中.AD∥BC.AB=DC=2.∠DBC=30°.∠BDC=90°.求:梯形ABCD的面积.22.已知:如图.在四边形ABCD中.AB∥CD.E.F为对角线AC上两点.且AE=CF.DF∥BE.求证:四边形ABCD为平行四边形.五、解答题(三)(本大题3小题.每小题9分.共27分)23.如图.在△ABC中.∠ACB=90°.∠B=30°.CD.CE分别是AB边上的中线和高.(1)求证:AE=ED;(2)若AC=2.求△CDE的周长.24.已知:如图.在▱ABCD中.O为对角线BD的中点.过点O的直线EF分别交AD.BC于E.F 两点.连结BE.DF.(1)求证:△DOE≌△BOF;(2)当∠DOE等于多少度时.四边形BFDE为菱形?请说明理由.25.已知:如图.在正方形ABCD中.G是CD上一点.延长BC到E.使CE=CG.连接BG并延长交DE于F.(1)求证:△BCG≌△DCE;(2)将△DCE绕点D顺时针旋转90°得到△DAE′.判断四边形E′BGD是什么特殊四边形.并说明理由.2017-2018学年广东省东莞市中堂星晨学校八年级(下)第三次月考数学试卷参考答案与试题解析一、选择题(每小题3分.共30分)1.下列长度的线段不能构成直角三角形的是()A.8.15.17 B.1.5.2.3 C.6.8.10 D.5.12.13【分析】由勾股定理的逆定理.只要验证两小边的平方和是否等于最长边的平方.即可解答.【解答】解:A、82+152=172.能构成直角三角形.不符合题意;B、1.52+22≠32.不能构成直角三角形.符合题意;C、62+82=102.能构成直角三角形.不符合题意;D、52+122=132.能构成直角三角形.不符合题意;故选:B.【点评】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形.已知三角形三边的长.只要利用勾股定理的逆定理加以判断即可.2.在△ABC中.AB=.BC=.AC=.则()A.∠A=90°B.∠B=90°C.∠C=90°D.∠A=∠B【分析】根据题目提供的三角形的三边长.计算它们的平方.满足a2+b2=c2.哪一个是斜边.其所对的角就是直角.【解答】解:∵AB2=()2=2.BC2=()2=5.AC2=()2=3.∴AB2+AC2=BC2.∴BC边是斜边.∴∠A=90°.故选A.【点评】本题考查了利用勾股定理的逆定理判定直角三角形.本题没有让学生直接判定直角三角形.而是创新的求哪一个角是直角.是一道不错的好题.3.如图所示.AB=BC=CD=DE=1.AB⊥BC.AC⊥CD.AD⊥DE.则AE=()A.1 B.C.D.2【分析】根据勾股定理进行逐一计算即可.【解答】解:∵AB=BC=CD=DE=1.AB⊥BC.AC⊥CD.AD⊥DE.∴AC===;AD===;AE===2.故选D.【点评】本题考查了利用勾股定理解直角三角形的能力.即:直角三角形两直角边的平方和等于斜边的平方.4.如图.在▱ABCD中.AB=4.BC=6.∠B=30°.则此平行四边形的面积是()A.6 B.12 C.18 D.24【分析】过点A作AE⊥BC于E.根据含30度角的直角三角形的性质:在直角三角形中.30°角所对的直角边等于斜边的一半可求出AE的长.利用平行四边形的面积根据即可求出其面积.【解答】解:过点A作AE⊥BC于E.∵直角△ABE中.∠B=30°.∴AE=AB=×4=2∴平行四边形ABCD面积=BCAE=6×2=12.故选:B.【点评】本题考查了平行四边形的性质以及平行四边形的面积公式的运用和30度角的直角三角形的性质:在直角三角形中.30°角所对的直角边等于斜边的一半.5.下列命题是假命题的是()A.四个角相等的四边形是矩形B.对角线相等的平行四边形是矩形C.对角线垂直的四边形是菱形D.对角线垂直的平行四边形是菱形【分析】根据矩形的判定对A、B进行判断;根据菱形的判定方法对C、D进行判断.【解答】解:A、四个角相等的四边形是矩形.为真命题.故A选项不符合题意;B、对角线相等的平行四边形是矩形.为真命题.故B选项不符合题意;C、对角线垂直的平行四边形是菱形.为假命题.故C选项符合题意;D、对角线垂直的平行四边形是菱形.为真命题.故D选项不符合题意.故选:C.【点评】本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题.错误的命题称为假命题;经过推理论证的真命题称为定理.6.已知等腰梯形的两底之差等于腰长.则腰与下底的夹角为()A.15°B.30°C.45°D.60°【分析】过点D作DE∥BC.可知△ADE是等边三角形.从而得到∠C=60°.【解答】解:如图.过点D作DE∥BC.交AB于点E.∴DE=CB=AD.∵AD=AE.∴△ADE是等边三角形.所以∠A=60°.故选:D.【点评】此题考查等腰梯形的性质及梯形中常见的辅助线的作法.7.如图.在△ABC中.D、E、F三点将BC分成四等分.XG:BX=1:3.H为AB中点.则△ABC的重心是()A.X B.Y C.Z D.W【分析】根据重心的定义得出AE是△ABC边BC的中线.CH是△ABC边BA的中线.即可得出答案.【解答】解:∵D、E、F三点将BC分成四等分.∴BE=CE.∴AE是△ABC边BC的中线.∵H为AB中点.∴CH是△ABC边BA的中线.∴交点即是重心.故选:C.【点评】此题主要考查了重心的定义.掌握三角形的重心的定义找出AE是△ABC边BC的中线.CH是△ABC边BA的中线是解决问题的关键.8.已知如图.在△ABC中.AB=AC=10.BD⊥AC于D.CD=2.则BD的长为()A.4 B.5 C.6 D.8【分析】根据AB=AC=10.CD=2得出AD的长.再由BD⊥AC可知△ABD是直角三角形.根据勾股定理求出BD的长即可.【解答】解:∵AB=AC=10.CD=2.∴AD=10﹣2=8.∵BD⊥AC.∴BD===6.故选C.【点评】本题考查的是勾股定理.熟知在任何一个直角三角形中.两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.9.用配方法解方程:x2﹣2x﹣3=0时.原方程变形为()A.2=4 C.2=3【分析】将原方程的常数项﹣3变号后移项到方程右边.然后方程两边都加上1.方程左边利用完全平方公式变形后.即可得到结果.【解答】解:x2﹣2x﹣3=0.移项得:x2﹣2x=3.两边加上1得:x2﹣2x+1=4.变形得:(x﹣1)2=4.则原方程利用配方法变形为(x﹣1)2=4.故选B.【点评】此题考查了利用配方法解一元二次方程.利用此方法的步骤为:1、将二次项系数化为“1”;2、将常数项移项到方程右边;3、方程两边都加上一次项系数一半的平方.方程左边利用完全平方公式变形.方程右边为非负常数;4、开方转化为两个一元一次方程来求解.10.在下面图形中.每个大正方形网格都是由边长为1的小正方形组成.则图中阴影部分面积最大的是()A.B.C.D.【分析】根据正方形的性质把不规则图形的面积可以看成是规则图形的面积的和或差.从而可得到图中阴影部分面积最大的图形.【解答】解:不规则图形的面积可以看成是规则图形的面积的和或差.根据正方形的性质计算得.图中阴影部分面积最大的是第四选项.故选D.【点评】此题主要考查学生对正方形的性质的理解及运用.二、填空(每小题4分.共24分)11.已知两条线段的长为3cm和4cm.当第三条线段的长为5或cm时.这三条线段能组成一个直角三角形.【分析】本题从边的方面考查三角形形成的条件.涉及分类讨论的思考方法.即:由于“两边长分别为3和5.要使这个三角形是直角三角形.”指代不明.因此.要讨论第三边是直角边和斜边的情形.【解答】解:当第三边是直角边时.根据勾股定理.第三边的长==5.三角形的边长分别为3.4.5能构成三角形;当第三边是斜边时.根据勾股定理.第三边的长==.三角形的边长分别为3..亦能构成三角形;综合以上两种情况.第三边的长应为5或.故答案为5或.【点评】本题考查了勾股定理的逆定理.解题时注意三角形形成的条件:任意两边之和>第三边.任意两边之差<第三边.当题目指代不明时.一定要分情况讨论.把符合条件的保留下来.不符合的舍去.12.在Rt△ABC中.∠C=90°.若a=15.c=25.则b=20.【分析】依据勾股定理求解即可.【解答】解:∵Rt△ABC中.∠C=90°.∴b==20.故答案为:20.【点评】本题主要考查的是勾股定理的应用.掌握勾股定理是解题的关键.13.▱ABCD的周长是30.AC、BD相交于点O.△OAB的周长比△OBC的周长大3.则AB= 9.【分析】如图:由四边形ABCD是平行四边形.可得AB=CD.BC=AD.OA=OC.OB=OD;又由△OAB的周长比△OBC的周长大3.可得AB﹣BC=3.又因为▱ABCD的周长是30.所以AB+BC=10;解方程组即可求得.【解答】解:∵四边形ABCD是平行四边形.∴AB=CD.BC=AD.OA=OC.OB=OD;又∵△OAB的周长比△OBC的周长大3.∴AB+OA+OB﹣(BC+OB+OC)=3∴AB﹣BC=3.又∵▱ABCD的周长是30.∴AB+BC=15.∴AB=9.故答案为9.【点评】此题考查了平行四边形的性质:平行四边形的对边相等.对角线互相平分.解题时要注意利用方程思想与数形结合思想求解.14.如图.矩形ABCD中.AB=8.BC=4.点E在边AB上.点F在边CD上.点G、H在对角线AC 上.若四边形EGFH是菱形.则AE的长是5.【分析】首先连接EF交AC于O.由矩形ABCD中.四边形EGFH是菱形.易证得△CFO≌△AOE(AAS).即可得OA=OC.然后由勾股定理求得AC的长.继而求得OA的长.又由△AOE ∽△ABC.利用相似三角形的对应边成比例.即可求得答案.【解答】解:连接EF交AC于O.∵四边形EGFH是菱形.∴EF⊥AC.OE=OF.∵四边形ABCD是矩形.∴∠B=∠D=90°.AB∥CD.∴∠ACD=∠CAB.在△CFO与△AOE中..∴△CFO≌△AOE(AAS).∴AO=CO.∵AC==4.∴AO=AC=2.∵∠CAB=∠CAB.∠AOE=∠B=90°.∴△AOE∽△ABC.∴.∴.∴AE=5.故答案为5.【点评】此题考查了菱形的性质、矩形的性质、全等三角形的判定与性质以及相似三角形的判定与性质.注意准确作出辅助线是解此题的关键.15.梯形中位线长6cm.下底长8cm.则上底的长为4cm.【分析】根据“梯形中位线的长等于上底与下底和的一半”可求得其上底.【解答】解:由已知得.下底=2×6﹣8=4(cm).故答案为:4.【点评】此题主要考查了梯形中位线定理的数量关系:梯形中位线的长等于上底与下底和的一半.16.在一张三角形纸片中.剪去其中一个50°的角.得到如图所示的四边形.则图中∠1+∠2的度数为230度.【分析】三角形纸片中.剪去其中一个50°的角后变成四边形.则根据多边形的内角和等于360度即可求得∠1+∠2的度数.【解答】解:根据三角形的内角和定理得:四边形除去∠1.∠2后的两角的度数为180°﹣50°=130°.则根据四边形的内角和定理得:∠1+∠2=360°﹣130°=230°.【点评】主要考查了四边形的内角和是360度的实际运用与三角形内角和180度之间的关系.三、解答题(一)(本大题3小题.每小题6分.共18分)17.如图所示.四边形ABCD中.AB=3cm.AD=4cm.BC=13cm.CD=12cm.∠A=90°.求四边形ABCD的面积.【分析】连接BD.根据已知分别求得△ABD的面积与△BDC的面积.即可求四边形ABCD的面积.【解答】解:连接BD.∵AB=3cm.AD=4cm.∠A=90°∴BD=5cm.S△ABD=×3×4=6cm2又∵BD=5cm.BC=13cm.CD=12cm∴BD2+CD2=BC2∴∠BDC=90°∴S△BDC=×5×12=30cm2∴S四边形ABCD=S△ABD+S△BDC=6+30=36cm2.【点评】此题主要考查勾股定理和逆定理的应用.还涉及了三角形的面积计算.连接BD.是关键的一步.18.如图.已知线段a和b.a>b.求作直角三角形ABC.使直角三角形的斜边AB=a.直角边AC=b.(用尺规作图.保留作图痕迹.不要求写作法)【分析】先作线段AC=b.再过点C作AC的垂线.接着以点A为圆心.a为半径画弧交此垂线于B.则△ABC为所求.【解答】解:如图.△ABC为所求作的直角三角形.【点评】本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图.一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质.结合几何图形的基本性质把复杂作图拆解成基本作图.逐步操作.也19.(6分)(2016丹东模拟)如图.在▱ABCD中.E是CD的中点.AE的延长线与BC的延长线相交于点F.求证:BC=CF.【分析】先证明△ADE≌△FCE.得出AD=CF.再根据平行四边形的性质可知AD=BC.继而即可得出结论.【解答】解:∵四边形ABCD为平行四边形.∵AD∥BC.∴∠ADE=∠FCE.∵E是CD的中点.∴DE=CE.在△ADE和△FCE中.∵.∴△ADE≌△FCE.∴AD=CF.又∵AD=BC.∴BC=CF.【点评】本题考查平行四边形的性质及全等三角形的判定与性质.解题关键是找出△ADE与△FCE全等的条件.难度一般.四、解答题(二)(本大题3小题.每小题7分.共21分)20.如图.在矩形ABCD中.对角线AC.BD相交于点O.点E.F分别在边AD.BC上.且DE=CF.连接OE.OF.求证:OE=OF.【分析】欲证明OE=OF.只需证得△ODE≌△OCF即可.【解答】证明:如图.∵四边形ABCD是矩形.∴∠ADC=∠BCD=90°.AC=BD.OD=BD.OC=AC.∴OD=OC.∴∠ODC=∠OCD.∴∠ADC﹣∠ODC=∠BCD﹣∠OCD.即∠EDO=∠FCO.在△ODE与△OCF中..∴△ODE≌△OCF(SAS).∴OE=OF.【点评】本题考查了全等三角形的判定与性质.矩形的性质.全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时.关键是选择恰当的判定条件.21.梯形ABCD中.AD∥BC.AB=DC=2.∠DBC=30°.∠BDC=90°.求:梯形ABCD的面积.【分析】作DE⊥BCTVE.则∠DEB=90°.由含30°角的直角三角形的性质得出DE=BD.BC=2DC=4.求出BD=DC=6.DE=3.由等腰梯形的性质得出∠ABD=∠ADB.得出AD=AB=2.即可求出梯形ABCD的面积.【解答】解:如图所示:作DE⊥BCTVE.则∠DEB=90°.∵∠DBC=30°.∠BDC=90°.∴∠C=60°.DE=BD.BC=2DC=4.BD=DC=6.∴DE=3.∵AD∥BC.AB=DC.∴∠ABC=∠C=60°.∠ADB=∠BDC=30°.∴∠ABD=30°=∠ADB.∴AD=AB=2.∴梯形ABCD的面积=(AD+BC)×DE=(2+4)×3=9.【点评】本题考查了等腰梯形的性质、含30°角的直角三角形的性质、梯形面积的计算;熟练掌握等腰梯形的性质.由含30°角的直角三角形的性质求出BC和DE是解决问题的关键.22.已知:如图.在四边形ABCD中.AB∥CD.E.F为对角线AC上两点.且AE=CF.DF∥BE.求证:四边形ABCD为平行四边形.【分析】首先证明△AEB≌△CFD可得AB=CD.再由条件AB∥CD可利用一组对边平行且相等的四边形是平行四边形证明四边形ABCD为平行四边形.【解答】证明:∵AB∥CD.∴∠DCA=∠BAC.∵DF∥BE.∴∠DFA=∠BEC.∴∠AEB=∠DFC.在△AEB和△CFD中.∴△AEB≌△CFD(ASA).∴AB=CD.∵AB∥CD.∴四边形ABCD为平行四边形.【点评】此题主要考查了平行四边形的判定.关键是掌握一组对边平行且相等的四边形是平行四边形.五、解答题(三)(本大题3小题.每小题9分.共27分)23.如图.在△ABC中.∠ACB=90°.∠B=30°.CD.CE分别是AB边上的中线和高.(1)求证:AE=ED;(2)若AC=2.求△CDE的周长.【分析】(1)根据直角三角形斜边上的中线等于斜边的一半.得CD=AD.根据直角三角形的两个锐角互余.得∠A=60°.从而判定△ACD是等边三角形.再根据等腰三角形的三线合一的性质即可证明;(2)结合(1)中的结论.求得CD=2.DE=1.只需根据勾股定理求得CE的长即可.【解答】(1)证明:∵∠ACB=90°.CD是AB边上的中线.∴CD=AD=DB.∵∠B=30°.∴∠A=60°.∴△ACD是等边三角形.∵CE是斜边AB上的高.∴AE=ED.(2)解:由(1)得AC=CD=AD=2ED.又AC=2.∴CD=2.ED=1.∴.∴△CDE的周长=.【点评】此题综合运用了直角三角形的性质、等边三角形的判定和性质以及勾股定理.直角三角形斜边上的中线等于斜边的一半;直角三角形的两个锐角互余.有一个角是60°的等腰三角形是等边三角形.24.已知:如图.在▱ABCD中.O为对角线BD的中点.过点O的直线EF分别交AD.BC于E.F 两点.连结BE.DF.(1)求证:△DOE≌△BOF;(2)当∠DOE等于多少度时.四边形BFDE为菱形?请说明理由.【分析】(1)利用平行四边形的性质以及全等三角形的判定方法得出△DOE≌△BOF(ASA);(2)首先利用一组对边平行且相等的四边形是平行四边形得出四边形EBFD是平行四边形.进而利用垂直平分线的性质得出BE=ED.即可得出答案.【解答】(1)证明:∵在▱ABCD中.O为对角线BD的中点.∴BO=DO.∠EDB=∠FBO.在△EOD和△FOB中.∴△DOE≌△BOF(ASA);(2)解:当∠DOE=90°时.四边形BFDE为菱形.理由:∵△DOE≌△BOF.∴OE=OF.又∵OB=OD∴四边形EBFD是平行四边形.∵∠EOD=90°.∴EF⊥BD.∴四边形BFDE为菱形.【点评】此题主要考查了平行四边形的性质以及全等三角形的判定与性质和菱形的判定等知识.得出BE=DE是解题关键.25.已知:如图.在正方形ABCD中.G是CD上一点.延长BC到E.使CE=CG.连接BG并延长交DE于F.(1)求证:△BCG≌△DCE;(2)将△DCE绕点D顺时针旋转90°得到△DAE′.判断四边形E′BGD是什么特殊四边形.并说明理由.(1)由正方形ABCD.得BC=CD.∠BCD=∠DCE=90°.又CG=CE.所以△BCG≌△DCE 【分析】(SAS).(2)由(1)得BG=DE.又由旋转的性质知AE′=CE=CG.所以BE′=DG.从而证得四边形E′BGD 为平行四边形.【解答】(1)证明:∵四边形ABCD是正方形.∴BC=CD.∠BCD=90°.∵∠BCD+∠DCE=180°.∴∠BCD=∠DCE=90°.又∵CG=CE.∴△BCG≌△DCE.(2)解:四边形E′BGD是平行四边形.理由如下:∵△DCE绕D顺时针旋转90°得到△DAE′.∴CE=AE′.∵CE=CG.∴CG=AE′.∵四边形ABCD是正方形.∴BE′∥DG.AB=CD.∴AB﹣AE′=CD﹣CG.即BE′=DG.∴四边形E′BGD是平行四边形.【点评】本题考查了正方形的性质、全等三角形的判定与性质及平行四边形的判定等知识的综合应用.以及考生观察、分析图形的能力.f;lf2-9;。
裕安中学2017-2018学年春学期月考一八年级数学学科试卷一、选择题(本题共10小题,每小题4分,满分40分)1、如果是二次根式,那么x应满足的条件是()A.x≠8 B.x<8 C.x≤8 D.x>0且x≠82、在下列方程中,一元二次方程的个数是()①3x2+7=0,②ax2+bx+c=0,③(x+2)(x﹣3)=x2﹣1,④x2﹣x+4=0,⑤x2﹣(+1)x+=0,⑥3x2﹣+6=0A.1个B.2个C.3个D.4个3、下列各式属于最简二次根式的是()A.B.C.D.4、用配方法解方程x2﹣5x=4,应把方程的两边同时()A.加上B.加上C.减去D.减去5、方程x2=x的解是()A.x=1 B.x=0 C.x1=1,x2=0 D.x1=﹣1,x2=06、小明的作业本上有以下四题:②;①;③;④.做错的题是()A.①B.②C.③D.④7、已知(m﹣1)x2+2mx+(m﹣1)=0有两个不相等的实数根,则m的取值范围是()A.m>B.m<且m≠1 C.m>且m≠1 D.<m<18、某县为发展教育事业,加强了对教育经费的投入,2017年投入3000万元,预计2019年投入5000万元.设教育经费的年平均增长率为x,根据题意,下面所列方程正确的是()A.3000(1+x)2=5000 B.3000x2=5000C.3000(1+x%)2=5000 D.3000(1+x)+3000(1+x)2=50009、已知xy>0,化简二次根式x的正确结果为()A.B.C.﹣D.﹣10、利用平方根去根号可以构造一个整系数方程.例如:x=+1时,移项得x﹣1=,两边平方得(x﹣1)2=()2,所以x2﹣2x+1=2,即x2﹣2x﹣1=0.仿照上述构造方法,当x=时,可以构造出一个整系数方程是()A.4x2+4x+5=0 B.4x2+4x﹣5=0 C.x2+x+1=0 D.x2+x﹣1=0二、填空题(本题共4小题,每小题5分,满分20分)11、方程(m+2)x|m|+3mx+1=0是关于x的一元二次方程,则m=12、已知,则a+b=13.若一元二次方程x2+kx+6=0的一个根是3,那么k=,另一个根是.14、已知等腰三角形的一边长为9,另一边长为方程x2﹣8x+15=0的根,则该等腰三角形的周长为.八年级数学学科月考一考试答题卷 时间:120分钟 满分:150分一、选择题(本题有10小题,每小题 4分,共40分)二、填空题(本题有4小题,每小题5分,共20分)11.______________________ 12._________________________ 13. k=_ ___, __________ 14._________________________ 三、解答题(本大题共9小题,共90分)15、计算:(1)818214+-(2)()()20-52-6-π6101⨯+-⎪⎪⎭⎫⎝⎛-16、解方程:(1)2x ²-5x+1=0(用配方法) (2)(x+4)²=2x+817、化简求值:(2x+1)(2x-1)-(x+1)(3x-2),其中x=12-.18、已知a ,b ,c 在数轴上如图所示,化简:.19、已知1x 、2x 是关于x 的一元二次方程x ²-(2k+1)x+k ²+1=0的两个不相等的实数根,且52221=+x x ,求k 的值.20、已知x=13-,y=13+,求下列代数式的值:(1)x ²-xy+y ²;(2)x ²-y ².21、阅读下列材料:)210321(3121⨯⨯-⨯⨯=⨯; )321432(3132⨯⨯-⨯⨯=⨯;)432543(3143⨯⨯-⨯⨯=⨯;由以上三个等式相加,可得.2054331433221=⨯⨯⨯=⨯+⨯+⨯ 读完以上材料,请你计算下列各题:(1)1×2 + 2×3 + 3×4 + …… + 10×11= ; (2)1×2 + 2×3 + 3×4 + …… + n(n+1)(写出过程);(3)1×2×3 + 2×3×4 + 3×4×5 + …… + 7×8×9(写出过程)。
河北省邢台市2021-2021学年八年级数学下学期第一次月考试题试卷总分值:120分答题时间:90分钟说明:本试卷分卷Ⅰ和卷Ⅱ两局部:卷Ⅰ为选择题,卷Ⅱ为非选择题。
卷Ⅰ〔选择题,共42分〕一、选择题〔本大题共16个小题,1~10题每题3分,11~16每题2分,共42分.在每题给出的四个选项中,只有一项为哪一项最符合题目要求的〕1、为了了解某中学初三800名学生的视力情况,从中随机抽取了 30名学生进行调查,在此次调查中,样本容量为( )名学生的视力名学生的视力2、以下调查方式适宜的是 ( )A.要了解一批灯泡的使用寿命,采用全面调查方式B.了解浙江电视台“中国好声音第四季〞栏目收视率,采用全面调查方式C.为保证“神十〞在2021年6月成功发射,之前要对飞船重要零部件进行检查,检查采用抽样调查的方式D.,要了解全国观众对“奔跑吧兄弟〞节目的喜爱程度 ,采用抽样调查方式3、在平面直角坐标系中,点的坐标为,点的坐标为,点到直线的距离为 ,且是直角三角形 ,那么满足条件的点有( ) 个.4、图是甲、乙两户居民家庭全年各项支出的统计图.图根据统计图,以下对两户教育支出占全年总支出的百分比作出的判断中,正确的选项是( )A. 甲户大B. 乙户大C. 两户一样D. 无法确定哪户大15、中学生骑电动车上学给交通平安带来隐患,为了解某中学2500个学生家长对“中学生骑电动车上学〞的态度,从中随机调查400个家长,结果有360个家长持反对态度。
那么以下说法正确的选项是()调查方式是普查该校只有360个家长持反对态度C.样本是360个家长D.该校约有90%的家长持反对态度6、某校七年级在“数学小论文〞评比活动中,共征集到论文30篇,并对其进行评比、整理、分组,并画出如下图的频数分布直方图,从左到右各小长方形的高度比为2:4:3:1,那么B组的频数为( )7、一个班有40名学生,在期末体育考核中,优秀的有18人,在扇形统计图中,代表体育优秀扇形的圆心角是()°°°°8、在直角坐标系中,将点(2,-3)关于原点的对称点向左平移2个单位长度得到的点的坐标是()A.(4,-3)B.(-4,3)C.(-4,-3)D.(0,3)9、如图,在的正方形网格中有四个格点A、B、C、D,以其中一点为原点,网格线所在直线为坐标轴,建立平面直角坐标系,使其余三个点中存在两个点关于一条坐标对称,那么原点是()A.A点点 C.C点 D.D点210、在平面直角坐系中,将点〔Ax,y〕向左平移个位度,再向上平移3个位度后与点 B(-3,2)重合,点A的坐是()A.(2,5)B.(-8,5)C.(-8,-1)D.(2,-1)11、将△ABC的三个点的横坐都加上-6,坐都减去5,所得形与原形的关系是()A.将原形向x的正方向平移了6个位,向y的正方向平移了5个位B.将原形向x的方向平移了6个位,向y的正方向平移了5个位C.将原形向x的方向平移了6个位,向y的方向平移了5个位D.将原形向x的正方向平移了6个位,向y的方向平移了5个位12、今年我市有4万名考生参加中考,了了解些考生的数学成,从中抽取2000名考生的数学成行分析,在个中,以下法:①4万名考生的数学中考成的全体是体;②每个考生是个体;③2000名考生是体的一个本;④本容量是2000其中法正确的有 ()个个个个13、在平面直角坐系中,孔明做走棋游,其走法是;棋子从原点起,第1步向右走1个位,第2步向右走2个位,第3步向上走1个位,第4步向右走1个位,第5步向右走2个位,⋯⋯依此推,第n步是:当n能被整除,向上走1个位;当n被3除,余数是1,向右走1个位,当n被3除,余数2 ,向右走2个位,当他走完第100步,棋子所位置的坐是()A.(100,34)B.(67,33)C.(100,33)D.(99,34)14、将50个数据分成 3 ,其中第一和第三的率之和0.7,第二小的数是〔〕15、假设点在上,点的坐()A.(2,-1)B.(2,0)C.(3,0)D.(-2,0)16、点坐,且点到两坐的距离相等,的坐是()A.(6,-6)B.(1,-1)C.(3,3)D.(6,-6)或(3,3)卷Ⅱ〔非,共78分〕二、填空(本大共3个小,17、18每小3分,19每空2分,共10分)317、在本的数分布直方中,有11个小方形,假设正中的小方形的面等于其它10个小方形面之和的,且本数据有160个,中一的数.18、如下,、、、、、⋯.点的坐.19、某校在“地球,化祖国〞的建活中,学生开展植造林活.了解全校学生的植情况,学校随机抽了100名学生的植情况,将数据整理如下表:100名同学平均每人植棵;假设校共有1000名学生,根据以上果估校学生的植数是棵.植数量(位:棵)456810人数2820251611〔第18〕〔第19〕三、解答〔共68分,20、21、22每各10分,23、24每各12分,2514分。
广东省深圳市龙岗区2017-2018学年八年级数学上学期第一次月考试题
八年级数学(上册)测试卷参考答案
第一章勾股定理
一、选择题
1. A
2. A
3. D
4. C
5. A
6. B
7. A
8. B
9. A 10. B 11. A 12.
D
二、填空题
13. 5或4 14. 144 15. 15 16. 49
三、解答题
17. (略);
18. 解:设旗杆的高度为x米,则有:(x+1)2=x2+52解得x=12.
答:旗杆的高度是12米.
19. 设在杯里部分长为x cm,则有x2=62+82,解得x=10,
所以露在外面最短的长度为12cm-10cm=2cm,故吸管露出杯口外的最短长度是2cm.
20. 设湖水的深度为x米,则红莲的长度为(x+1)米,
根据题意得:(x+1)2=x2+22;解得x=1.5.故湖水的深度是1.5米.
21. 设AE=x千米,则BE=(25-x)千米,由DE=CE,
得:DA2+AE2=BE2+CB2,即225+x2=(25-x)2+100
解得x=10,答:E站应建在离A点10km处.
22. 解:设A点下滑x米,由题意可求得AC=2米,所以EC=2-x米.
在直角三角形ECD中,EC2+CD2=DE2,
即(2-x)2+22=2.52,解得x=0.5.答(略)
23. 由32+42=25=52,得∠A为直角
由52+122=169=132,得∠DBC为直角
所以这个零件合要求,S=36.。
2017-2018华师大版八年级数学上册第一次月考试卷及答案XXX2017-2018学年度第一学期第一次学情调查八年级数学试卷(11-12章)命题人:XXX一、选择题(每题3分,共30分)1.下列说法中,正确的是【C】。
A。
(-6)2的平方根是-6B。
带根号的数都是无理数C。
27的立方根是±3D。
立方根等于-1的实数是-12.在实数-1/3,4,-0.518,π/3,0.6732,3-7,-2中,无理数的个数是【B】。
A。
1B。
2C。
3D。
43.下列运算正确的是【D】。
A。
a2·a3=a6B。
y3÷y3=yC。
3m+3n=6mnD。
(x3)2=x64.(-3x+1)(-2x)2等于【B】。
A。
-6x3-2x2B。
-12x3+4x2C。
6x3+2x2D。
6x3-2x25.计算(x-6)(x+1)的结果为【B】。
A。
x2+5x-6B。
x2-5x-6C。
x2-5x+6D。
x2+5x+66.已知(a-2)2+b-8=121,则a/b的平方根是【A】。
A。
±2B。
-2C。
±√2D。
27.(mx+8)(2-3x)展开后不含x的一次项,则m为【D】。
A。
3B。
-3C。
12D。
248.矩形ABCD中,阴影部分横向的是长方形,另一部分是平行四边形,依照图中标注的数据,图中空白部分的面积为【B】。
A。
bc-ab+ac+c2B。
ab-bc-ac+c2XXX-acD。
b2-bc+a2-ab9.如果x2+M+16=0,则M的值为【-16】。
二、填空题(每题3分,共30分)10.平面直角坐标系中,点(2.-3)关于y轴的对称点为(-2,-3)。
11.平面直角坐标系中,点(2.-3)关于x轴的对称点为(2,3)。
12.一元二次方程x2+4x-45=0的两个根分别为5和-9.13.若三角形ABC中,∠A=90°,AB=5,AC=12,则BC 的长为13.14.若P(3,4)是圆x2+y2=25上的一点,则点P的对称点P'关于x轴的坐标为(3,-4)。
初中数学试题2山东省莒县第三协作区2017-2018学年八年级数学上学期第一次月考试题一、选择题(1—8每题3分,9—12每题4分,共40分) 1.下列图标中,是轴对称图形的是( )A .(1)(4)B .(2)(4)C .(2)(3)D .(1)(2)2.△ABC ≌△A ′B ′C ′,其中∠A ′=50°,∠B ′=70°,则∠C 的度数为( ) A .55° B .60° C .70° D .75°3.某同学把一块三角形的玻璃打碎成了3块(如图2),现在要到玻璃店去配一块完全一样的玻璃,那么最省事方法是( )A .带①去B .带②去C .带③去D .①②③都带去 4.和点P(-3,2)关于y 轴对称的点是( )A .(3,2)B .(-3,2)C .(3,-2)D .(-3,-2)5.已知12∠=∠,AC AD =,增加下列条件:①AB AE =;②BC ED =;③C D ∠=∠; ④B E ∠=∠。
其中能使ABC AED ∆≅∆的条件有( ) A. 4个B. 3个C. 2个D. 1个(第3题)) (第7题) (第5题) 6.等腰三角形的一个角为50°,则这个等腰三角形的顶角可能为( ) A .50° B .65° C .80° D .50°或80°7.如图,已知∠ABC=∠BAD,添加下列条件还不能判定△ABC≌△BAD 的是( )A .AC =BDB .∠CAB =∠DBAC .∠C =∠D D .BC =AD8.如图,一艘海轮位于灯塔P 的南偏东70°方向的M 处,它以每小时40海里的速度3向正北方向航行,2小时后到达位于灯塔P 的北偏东40°方向的N 处,则N 处与灯塔P 的距离为( )A .40海里B .60海里C .70海里D .80海里(第8题) (第9题) (第11题) (第12题)9.在平面直角坐标系xOy 中,已知点A(2,-2),在y 轴上确定一点P ,使△AOP 为等腰三角形,则符合条件的点P 有( )A .1个B .2个C .3个D .4个10.如图,在Rt△ABC 中,∠C =90°,以顶点A 为圆心,适当长为半径画弧,分别交AC ,AB 于点M ,N ,再分别以点M ,N 为圆心,大于12MN 的长为半径画弧,两弧交于点P ,作射线AP 交边BC 于点D ,若CD =4,AB =15,则△ABD 的面积是( )A .15B .30C .45D .6011.如图,在△ABC 和△CDE 中,若∠ACB=∠CED=90°,AB =CD ,BC =DE ,则下列结论中不正确的是( )A .△ABC ≌△CDEB .CE =AC C .AB ⊥CD D .E 为BC 的中点12.如图,AD 是△ABC 的中线,E ,F 分别是AD 和AD 延长线上的点,且DE =DF ,连接BF ,CE .下列说法:①CE =BF ;②△ABD 和△ACD 的面积相等;③BF ∥CE ;④△BDF ≌△CDE .其中正确的有( )A .1个B .2个C .3个D .4个 二、填空题(每题4分,共16分)13.已知点A(a ,-2)和B(3,2),当满足条件________时,点A 和点B 关于x 轴对称. 14.如图,已知方格纸中是4个相同的正方形,则∠1+∠2+∠3=____度.(第14题)(第16题)15、一个汽车车牌在水中的倒影为,则该车的牌照号码是________.16、如图:△ABC中,DE是AC的垂直平分线,AE=3cm,△ABD的周长为13cm,则△ABC的周长为________.三、解答题(共64分)17.(8)如图,已知A(0,4),B(-2,2),C(3,0).(1)作△ABC关于x轴对称的△A1B1C1;(2)写出点A1,B1,C1的坐标;(3)△A1B1C1的面积S△A1B1C1=________.(第17题)18(10).如图,点B,F,C,E在直线l上(点F,点C之间不能直接测量),点A,D 在l异侧,测得AB=DE,AC=DF,BF=EC.(1)求证:△ABC≌△DEF;(2)指出图中所有平行的线段,并说明理由.419.(10)如图,已知在△ABC中,D为BC上的一点,DA平分∠EDC,且∠E=∠B,DE =DC,求证:AB=AC.20.(10)如图,在△ABC中,AB=AC,∠A=36°,AC的垂直平分线交AB于E,D为垂足,连接EC.(1)求∠ECD的度数;(2)若CE=5,求BC的长.(第20题)521.(12)已知△ABN和△ACM位置如图所示,AB=AC,AD=AE,∠1=∠2.(1)求证:BD=CE;(2)求证:∠M=∠N.22.(14分)如图,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE=90°.(1)当点D在AC上时,如图①,线段BD,CE有怎样的数量关系和位置关系?请证明你的猜想;(2)将图①中的△ADE绕点A顺时针旋转α(0°<α<90°),如图②,线段BD,CE有怎样的数量关系和位置关系?请说明理由.67八年级数学月考答案一、选择题1.D 2.B 3.C 4.A5.B 6.D 7.A 8.D 9.D 10.B 1 1.D 12.D 二、填空 13.a =3 14.135 15.w5236499 16.19cm 三、17.解:(1)如图.(第17题)(2)A 1(0,-4),B 1(-2,-2),C 1(3,0).(3)718.(1)证明:∵BF=CE ,∴BF +FC =FC +CE ,即BC =EF ,在△ABC 和△DEF 中,⎩⎪⎨⎪⎧AB =DE ,AC =DF ,BC =EF ,∴△ABC ≌△DEF(SSS ) (2)结论:AB∥DE,AC ∥DF.理由:∵△ABC≌△DEF,∴∠ABC =∠DEF,∠ACB =∠DFE,∴AB ∥DE ,AC ∥DF19a.证明:∵DA 平分∠EDC ,∴∠ADE =∠ADC.又∵DE =DC ,AD =AD ,∴△AED≌△ACD(SAS ).∴∠E=∠C.又∵∠E=∠B,∴∠B=∠C.∴AB=AC.20.解:(1)∵DE 垂直平分AC , ∴AE=CE ,∴∠ECD=∠A=36°. (2)∵AB=AC ,∠A=36°, ∴∠ABC=∠ACB=72°. ∵∠BEC=∠A+∠ACE=72°, ∴∠B=∠BEC,∴BC=CE =5.21.(1)证明:在△ABD 和△ACE 中,⎩⎪⎨⎪⎧AB =AC ,∠1=∠2,AD =AE ,∴△ABD ≌△ACE(SAS ),∴BD =CE (2)证明:∵∠1=∠2,∴∠1+∠DAE=∠2+∠DAE,即∠BAN=∠CAM,由(1)得:△ABD≌△ACE,8∴∠B =∠C,在△ACM 和△ABN 中,⎩⎪⎨⎪⎧∠C=∠B,AC =AB ,∠CAM =∠BA N ,∴△ACM ≌△ABN(ASA ),∴∠M =∠N 22.解:(1)BD =CE ,BD ⊥CE.证明:延长BD 交CE 于点M ,易证△ABD ≌△ACE(SAS ),∴BD =CE ,∠ABD =∠ACE ,∵∠BME =∠MBC +∠BCM =∠MBC +∠ACE +∠ACB =∠MBC +∠ABD +∠ACB =∠ABC +∠ACB =90°,∴BD ⊥CE (2)仍有BD =CE ,BD ⊥CE ,理由同(1)研读课标著名特级教师于永正先生有一个习惯,总是把课程标准中各学段的教学目标复印下来,贴在备课本的首页上,作为“教学指南”。
54 八年级数学试卷2017-2018 学年第(一)学期月考试卷 课程名称:八年级数学 考试时间: 100 分钟 满分120分卷首语:同学们,新学期开始一个月了,在这一个月的时间里,你一定学了不少新的知识,给你一个展示的舞台,秀出你自己! 一、填空题。
(每小题3分,共30分) 1、9的平方根是___________. 2、已知一直角三角形的两边分别是3和4,则它的第三边长是______________. 3、在实数327,-π,0,16,31,0.1010010001.....(相邻两个1之间0的个数逐次增加1)中,无理数有___________个. 4、如图,直角三角形的斜边长为5cm ,一条直角边长为4cm , 则阴影正方形的面积为____________. 5、数轴上有两点A ,B 。
点A 表示的实数是1,且AB 两点相距2个单位,则点B 表示的实数是_______________. 6、若△ABC 的三边分别为a ,b,c,且a,b,c 满足0)5(432=-+-+-c b a ,则△ABC 的形状是____________________. 7、计算:=-21218___________. 8、对于两个不相等的实数a,b,定义一种新运算如下:a ※b=b a b a -+(a+b >0), 如3※2=2323-+=5,那么6※(5※4)=_____________________. 9、已知一个三角形的三边长分别为5cm ,12cm ,13cm,则这个三角形最长边上的高是_____. 10、如图,三个正方形A 、B 、C 如图放置,且正方 形A 、B 的面积分别为2cm ³和3cm ³,则正方形C 的面积是________________.二、选择题。
(每题3分,共24分)1、下列四组线段中,能组成直角三角形的是( )A.a=1,b=2,c=3B.a=2,b=3,c=4C.a=3,b=4,c=5D.a=2,b=4,c=52、下列说法正确的是( )A.4=±2B.-a ²一定没有平方根。
2017-2018学年成都三十七中八年级(上)10月月考数学试卷(考试时间:120分钟满分:150分)A卷(共100分)一、选择题(每小题3分,满分30分)1.一个三角形的三边的长分别是3,4,5,则这个三角形最长边上的高是()A.4 B.C.D.2.下列各组数中不能作为直角三角形的三边长的是()A.1.5,2,2.5 B.7,23,24 C.6,8,10 D.9,12,153.有下列说法:①带根号的数是无理数;②不带根号的数一定是有理数;③负数没有立方根;④﹣是17的平方根,其中正确的有()A.0个B.1个C.2个D.3个4.如图字母B所代表的正方形的面积是()A.12 B.13 C.144 D.1945.下列各数:3.141592,﹣,0.16,,﹣π,2.010010001…(相邻两个1之间0的个数逐次加1),,,0.2,,是无理数的有()个.A.2 B.3 C.4 D.56.为确保信息安全,信息需加密传输,发送方由明文→密文(加密),接收方由密文→明文(解密),已知加密规则为:明文a,b,c,d对应密文a+2b,2b+c,2c+3d,4d.例如,明文1,2,3,4对应密文5,7,18,16.当接收方收到密文14,9,23,28时,则解密得到的明文为()A.7,6,1,4 B.6,4,1,7 C.4,6,1,7 D.1,6,4,77.实数a、b在数轴上的位置如图所示,且|a|>|b|,则化简的结果为()A.2a+b B.﹣2a+b C.b D.2a﹣b8.已知x2m﹣1+3y4﹣2n=﹣7是关于x,y的二元一次方程,则m,n的值分别为()A.2,1 B.1,﹣C.1,D.1,9.一个两位数的十位数字与个位数字之和是7,如果把这个两位数加上45,那么恰好成为把个位数字和十位数字对调后组成的数,那么这个两位数是()A.16 B.25 C.52 D.6110.在﹣与之间的整数是()A.﹣2,﹣1,0,1,2,3 B.﹣2,﹣1,0,1,2C.﹣2,﹣1,0,1,2,3 D.﹣1,0,1,2二、填空题(每小题4分,满分16分)11.的相反数是,绝对值是,倒数是.12.的算术平方根是;立方根等于本身的数是.13.已知是方程2x﹣ay=3的一个解,那么a的值是.14.比较大小:(填“>”或“<”).三、解答题(共6小题,满分36分)15.(6分)(1)﹣+(2)(﹣1)2006﹣(﹣)0+()﹣116.(6分)(1)(2)17.(6分)已知M=是a+8的算术平方根,N=是b﹣3的立方根,求M+N的平方根.18.(6分)将一摞笔记本分给若干个同学,每个同学5本,则剩下8本;每个同学8本,又差了7本,共有多少笔记本,多少同学?19.(6分)如图,公路MN和公路PQ在点P处交汇,公路PQ上点A处有学校,点A到公路MN的距离为80m,现有一拖拉机在公路MN上以18km/h的速度沿PN方向行驶,拖拉机行驶时周围100m以内都会受到噪音声的影响,试问该校受影响的时间为多少秒?20.(6分)在解方程组时,由于粗心,甲看错了方程组中的a,解得,乙看错了方程组中的b,解得.(1)甲把a看成了什么,乙把b看成了什么?(2)求出原方程组的正确解.B卷(50分)一、填空题(每小题4分,满分20分)21.已知:若≈1.91,≈6.042,则≈,±≈.22.使方程组有正整数解的自然数m=.23.若一个正数的平方根是2a﹣1和﹣a+2,则这个正数是.24.已知:若的整数部分为a,小数部分为b,则2a﹣(b+3)2=.25.甲乙两人骑自行车在一个环形跑道内进行拉力测试,两车从同一地点同时出发,乙迅速超过甲,在第6分钟时甲提速,在第8分钟时,甲,追上乙并且开始超过乙,在第15分钟时,甲再次追上乙.已知两人均是匀速,那么如果甲车不提速,乙首次超过甲会在第分钟.二、解答题(共30分)26.(8分)学校校内有一块如图所示的三角形空地ABC,计划将这块空地建成一个花园,以美化校园环境,预计花园每平方米造价为30元,学校修建这个花园需要投资多少元?27.(10分)列方程组解应用题:某玩具工厂广告称:“本厂工人工作时间:每天工作8小时,每月工作25天;待遇:熟练工人按计件付工资,多劳多得,计件工资不少于800元,每月另加福利工资100元,按月结算;…”该厂只生产两种玩具:小狗和小汽车.熟练工人晓云一月份领工资900多元,她记录了如表的一些数据:小狗件数(单位:个)小汽车个数(单位:个)总时间(单位:分)总工资(单位:元)1 1 35 2.152 2 70 4.303 2 85 5.05(1)求制作一只小狗和一辆小汽车的时间分别是多少?(2)一月份做小狗和小汽车的数目没有限制,从二月份开始,厂方从销售方面考虑逐月调整为:k月份每个工人每月生产的小狗的个数不少于生产的小汽车的个数的k倍(k=2,3,4,…,12),假设晓云的工作效率不变,且服从工厂的安排,请运用所学数学知识说明厂家广告是否有欺诈行为?28.(12分)观察下列各式及其验证过程:,验证:.,验证:.(1)按照上述两个等式及其验证过程,猜想的变形结果并进行验证.(2)针对上述各式反映的规律,写出用a(a为任意自然数,且a≥2)表示的等式,并给出验证.(3)针对三次根式及n次根式(n为任意自然数,且n≥2),有无上述类似的变形?如果有,写出用a(a 为任意自然数,且a≥2)表示的等式,并给出验证.参考答案与试题解析1.【解答】解:∵一个三角形的三边的长分别是3,4,5,又∵32+42=52,∴该三角形为直角三角形.设这个三角形最长边上的高为h,根据3×4=5h,∴这个三角形最长边上的高为:h=.故选:D.2.【解答】解:A、能,因为1.52+22=2.52;B、不能,因为不符合勾股定理的逆定理;C、能,因为62+82=102;D、能,因为92+122=152.故选:B.3.【解答】解:①带根号的数是无理数,错误,例如=2;②不带根号的数一定是有理数,错误,例如π是无理数;③负数没有立方根,错误,例如﹣1的立方根是﹣1;④﹣是17的平方根,正确,正确的只有一个.故选:B.4.【解答】解:由题可知,在直角三角形中,斜边的平方=169,一直角边的平方=25,根据勾股定理知,另一直角边平方=169﹣25=144,即字母B所代表的正方形的面积是144.故选:C.5.【解答】解:﹣,﹣π,2.010010001…(相邻两个1之间0的个数逐次加1),,是无理数,一共5个.故选:D.6.【解答】解:依题意,得,解得.∴明文为:6,4,1,7.故选:B.7.【解答】解:根据数轴可知,a<0,b>0,则a+b<0,原式=﹣a﹣[﹣(a+b)]=﹣a+a+b=b.故选:C.8.【解答】解:根据题意,得2m﹣1=1,解得m=1;4﹣2n=1,解得n=,故选:D.9.【解答】解:设个位数字为a,十位数字为b,则这个两位数是(10b+a),由题意,得,解得.所以这个两位数是:10×1+6=16.故选:A.10.【解答】解:∵1<<2,∴﹣2<﹣<﹣1,∵2<<3,∴在﹣与之间的整数有﹣1,0,1,2.故选:D.11.【解答】解:的相反数是,绝对值是,倒数是﹣.故本题的答案是,,﹣.12.【解答】解:的算术平方根是,立方根等于本身的数是0,1,﹣1.故答案为:;0,1,﹣1.13.【解答】解:∵是方程2x﹣ay=3的一个解,代入得:2+a=3,∴a=1.故答案为:1.14.【解答】解:∵2<<3,∴1<﹣1<2,∴3>﹣1,∴>,故答案为:>.15.【解答】解:(1)﹣+=3﹣+2=;(2)(﹣1)2006﹣(﹣)0+()﹣1=1﹣1+2=2.16.【解答】解:(1)①+②×2得:7y=﹣2,解得:y=﹣.把y=﹣代入②中,解得:x=﹣.所以这个方程组的解是;(2)整理得:①+②×3得:﹣11y=12,解得y=﹣,把y=﹣代入②中,解得:x=.所以这个方程组的解是.17.【解答】解:∵M=是a+8的算术平方根,N=是b﹣3的立方根,∴,解得:,∴M===3,N===0,∴M+N=3+0=3,则其平方根为:±.18.【解答】解:设共有x个同学,有y个笔记本,由题意,得,解得:.答:共有5个同学,有33个笔记本.19.【解答】解:设拖拉机开到C处刚好开始受到影响,行驶到D处时结束了噪声的影响.则有CA=DA=100m,在Rt△ABC中,,∴CD=2CB=120m,∵18km/h=18000m/3600s=5m/s,∴该校受影响的时间为:120÷5=24(s).答:该校受影响拖拉机产生的噪声的影响时间为24秒.20.【解答】解:(1)将代入原方程组得,解得:,将代入原方程组得,解得,∴甲把a看成,乙把b看成了.(2)由(1)可知原方程组中a=﹣1,b=10.故原方程组为,解得:.21.【解答】解:若≈1.910,≈6.042,则≈604.2,±≈±0.0191.故答案为:604.2,±0.0191.22.【解答】解:由x﹣3y=0得x=3y,将x=3y代入3x+my=18,得:9y+my=18,则y=,∵m为自然数,x、y为正整数,∴m=0或9,故答案为:0或9.23.【解答】解:由题意得:2a﹣1﹣a+2=0,解得:a=﹣1,2a﹣1=﹣3,﹣a+2=3,∵9的算术平方根为±3,∴这个正数为9,故答案为:9.24.【解答】解:∵3<<4,∴a=3,b=﹣3,∴2a﹣(b+3)2=2×3﹣(﹣3+3)2=﹣4,故答案为:﹣4.25.【解答】解:设甲车提速前乙车比甲车快x米/分钟,则提速后甲车比乙车快3x米/分钟,∴环形跑道的长度为(15﹣8)•3x=21x米,∴如果甲车不提速,乙首次超过甲的时间为=21分钟.故答案为:21.26.【解答】解:过点A作AD⊥BC于点D,设BD=x,则CD=14﹣x,在Rt△ABD与Rt△ACD中,∵AD2=AB2﹣BD2,AD2=AC2﹣CD2,∴AB2﹣BD2=AC2﹣CD2,即132﹣x2=152﹣(14﹣x)2,解得x=5,∴AD2=AB2﹣BD2=132﹣52=144,∴AD=12(米),∴学校修建这个花园的费用=30××14×12=2520(元).答:学校修建这个花园需要投资2520元.27.【解答】解:(1)设生产每只小狗所需时间为m分钟,生产每个小汽车所需时间为n分钟,由题意可知:,解得:.答:制作1只小狗所需时间为15分钟,制作1辆小汽车所需时间为20分钟;(2)设生产每个小狗计件工资为a元,生产每个小汽车计件工资为b元,由题意可知:,解得,设生产小狗x只,生产小汽车y辆,∴x≥ky;∵15x+20y=25×8×60,∴x=800﹣y,0.75(800﹣y)+1.4y≥800,∴y≤或y≥500,∴当k=2,3,4,5,6,7,8,9,10,11,12时广告有欺诈行为.28.【解答】解:(1)=4,理由是:===4;(2)由(1)中的规律可知3=22﹣1,8=32﹣1,15=42﹣1,∴=a,验证:==a;正确;(3)=a(a为任意自然数,且a≥2),验证:===a.。
内蒙古翁牛特旗乌丹镇2017-2018学年八年级数学12月月考试题
一、选择题 (共12小题,每小题4分,共48分) 1.下列图形不具有稳定性的是( ) A .正方形
B .等腰三角形
C .直角三角形
D .钝角三角形 2.下列大学的校徽图案是轴对称图形的是( )
A .
B .
C .
D .
3.如图,以正方形ABCD 的中心为原点建立平面直角坐标系,点A 的坐标为(2,2),则点D 的坐标为( )
A .(2,2)
B .(﹣2,2)
C .(﹣2,﹣2)
D .(2,﹣2)
4、如图,△ABC 中,AB=AC ,D 是BC 中点,下列结论中不正确的是( ) A 、∠B=∠C B 、AD⊥BC C 、AD 平分∠BAC D 、AB =2BD
5、若长方形的长为2(421)a a -+,宽为(21)a +,则这个长方形的面积为( )
A .32
8421a a a -+- B .3
81a -
C .32
8421a a a +--
D .3
81a +
6.如图,五边形ABCDE 中,AB ∥CD ,则图中x 的值是( )
A .75°
B .65°
C .60°
D .55°
7、下列命题中,正确的是( ) A 、三角形的一个外角大于任何一个内角
B、三角形的一条中线将三角形分成两个面积相等的三角形
C、两边和其中一边的对角分别相等的两个三角形全等
D、三角形的三条高都在三角形内部
8、如图,已知△ABC为直角三角形,∠C=90°,若沿图中虚线剪去∠C,则∠1+∠2=()
A、90°
B、135°
C、270°
D、315°
9.等腰三角形两条边的长分别为5,2,则该等腰三角形的周长为()
A.9 B.10 C.12 D.9或12
10、等腰三角形的一个角是70°,则它的底角是()
A、70°
B、70°或55°
C、80°和100°
D、110°
11.如图,在∠AOB的两边上,分别取OM=ON,再分别过点M、N作OA、OB的垂线,交点为P,画射线OP,则OP平分∠AOB的依据是()
A.SSS B.SAS C.AAS D.HL
12、如图,已知点B、C、D在同一条直线上,△ABC和△CDE都是等边三角形.BE交AC于F,AD交CE于G.则下列结论中错误的是()
A、AD=BE
B、BE⊥AC
C、△CFG为等边三角形
D、FG∥BC
二、填空题(共6个小题,每小题4分,共24分)
13、一个多边形的每一个外角都是36°,则这个多边形的边数是________.
14.若点A(3,﹣2)与点B关于y轴对称,则点B的坐标为.
a ,则这个圆形的面积为________.
15、若圆形的半径为(21)
16、如图,把一个长方形纸片沿EF折叠后,点D、C分别落在D′、C′的位置.若∠EFB=65°,
则∠AED′等于________°.
17.一个多边形切去一个角后,形成的另一个多边形的内角和为1080°,那么原多边形的边数为______________.
18.如图,AC =BC ,∠ACB =90°,AE 平分∠BAC,
BF ⊥AE ,交AC 的延长线于点F ,且垂足为E ,则下列结论:①AD =BF ;②BF=AF ;③AC+CD =AB ;④AB=BF ;⑤AD=2BE ,其中正确的是__________.(填序号)
三、解答题(9个小题,共78分) 19.(10分)化简
① (2)(21)a b a b -++ ② 224(2)(21)a a a -+--
20、(10分)如图,在平面直角坐标系xOy 中,A (1,2),B (3,1),C (﹣2,﹣1). (1)在图中作出△ABC 关于x 轴的对称图形△A 1B 1C 1 . (2)写出点A
1 , B 1 , C 1的坐标(直接写答案) A 1________ B 1________ C 1________ (3)求△ABC 的面积.
21.(10分)如图,AB 、CD 交于点O ,点O 是线段AB 和线段CD 的中点.
(1)求证:△AOD≌△B OC ;
(2)求证:AD∥BC.
22.(8分)已知:△ABC中, ∠A=1050 , ∠B-∠C=150 ,求∠B、∠C的度数.
23、(8分)已知:如图,点B,E,C,F在同一直线上,AB∥DE,且AB=DE,BE=CF.
求证:△CAB≌△DEF.
24.(10分) 已知将(x3+mx+n)(x2-3x+4)展开的结果不含x3和x2项.(m,n为常数)
(1)求m、n的值;
(2)在(1)的条件下,求(m+n)(m2-mn+n2)的值.
25.(10分)如图,在△ABC中,D是BC边上的一点,∠B=50°,∠BAD=30°,将△ABD 沿AD折叠得到△AED,AE与BC交于点F.
(1)求∠AFC的度数;
(2)求∠EDF的度数.
26、(12分)如图,△ABC的边BC在直线l上,AC⊥BC,且AC=BC,△EFP的边FP也在直线l上,边EF与边AC重合,且EF=FP.
(1)在图①中,请你通过观察、测量、猜想,直接写出AB与AP所满足的数量关系和位置关系;(2分)
(2)将△EFP沿直线l向左平移到图②的位置时,EP交AC于点Q,连接AP,BQ,猜想并写出BQ与AP所满足的数量关系和位置关系,请证明你的猜想;(5分)
(3)将△EFP沿直线l向左平移到图③的位置时,E P的延长线交AC的延长线于点Q,连接AP,BQ,你认为(2)中所猜想的BQ与AP的数量关系与位置关系还成立吗?若成立,给出证明;若不成立,请说明理由.(5分)。