计算机控制系统离散化设计(经典设计方法)
- 格式:ppt
- 大小:8.71 MB
- 文档页数:59
第五章数字控制器的离散化设计⽅法第五章数字控制器的离散化设计⽅法数字控制器的连续化设计是按照连续控制系统的理论在S 域内设计模拟调节器,然后再⽤计算机进⾏数字模拟,通过软件编程实现的。
这种⽅法要求采样周期⾜够⼩才能得到满意的设计结果,因此只能实现⽐较简单的控制算法。
当控制回路⽐较多或者控制规律⽐较复杂时,系统的采样周期不可能太⼩,数字控制器的连续化设计⽅法往往得不到满意的控制效果。
这时要考虑信号采样的影响,从被控对象的实际特性出发,直接根据采样控制理论进⾏分析和综合,在Z 平⾯设计数字控制器,最后通过软件编程实现,这种⽅法称为数字控制器的离散化设计⽅法,也称为数字控制器的直接设计法。
数字控制器的离散化设计完全根据采样系统的特点进⾏分析和设计,不论采样周期的⼤⼩,这种⽅法都适合,因此它更具有⼀般的意义,⽽且它可以实现⽐较复杂的控制规律。
5.1 数字控制器的离散化设计步骤数字控制器的连续化设计是把计算机控制系统近似看作连续系统,所⽤的数学⼯具是微分⽅程和拉⽒变换;⽽离散化设计是把计算机控制系统近似看作离散系统,所⽤的数学⼯具是差分⽅程和Z 变换,完全采⽤离散控制系统理论进⾏分析,直接设计数字控制器。
计算机采样控制系统基本结构如图5.1所⽰。
图中G 0(s)是被控对象的传递函数,H(s)是零阶保持器的传递函数,G(z)是⼴义被控对象的脉冲传递函数,D(z)是数字控制器的脉冲传递函数, R(z)是系统的给定输⼊,C(z)是闭环系统的输出,φ(z)是闭环系统的脉冲传递函数。
零阶保持器的传递函数为:se s H Ts--=1)( (5-1)⼴义被控对象的脉冲传递函数为:[])()()(0s G s H Z z G = (5-2)由图可以求出开环系统的脉冲传递函数为:图5.1 计算机采样控制系统基本结构图)()()()()(z G z D z E z C z W == (5-3)闭环系统的脉冲传递函数为:()()()()()1()()C zD z G z z R z D z G z Φ==+ (5-4)误差的脉冲传递函数为:()1()()1()()e E z z R z D z G z Φ==+ (5-5)显然 )(1)(z z e Φ-=Φ(5-6)由式(5-4)可以求出数字控制器的脉冲传递函数为:)](1)[()()(z z G z z D Φ-Φ= (5-7)如果已知被控对象的传递函数G 0(s),并且可以根据控制系统的性能指标确定闭环系统的脉冲传递函数φ(z),由上式可以得到离散化⽅法设计数字控制器的步骤:(1)根据式(5-2)求出⼴义被控对象的脉冲传递函数G(z)。
计算机控制06离散化设计与连续化设计方法离散化设计方法是指将连续系统离散化为离散系统的设计方法。
在离散化设计中,连续系统的时间和状态被离散化成一系列离散时间和状态。
离散化设计的基本原理是将连续时间转换为离散时间,将连续状态转换为离散状态。
离散化设计的方法主要包括离散化采样和离散化控制。
离散化采样是指将连续时间变量转换为离散时间变量的方法。
常见的采样方式有周期采样和非周期采样。
周期采样是指以固定时间间隔对连续时间进行采样,而非周期采样是指根据需要对连续时间进行不规则的采样。
离散化采样的目的是为了得到连续系统在离散时间点上的状态。
离散化控制是指将连续控制转换为离散控制的方法。
离散化控制的关键是将连续时间域的控制器转换为离散时间域的控制器,以实现对离散系统的控制。
离散化控制的常用方法包括脉冲响应、零阶保持和减少模型等。
离散化设计方法在很多领域都有应用。
在工业领域,离散化设计可以应用于过程控制系统、机器人控制系统和自动化生产线等。
在交通系统中,离散化设计可以应用于交通信号控制系统和车辆路线规划等。
在电力系统中,离散化设计可以应用于电力系统调度和电网控制等。
离散化设计方法可以提高系统的控制性能和稳定性,并且可以减少系统的复杂度和计算量。
连续化设计方法是指将离散系统连续化的设计方法。
在连续化设计中,离散系统的时间和状态被连续化为连续时间和状态。
连续化设计的基本原理是将离散时间转换为连续时间,将离散状态转换为连续状态。
连续化设计的方法主要包括插值方法和逼近方法。
插值方法是指根据已有离散数据点的值,通过插值技术推导出在两个离散数据点之间的连续数据点的值。
插值方法的常见技术有线性插值、多项式插值和样条插值等。
插值方法的目的是为了得到在离散系统状态之间的连续状态。
逼近方法是指通过逼近离散时间的函数来表示离散状态之间的连续状态。
逼近方法的常见技术有函数逼近、泰勒展开和傅里叶级数展开等。
逼近方法的目的是为了得到在离散系统状态之间的连续时间。
前言《计算机控制系统》系统地论述了计算机控制系统的结构、原理、设计和应用,既有理论分析也有应用实例,论述了直接数字控制系统(DDC)、集散控制系统(DCS)、现场总线控制系统(FCS)和可编程控制器系统(PLS或PLC)4类典型的计算机控制系统。
直接数字控制系统(DDC)是计算机控制的基础,本书深入论述了DDC系统的形成、发展、体系结构、控制算法、硬件、软件、设计和应用,分析了DDC系统的输入、输出、控制和运算功能,并引入了功能块及组态的概念;集散控制系统(DCS)是计算机控制的主流系统,本书概述了DCS的产生、发展、特点和优点,论述了DCS的体系结构、控制站、操作员站、工程师站和应用设计,分析了DCS的分散控制和集中管理的设计思想,以及分而自治和综合协调的设计原则。
通过本课程设计,使学生能较好的使用离散化设计方法对被控对象进行校正分析;对计算机控制系统DDC设计过程中的方案设计有初步了解,通过该设计在一定程度上使学生对计算机控制系统所学知识进行整合,使其得到一次全面、系统、独立的培养。
目录第一章计算机控制系统的离散化设计 (1)1.1有限拍设计 (1)1.1.1有限拍设计的概述 (1)1.1.2 有限拍调节器 (2)1.1.3 采样频率的选择 (2)1.2 有限拍无纹波设计 (3)1.2.1 有限拍无波纹设计概述 (3)1.2.2有限拍无纹波设计实例 (3)本章小结 (5)第二章 DDC系统的设计和应用 (6)2.1.DDC系统的设计 (6)2.1.1 DDC系统的设计原则 (6)2.1.2 DDC系统的设计过程 (6)2.2.DDC系统的应用 (6)2.2.1.DDC系统的应用设计 (6)2.2.2.DDC系统的应用实例 (6)本章小结 (13)总结 (14)参考文献 (15)第一章 计算机控制系统的离散化设计计算机控制系统的设计,是指在给定系统性能指标的条件下,设计出数字调节器,使系统达到要求的性能指标。