2017-2018学年高中数学三维设计人教A版必修4讲义 2.3.3 平面向量的正交分解及坐标表示 平面向量的坐标运算
- 格式:doc
- 大小:586.50 KB
- 文档页数:10
复习课(一) 任意角的三角函数及三角恒等变换1.题型多以选择题、填空题为主,一般难度较小.主要考查三角函数的定义的应用,多与求三角函数值或角的大小有关.2.若角α的终边上任意一点P (x ,y )(原点除外),r =|OP |=x 2+y 2,则sin α=yr ,cos α=x r ,tan α=yx (x ≠0).[典例] 已知角α的终边过点P (-3cos θ,4cos θ),其中θ∈⎝⎛⎭⎫π2,π,则sin α=________,tan α=________.[解析] ∵θ∈⎝⎛⎭⎫π2,π,∴cos θ<0,∴r =x 2+y 2=9cos 2θ+16cos 2θ=-5cos θ,故sin α=y r =-45,tan α=y x =-43. [答案] -45 -43[类题通法]利用三角函数定义求函数值的方法当已知角的终边所经过的点或角的终边所在的直线时,一般先根据三角函数的定义求这个角的三角函数值,再求其他.但当角经过的点不固定时,需要进行分类讨论.求与正切函数有关问题时,不要忽略正切函数自身的定义域.[题组训练]1.已知角α的终边上一点的坐标为⎝⎛⎭⎫sin 5π6,cos 5π6,则角α的最小正值为( ) A.5π6 B.2π3 C.5π3D.11π6 解析:选C 由三角函数的定义知: tan α=cos 5π6sin 5π6=-cos π6sin π6=-3212=- 3.又sin5π6>0,cos 5π6<0. 所以α是第四象限角,因此α的最小正值为5π3.2.已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线y =2x 上,则cos 2θ=( )A .-45B .-35C.35D.45解析:选B 在角θ的终边上任取一点P (a,2a )(a ≠0). 则r 2=|OP |2=a 2+(2a )2=5a 2. 所以cos 2θ=a 25a 2=15,cos 2θ=2cos 2 θ-1=25-1=-35.3.若θ是第四象限角,则点P (sin θ,tan θ)在第________象限. 解析:因θ是第四象限角,则sin θ<0,tan θ<0, ∴点P (sin θ,tan θ )在第三象限. 答案:三1.题型既有选择题、填空题,又有解答题.主要考查三角函数式的化简与求值,利用公式进行恒等变形以及基本运算能力.2.(1)牢记两个基本关系式sin 2α+cos 2α=1及sin αcos α=tan α,并能应用两个关系式进行三角函数的求值、化简、证明.(2)诱导公式可概括为k ·π2±α(k ∈Z)的各三角函数值的化简公式.记忆规律是:奇变偶不变,符号看象限.其中的奇、偶是指π2的奇数倍或偶数倍,变与不变是指函数名称的变化.[典例] 已知2+tan (θ-π)1+tan (2π-θ)=-4,求(sin θ-3cos θ)·(cos θ-sin θ)的值.[解] 法一:由已知2+tan θ1-tan θ=-4,∴2+tan θ=-4(1-tan θ), 解得tan θ=2.∴(sin θ-3cos θ)(cos θ-sin θ ) =4sin θcos θ-sin 2θ-3cos 2θ =4sin θcos θ-sin 2θ-3cos 2θsin 2θ+cos 2θ =4tan θ-tan 2θ-3tan 2θ+1=8-4-34+1=15.法二:由已知2+tan θ1-tan θ=-4,解得tan θ=2. 即sin θcos θ=2,∴sin θ=2cos θ. ∴(sin θ-3cos θ)(cos θ-sin θ) =(2cos θ-3cos θ)(cos θ-2cos θ) =cos 2θ=cos 2θsin 2θ+cos 2θ=1tan 2θ+1=15. [类题通法]三角函数式的求值、化简、证明的常用技巧(1)化弦:当三角函数式中三角函数名称较多时,往往把三角函数化为弦,再化简变形. (2)化切:当三角函数式中含有正切及其他三角函数时,有时可将三角函数名称都化为正切,再变形化简.(3)“1”的代换:在三角函数式中,有些会含有常数1,常数1虽然非常简单,但有些三角函数式的化简却需要利用三角函数公式将“1”代换为三角函数式.[题组训练]1.若sin (π-α)=-53且α∈⎝⎛⎭⎫π,3π2,则sin ⎝⎛⎭⎫π2+α=( ) A .-23B .-66C.66 D.23解析:选A sin(π-α)=sin α=-53,又α∈⎝⎛⎭⎫π,3π2, 所以sin ⎝⎛⎭⎫π2+α=cos α=-1-sin 2α=-23. 2.如果tan θ=2,那么1+sin θcos θ= ( ) A.73 B.75 C.54D.53解析:选B 1+sin θcos θ=1+sin θcos θ1=sin 2θ+cos 2θ+sin θcos θsin 2θ+cos 2θ=tan 2θ+tan θ+1tan 2θ+1, 又tan θ=2,所以1+sin θcos θ=22+2+122+1=75.3.计算:sin4π3cos ⎝⎛⎭⎫-25π6=________. 解析:因为sin4π3=sin ⎝⎛⎭⎫π+π3=-sin π3=-32, cos ⎝⎛⎭⎫-25π6=cos 25π6=cos ⎝⎛⎭⎫4π+π6=cos π6=32, 所以sin4π3cos ⎝⎛⎭⎫-25π6=-32×32=-34. 答案:-344.已知sin(180°+α)=-1010,0°<α<90°, 求sin (-α)+sin (-90°-α)cos (540°-α)+cos (-270°-α)的值.解:由sin(180°+α)=-1010,0°<α<90°, 得sin α=1010,cos α=31010, ∴原式=-sin α-sin (90°+α)cos (360°+180°-α)+cos (270°+α)=-sin α-cos α-cos α+sin α=-1010-31010-31010+1010=2.1.题型既有选择题、填空题,又有解答题,主要考查给角求值、给值求值、给值求角、三角函数式的化简以及利用三角恒等变换研究函数的性质等.2.两角和与差的正弦、余弦、正切公式 (1)sin(α±β)=sin αcos β±cos αsin β; (2)cos(α±β)=cos αcos β∓sin αsin β; (3)tan(α±β)=tan α±tan β1∓tan αtan β.3.二倍角的正弦、余弦、正切公式 (1)sin 2α=2sin αcos α;(2)cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α; (3)tan 2α=2tan α1-tan 2α.[典例] (广东高考)已知tan α=2. (1)求tan ⎝⎛⎭⎫α+π4的值; (2)求sin 2αsin 2α+sin αcos α-cos 2α-1的值.[解] (1)tan ⎝⎛⎭⎫α+π4=tan α+tanπ41-tan αtanπ4 =2+11-2×1=-3.(2)sin 2αsin 2α+sin αcos α-cos 2α-1 =2sin αcos αsin 2α+sin αcos α-2cos 2α=2tan αtan 2α+tan α-2=2×24+2-2=1.[类题通法]解决条件求值应学会的三点(1)分析已知角和未知角之间的关系,正确地用已知角来表示未知角. (2)正确地运用有关公式将所求角的三角函数值用已知角的三角函数值来表示. (3)求解三角函数中给值求角的问题时,要根据已知求这个角的某种三角函数值,然后结合角的取值范围,求出角的大小.[题组训练]1.(重庆高考)若tan α=13,tan(α+β)=12,则tan β=( )A.17 B.16 C.57D.56解析:选A tan β=tan [(α+β)-α] =tan (α+β)-tan α1+tan (α+β)·tan α=12-131+12×13=17.2.计算:cos π12cos 5π12=________.解析:cos π12cos 5π12=cos π12sin π12=12sin π6=14.答案:14.3.已知0<α<π4,0<β<π4,且tan(α+β)=2tan α.4tan α2=1-tan 2α2,则α+β=________.解析:∵4tan α2=1-tan 2α2,∴tan α=2tanα21-tan 2α2=2tanα24tanα2=12, ∴tan(α+β)=2tan α=2×12=1.∵0<α<π4,0<β<π4,∴α+β∈⎝⎛⎭⎫0,π2,∴α+β=π4. 答案:π44.在△ABC 中,sin B =cos A ,若sin C -sin A cos B =34,且B 为钝角,求A ,B ,C .解:因为sin C -sin A cos B =sin[180°-(A +B )]-sin A cos B =sin(A +B )-sin A cos B =sin A cos B +cos A sin B -sin A cos B =cos A sin B ,所以cos A sin B =34.因sin B =cos A ,因此sin 2B =34.又B 为钝角,所以sin B =32,故B =120°. 由cos A =sin B =32,知A =30°. 从而C =180°-(A +B )=30°.综上所述,A =30°,B =120°,C =30°.1.若cos α=-32,且角α的终边经过点P (x,2),则P 点的横坐标x 是( ) A .23 B .±2 3 C .-2 2 D .-2 3解:选D r =x 2+22,由题意得x x 2+22=-32, ∴x =-2 3.故选D.2.若-2π<α<-3π2,则 1-cos (α-π)2的值是( )A .sin α2B .cos α2C .-sin α2D .-cos α2解析:选D1-cos (α-π)2=1-cos (π-α)2=1+cos α2=⎪⎪⎪⎪cos α2, ∵-2π<α<-3π2,∴-π<α2<-3π4,∴cos α2<0,∴⎪⎪⎪⎪cos α2=-cos α2. 3.若α∈⎝⎛⎭⎫0,π2,且sin 2(3π+α)+cos 2α=14,则tan α的值等于( ) A.22B.33C. 2D. 3解析:选D ∵sin 2(3π+α)+cos 2α=14,∴sin 2α+(1-2sin 2α)=14, 即cos 2α=14. 又α∈⎝⎛⎭⎫0,π2,∴cos α=12,则α=π3,∴tan α=tan π3=3,故选D.4.已知sin α-cos α=-52,则tan α+1tan α的值为( ) A .-5 B .-6 C .-7D .-8 解析:选D ∵sin α-cos α=-52, ∴1-2sin αcos α=54,∴sin αcos α=-18,∴tan α+1tan α=sin αcos α+cos αsin α=1sin αcos α=-8. 5.若3sin α+cos α=0,则1cos 2α+sin 2α的值为( )A.103B.53C.23D .-2解析:选A ∵3sin α+cos α=0,∴tan α=-13,∴1cos 2α+sin 2α=sin 2α+cos 2αcos 2α+2sin αcos α=tan 2α+11+2tan α=⎝⎛⎭⎫-132+11+2×⎝⎛⎭⎫-13=103,故选A. 6.已知sin(α-β)=35,cos(α+β)=-35,且α-β∈⎝⎛⎭⎫π2,π,α+β∈⎝⎛⎭⎫π2,π,则cos 2β的值为( )A .1B .-1 C.2425D .-45解析:选C 由题意知cos(α-β)=-45,sin(α+β)=45,所以cos 2β=cos[α+β-(α-β)]=cos(α+β)cos(α-β)+sin(α+β)sin(α-β)=⎝⎛⎭⎫-35×⎝⎛⎭⎫-45+45×35=2425. 7.在0°~720°中与2π5角终边相同的角为________.解析:因为25π=25π×⎝⎛⎭⎫180π°=72°, 所以终边与2π5角相同的角为θ=72°+k ·360°(k ∈Z),当k =0时,θ=72°; 当k =1时,θ=432°,所以在0°~720°中与2π5角终边相同的角为72°,432°.答案:72°,432°8.已知α为钝角,sin ⎝⎛⎭⎫π4+α=34,则sin ⎝⎛⎭⎫π4-α=_______________________. 解析:因为cos ⎣⎡⎦⎤π2-⎝⎛⎭⎫π4+α=sin ⎝⎛⎭⎫π4+α=34, 所以cos ⎝⎛⎭⎫π4-α=34. 因为α为钝角,即π2<α<π,所以-3π4<π4-α<-π4,所以sin ⎝⎛⎭⎫π4-α<0, 则sin ⎝⎛⎭⎫π4-α=-1-cos 2⎝⎛⎭⎫π4-α=-74. 答案:-749.已知θ为第二象限角,tan 2θ=-22,则 2cos 2 θ2-sin θ-tan5π42sin ⎝⎛⎭⎫θ+π4=________.解析:∵tan 2θ=2tan θ1-tan 2 θ=-22, ∴tan θ=-22或tan θ= 2. ∵π2+2k π<θ<π+2k π,k ∈Z , ∴tan θ<0,∴tan θ=-22, 2cos 2 θ2-sin θ-tan 5π42sin (θ+π4)=2cos 2θ2-sin θ-12sin ⎝⎛⎭⎫θ+π4=cos θ-sin θcos θ+sin θ=1-tan θ1+tan θ=1+221-22=3+2 2.答案:3+2 2 10.求值:cos 40°+sin 50°(1+3tan 10°)sin 70°1+sin 50°.解:cos 40°+sin 50°(1+3tan 10°)sin 70°1+sin 50°=cos 40°+sin 50°1+3sin 10°cos 10°cos 20°1+cos 40°=cos 40°+cos 40°·2sin (10°+30°)cos 10°2cos 220°=cos 40°+12cos 220°= 2. 11.已知cos α-sin α=3 25,且π<α<3π2,求sin 2α+2sin 2α1-tan α的值. 解:∵cos α-sin α=325, ∴1-2sin αcos α=1825, ∴2sin αcos α=725. 又∵α∈⎝⎛⎭⎫π,3π2, ∴sin α+cos α=-1+2sin αcos α=-425, ∴sin 2α+2sin 2α1-tan α=(2sin αcos α+2sin 2α)cos αcos α-sin α=2sin αcos α(cos α+sin α)cos α-sin α=725×-425325=-2875. 12.已知向量a =(3sin α,cos α),b =(2sin α,5sin α-4cos α),α∈⎝⎛⎭⎫3π2,2π,且a ⊥b . (1)求tan α的值;(2)求cos ⎝⎛⎭⎫α2+π3的值.解:(1)∵a ⊥b ,∴a ·b =0.而a =(3sin α,cos α),b =(2sin α,5sin α-4cos α),故a ·b =6sin 2α+5sin αcos α-4cos 2α=0,由于cos α≠0, ∴6tan 2α+5tan α-4=0,解得tan α=-43或tan α=12. ∵α∈⎝⎛⎭⎫3π2,2π,∴tan α<0, ∴tan α=-43.(2)∵α∈⎝⎛⎭⎫3π2,2π,∴α2∈⎝⎛⎭⎫3π4,π. 由tan α=-43,求得tan α2=-12或tan α2=2(舍去). ∴sin α2=55,cos α2=-255, ∴cos ⎝⎛⎭⎫α2+π3=cos α2cos π3-sin α2sin π3=-255×12-55×32=-25+1510.。
课时跟踪检测(三) 三角函数的定义与公式一层级一 学业水平达标1.若α=2π3,则α的终边与单位圆的交点P 的坐标是( ) A .⎝⎛⎭⎫12,32 B .⎝⎛⎭⎫-12,32 C .⎝⎛⎭⎫-32,12 D .⎝⎛⎭⎫12,-32解析:选B 设P (x ,y ),∵角α=2π3在第二象限, ∴x =-12,y =1-⎝⎛⎭⎫-122=32, ∴P ⎝⎛⎭⎫-12,32.2.若角α的终边上一点的坐标为(1,-1),则cos α为( ) A .1 B .-1 C .22D .-22解析:选C ∵角α的终边上一点的坐标为(1,-1),它与原点的距离r =12+(-1)2=2,∴cos α=x r =12=22.3.若三角形的两内角α,β满足sin αcos β<0,则此三角形必为( ) A .锐角三角形 B .钝角三角形 C .直角三角形D .以上三种情况都可能解析:选B ∵sin αcos β<0,α,β∈(0,π), ∴sin α>0,cos β<0,∴β为钝角. 4.代数式sin 120°cos 210°的值为( ) A .-34B .34C .-32D .14解析:选A 利用三角函数定义易得sin 120°=32, cos 210°=-32,∴sin 120°cos 210°=32×⎝⎛⎭⎫-32=-34,故选A.5.若角α的终边在直线y =-2x 上,则sin α等于( ) A .±15B .±55C .±255D .±12解析:选C 在α的终边上任取一点(-1,2),则r =1+4=5,所以sin α=y r =25=25 5.或者取P (1,-2),则r =1+4=5,所以sin α=y r =-25=-25 5. 6.tan ⎝⎛⎭⎫-17π3=________.解析:tan ⎝⎛⎭⎫-17π3=tan ⎝⎛⎭⎫-6π+π3=tan π3= 3. 答案: 37.已知角α的终边过点P (5,a ),且tan α=-125,则sin α+cos α=________. 解析:∵tan α=a 5=-125,∴a =-12.∴r =25+a 2=13. ∴sin α=-1213,cos α=513. ∴sin α+cos α=-713. 答案:-7138.若角α的终边落在直线x +y =0上,则sin α|cos α|+|sin α|cos α=________.解析:当α在第二象限时,sin α|cos α|+|sin α|cos α=-sin αcos α+sin αcos α=0;当α在第四象限时,sin α|cos α|+|sin α|cos α=sin αcos α-sin αcos α=0. 综上,sin α|cos α|+|sin α|cos α=0.答案:09.求下列三角函数值:(1)cos(-1 050°);(2)tan 19π3;(3)sin ⎝⎛⎭⎫-31π4. 解:(1)∵-1 050°=-3×360°+30°,∴cos(-1 050°)=cos(-3×360°+30°)=cos 30°=32. (2)∵19π3=3×2π+π3,∴tan 19π3=tan ⎝⎛⎭⎫3×2π+π3=tan π3= 3. (3)∵-31π4=-4×2π+π4, ∴sin ⎝⎛⎭⎫-31π4=sin ⎝⎛⎭⎫-4×2π+π4=sin π4=22. 10.已知点M 是圆x 2+y 2=1上的点,以射线OM 为终边的角α的正弦值为-22,求cos α和tan α的值.解:设点M 的坐标为(x 1,y 1). 由题意,可知sin α=-22,即y 1=-22. ∵点M 在圆x 2+y 2=1上,∴x 21+y 21=1, 即x 21+⎝⎛⎭⎫-222=1, 解得x 1=22或x 2=-22. ∴cos α=22或cos α=-22, ∴tan α=-1或tan α=1.层级二 应试能力达标1.已知角α的终边经过点(3a -9,a +2),且cos α≤0,sin α>0,则实数a 的取值范围是( )A .(-2,3]B .(-2,3)C .[-2,3)D .[-2,3]解析:选A 由cos α≤0,sin α>0可知,角α的终边落在第二象限内或y 轴的正半轴上,所以有⎩⎪⎨⎪⎧3a -9≤0,a +2>0,即-2<a ≤3.2.给出下列函数值:①sin(-1 000°);②cos ⎝⎛⎭⎫-π4;③tan 2,其中符号为负的个数为( )A .0B .1C .2D .3解析:选B ∵-1 000°=-3×360°+80°, ∴-1 000°是第一象限角,则sin(-1 000°)>0;∵-π4是第四象限角,∴cos ⎝⎛⎭⎫-π4>0; ∵2 rad =2×57°18′=114°36′是第二象限角,∴tan 2<0.故选B. 3.若tan x <0,且sin x -cos x <0,则角x 的终边在( ) A .第一象限 B .第二象限 C .第三象限D .第四象限解析:选D ∵tan x <0,∴角x 的终边在第二、四象限,又sin x -cos x <0,∴角x 的终边在第四象限.4.已知角α的终边经过点P (m ,-6),且cos α=-45,则m =( )A .8B .-8C .4D .-4解析:选B 由题意r =|OP |=m 2+(-6)2=m 2+36,故cos α=m m 2+36=-45,解得m =-8.5.已知角θ的顶点为坐标原点,始边为x 轴的正半轴,若P (4,y )是角θ终边上一点,且sin θ=-255,则y =________.解析:|OP |=42+y 2.根据任意角三角函数的定义得,y 42+y 2=- 255,解得y =±8.又∵sin θ=-255<0及P (4,y )是角θ终边上一点,可知θ为第四象限角,∴y =-8.答案:-86.tan 405°-sin 450°+cos 750°=________. 解析:原式=tan(360°+45°)-sin(360°+90°)+ cos(2×360°+30°)=tan 45°-sin 90°+cos 30° =1-1+32=32. 答案:327.判断下列各式的符号:(1)sin 340°cos 265°;(2)sin 4tan ⎝⎛⎭⎫-23π4.解:(1)∵340°是第四象限角,265°是第三象限角, ∴sin 340°<0,cos 265°<0, ∴sin 340°cos 265°>0.(2)∵π<4<3π2,∴4是第三象限角,∵-23π4=-6π+π4,∴-23π4是第一象限角.∴sin 4<0,tan ⎝⎛⎭⎫-23π4>0, ∴sin 4tan ⎝⎛⎭⎫-23π4<0.8.已知1|sin α|=-1sin α,且lg(cos α)有意义.(1)试判断角α所在的象限.(2)若角α的终边上一点是M ⎝⎛⎭⎫35,m ,且|OM |=1(O 为坐标原点),求m 的值及sin α的值.解:(1)由1|sin α|=-1sin α,所以sin α<0, 由lg(cos α)有意义,可知cos α>0, 所以α是第四象限角.(2)因为|OM |=1,所以⎝⎛⎭⎫352+m 2=1, 得m =±45.又α为第四象限角,故m <0, 从而m =-45,sin α=y r =m |OM |=-451=-45.。
2.3.4 平面向量共线的坐标表示预习课本P98~100,思考并完成以下问题如何利用向量的坐标运算表示两个向量共线?[新知初探]平面向量共线的坐标表示[点睛] (1)平面向量共线的坐标表示还可以写成x 1x 2=y 1y 2(x 2≠0,y 2≠0),即两个不平行于坐标轴的共线向量的对应坐标成比例;(2)当a ≠0,b =0时,a ∥b ,此时x 1y 2-x 2y 1=0也成立,即对任意向量a ,b 都有:x 1y 2-x 2y 1=0⇔a ∥b .[小试身手]1.判断下列命题是否正确.(正确的打“√”,错误的打“×”)(1)已知a =(x 1,y 1),b =(x 2,y 2),若a ∥b ,则必有x 1y 2=x 2y 1.( )(2)向量(2,3)与向量(-4,-6)反向.( )答案:(1)√ (2)√2.若向量a =(1,2),b =(2,3),则与a +b 共线的向量可以是( )A .(2,1)B .(-1,2)C .(6,10)D .(-6,10)答案:C3.已知a =(1,2),b =(x,4),若a ∥b ,则x 等于( )A .-12 B.12C .-2D .2 答案:D4.已知向量a =(-2,3),b ∥a ,向量b 的起点为A (1,2),终点B 在x 轴上,则点B 的坐标为________.答案:⎝⎛⎭⎫73,0[典例] (1)已知向量a =(1,2),b =(λ,1),若(a +2b )∥(2a -2b ),则λ的值等于( ) A.12 B.13C .1D .2 (2)已知A (2,1),B (0,4),C (1,3),D (5,-3).判断AB 与CD 是否共线?如果共线,它们的方向相同还是相反?[解析] (1)法一:a +2b =(1,2)+2(λ,1)=(1+2λ,4),2a -2b =2(1,2)-2(λ,1)=(2-2λ,2),由(a +2b )∥(2a -2b )可得2(1+2λ)-4(2-2λ)=0,解得λ=12. 法二:假设a ,b 不共线,则由(a +2b )∥(2a -2b )可得a +2b =μ(2a -2b ),从而⎩⎪⎨⎪⎧1=2μ,2=-2μ,方程组显然无解,即a +2b 与2a -2b 不共线,这与(a +2b )∥(2a -2b )矛盾,从而假设不成立,故应有a ,b 共线,所以1λ=21,即λ=12. [答案] A(2)[解] AB =(0,4)-(2,1)=(-2,3),CD =(5,-3)-(1,3)=(4,-6), ∵(-2)×(-6)-3×4=0,∴AB ,CD 共线. 又CD =-2AB ,∴AB ,CD 方向相反.综上,AB 与CD 共线且方向相反.已知a =(1,2),b =(-3,2),当k 为何值时,ka +b 与a -3b 平行,平行时它们的方向相同还是相反?解:ka +b =k (1,2)+(-3,2)=(k -3,2k +2), a -3b =(1,2)-3(-3,2)=(10,-4),若ka +b 与a -3b 平行,则-4(k -3)-10(2k +2)=0,解得k =-13,此时ka +b =-13a +b =-13(a -3b ),故ka +b 与a -3b 反向. ∴k =-13时,ka +b 与a -3b 平行且方向相反.[典例] (1)已知OA =(3,4),OB =(7,12),OC =(9,16),求证:A ,B ,C 三点共线;(2)设向量OA =(k,12),OB =(4,5),OC =(10,k ),当k 为何值时,A ,B ,C 三点 共线?[解] (1)证明:∵AB =OB -OA =(4,8),AC =OC -OA =(6,12), ∴AC =32AB ,即AB 与AC 共线. 又∵AB 与AC 有公共点A ,∴A ,B ,C 三点共线.(2)若A ,B ,C 三点共线,则AB ,AC 共线, ∵AB =OB -OA =(4-k ,-7),AC =OC -OA =(10-k ,k -12),∴(4-k )(k -12)+7(10-k )=0.解得k =-2或k =11.一般是看AB 与BC AB 与AC AC BC AC BC AB λBC ,或AB =λAC 设点A (x,1),B (2x,2),C (1,2x ),D (5,3x ),当x 为何值时,AB 与CD 共线且方向相同,此时,A ,B ,C ,D 能否在同一条直线上?解:AB =(2x,2)-(x,1)=(x,1),BC =(1,2x )-(2x,2)=(1-2x,2x -2),CD =(5,3x )-(1,2x )=(4,x ).由AB 与CD 共线,所以x 2=1×4,所以x =±2.又AB 与CD 方向相同,所以x =2.此时,AB =(2,1),BC =(-3,2),而2×2≠-3×1,所以AB 与BC 不共线,所以A ,B ,C 三点不在同一条直线上.所以A ,B ,C ,D 不在同一条直线上.题点一:两直线平行判断1. 如图所示,已知直角梯形ABCD,AD⊥AB,AB=2AD=2CD,过点C作CE⊥AB于E,用向量的方法证明:DE∥BC;证明:如图,以E为原点,AB所在直线为x轴,EC所在直线为y轴建立直角坐标系,设|AD|=1,则|DC|=1,|AB|=2.∵CE⊥AB,而AD=DC,∴四边形AECD为正方形,∴可求得各点坐标分别为E(0,0),B(1,0),C(0,1),D(-1,1).∵ED=(-1,1)-(0,0)=(-1,1),BC=(0,1)-(1,0)=(-1,1),∴ED=BC,∴ED∥BC,即DE∥BC.题点二:几何形状的判断2.已知直角坐标平面上四点A(1,0),B(4,3),C(2,4),D(0,2),求证:四边形ABCD是等腰梯形.证明:由已知得,AB=(4,3)-(1,0)=(3,3),CD=(0,2)-(2,4)=(-2,-2).∵3×(-2)-3×(-2)=0,∴AB与CD共线.AD=(-1,2),BC=(2,4)-(4,3)=(-2,1),∵(-1)×1-2×(-2)≠0,∴AD与BC不共线.∴四边形ABCD是梯形.∵BC=(-2,1),AD=(-1,2),∴|BC|=5=|AD|,即BC=AD.故四边形ABCD是等腰梯形.题点三:求交点坐标3. 如图所示,已知点A(4,0),B(4,4),C(2,6),求AC和OB交点P的坐标.解:法一:设OP=t OB=t(4,4)=(4t,4t),则AP=OP-OA=(4t,4t)-(4,0)=(4t-4,4t),AC=OC-OA=(2,6)-(4,0)=(-2,6).由AP ,AC 共线的条件知(4t -4)×6-4t ×(-2)=0,解得t =34.∴OP =(3,3). ∴P 点坐标为(3,3).法二:设P (x ,y ), 则OP =(x ,y ),OB =(4,4). ∵OP ,OB 共线,∴4x -4y =0.① 又CP =(x -2,y -6),CA =(2,-6), 且向量CP ,CA 共线,∴-6(x -2)+2(6-y )=0.②解①②组成的方程组,得x =3,y =3,∴点P 的坐标为(3,3).应用向量共线的坐标表示求解几何问题的步骤层级一 学业水平达标1.下列向量组中,能作为表示它们所在平面内所有向量的基底的是( )A .e 1=(0,0),e 2=(1,-2)B .e 1=(-1,2),e 2=(5,7)C .e 1=(3,5),e 2=(6,10)D .e 1=(2,-3),e 2=⎝⎛⎭⎫12,-34 解析:选B A 中向量e 1为零向量,∴e 1∥e 2;C 中e 1=12e 2,∴e 1∥e 2;D 中e 1=4e 2,∴e 1∥e 2,故选B.2.已知点A (1,1),B (4,2)和向量a =(2,λ),若a ∥AB ,则实数λ的值为( )A .-23B.32C.23 D .-32解析:选C 根据A ,B 两点的坐标,可得AB =(3,1),∵a ∥AB ,∴2×1-3λ=0,解得λ=23,故选C. 3.已知A (2,-1),B (3,1),则与AB 平行且方向相反的向量a 是( )A .(2,1)B .(-6,-3)C .(-1,2)D .(-4,-8)解析:选D AB =(1,2),向量(2,1)、(-6,-3)、(-1,2)与(1,2)不平行;(-4,-8)与(1,2)平行且方向相反.4.已知向量a =(x,2),b =(3,-1),若(a +b )∥(a -2b ),则实数x 的值为( )A .-3B .2C .4D .-6解析:选D 因为(a +b )∥(a -2b ),a +b =(x +3,1),a -2b =(x -6,4),所以4(x +3)-(x -6)=0,解得x =-6.5.设a =⎝⎛⎭⎫32,tan α,b =⎝⎛⎭⎫cos α,13,且a ∥b ,则锐角α为( ) A .30°B .60°C .45°D .75° 解析:选A ∵a ∥b ,∴32×13-tan α cos α=0, 即sin α=12,α=30°. 6.已知向量a =(3x -1,4)与b =(1,2)共线,则实数x 的值为________.解析:∵向量a =(3x -1,4)与b =(1,2)共线,∴2(3x -1)-4×1=0,解得x =1.答案:17.已知A (-1,4),B (x ,-2),若C (3,3)在直线AB 上,则x =________. 解析:AB =(x +1,-6),AC =(4,-1), ∵AB ∥AC ,∴-(x +1)+24=0,∴x =23.答案:238.已知向量a =(1,2),b =(-2,3),若λa +μb 与a +b 共线,则λ与μ的关系是________.解析:∵a =(1,2),b =(-2,3),∴a +b =(1,2)+(-2,3)=(-1,5),λa +μb =λ(1,2)+μ(-2,3)=(λ-2μ,2λ+3μ),又∵(λa +μb )∥(a +b ),∴-1×(2λ+3μ)-5(λ-2μ)=0,∴λ=μ.答案:λ=μ9.已知A ,B ,C 三点的坐标为(-1,0),(3,-1),(1,2),并且AE =13AC ,BF =13BC ,求证:EF ∥AB .证明:设E ,F 的坐标分别为(x 1,y 1)、(x 2,y 2), 依题意有AC =(2,2),BC =(-2,3),AB =(4,-1). ∵AE =13AC ,∴(x 1+1,y 1)=13(2,2). ∴点E 的坐标为⎝⎛⎭⎫-13,23. 同理点F 的坐标为⎝⎛⎭⎫73,0,EF =⎝⎛⎭⎫83,-23. 又83×(-1)-4×⎝⎛⎭⎫-23=0,∴EF ∥AB . 10.已知向量a =(2,1),b =(1,1),c =(5,2),m =λb +c (λ为常数).(1)求a +b ;(2)若a 与m 平行,求实数λ的值.解:(1)因为a =(2,1),b =(1,1),所以a +b =(2,1)+(1,1)=(3,2).(2)因为b =(1,1),c =(5,2),所以m =λb +c =λ(1,1)+(5,2)=(λ+5,λ+2).又因为a =(2,1),且a 与m 平行,所以2(λ+2)=λ+5,解得λ=1.层级二 应试能力达标1.已知平面向量a =(x,1),b =(-x ,x 2),则向量a +b ( )A .平行于x 轴B .平行于第一、三象限的角平分线C .平行于y 轴D .平行于第二、四象限的角平分线解析:选C 因为a +b =(0,1+x 2),所以a +b 平行于y 轴.2.若A (3,-6),B (-5,2),C (6,y )三点共线,则y =( )A.13B.-13C.9 D.-9解析:选D A,B,C三点共线,∴AB∥AC,而AB=(-8,8),AC=(3,y+6),∴-8(y+6)-8×3=0,即y=-9.3.已知向量a=(1,0),b=(0,1),c=ka+b(k∈R),d=a-b,如果c∥d,那么() A.k=1且c与d同向B.k=1且c与d反向C.k=-1且c与d同向D.k=-1且c与d反向解析:选D∵a=(1,0),b=(0,1),若k=1,则c=a+b=(1,1),d=a-b=(1,-1),显然,c与d不平行,排除A、B.若k=-1,则c=-a+b=(-1,1),d=a-b=-(-1,1),即c∥d且c与d反向.4.已知平行四边形三个顶点的坐标分别为(-1,0),(3,0),(1,-5),则第四个顶点的坐标是()A.(1,5)或(5,5)B.(1,5)或(-3,-5)C.(5,-5)或(-3,-5)D.(1,5)或(5,-5)或(-3,-5)解析:选D设A(-1,0),B(3,0),C(1,-5),第四个顶点为D,①若这个平行四边形为▱ABCD,则AB=DC,∴D(-3,-5);②若这个平行四边形为▱ACDB,则AC=BD,∴D(5,-5);③若这个平行四边形为▱ACBD,则AC=DB,∴D(1,5).综上所述,D点坐标为(1,5)或(5,-5)或(-3,-5).5.已知AB=(6,1),BC=(x,y),CD=(-2,-3),BC∥DA,则x+2y的值为________.解析:∵AD=AB+BC+CD=(6,1)+(x,y)+(-2,-3)=(x+4,y-2),∴DA=-AD=-(x+4,y-2)=(-x-4,-y+2).∵BC∥DA,∴x(-y+2)-(-x-4)y=0,即x+2y=0.答案:06.已知向量OA =(3,-4),OB =(6,-3),OC =(5-m ,-3-m ).若点A ,B ,C 能构成三角形,则实数m 应满足的条件为________.解析:若点A ,B ,C 能构成三角形,则这三点不共线,即AB 与AC 不共线. ∵AB =OB -OA =(3,1),AC =OC -OA =(2-m,1-m ),∴3(1-m )≠2-m ,即m ≠12.答案:m ≠127.已知A (1,1),B (3,-1),C (a ,b ).(1)若A ,B ,C 三点共线,求a 与b 之间的数量关系;(2)若AC =2AB ,求点C 的坐标.解:(1)若A ,B ,C 三点共线,则AB 与AC 共线.AB =(3,-1)-(1,1)=(2,-2),AC =(a -1,b -1),∴2(b -1)-(-2)(a -1)=0,∴a +b =2.(2)若AC =2AB ,则(a -1,b -1)=(4,-4),∴⎩⎪⎨⎪⎧ a -1=4,b -1=-4,∴⎩⎪⎨⎪⎧ a =5,b =-3,∴点C 的坐标为(5,-3).8.如图所示,在四边形ABCD 中,已知A (2,6),B (6,4),C (5,0),D (1,0),求直线AC 与BD 交点P 的坐标.解:设P (x ,y ),则DP =(x -1,y ),DB =(5,4),CA =(-3,6),DC =(4,0).由B ,P ,D 三点共线可得DP =λDB =(5λ,4λ). 又∵CP =DP -DC =(5λ-4,4λ), 由于CP 与CA 共线得,(5λ-4)×6+12λ=0.解得λ=47, ∴DP =47DB =⎝⎛⎭⎫207,167,∴P 的坐标为⎝⎛⎭⎫277,167.。
§2.5 平面向量应用举例内容要求 1.会用向量方法解决简单的平面几何问题与物理问题(重点).2.培养运算能力、分析问题和解决实际问题的能力(难点).知识点1向量方法在几何中的应用用向量方法解决平面几何问题的“三个步骤”:1.建立平面几何与向量的联系,用向量表示问题中涉及的几何元素,将平面几何问题转化为向量问题.2.通过向量运算研究几何元素之间的关系,如距离、夹角等问题. 3.把运算结果“翻译”成几何关系. 【预习评价】(1)在△ABC 中,若(CA →+CB →)·(CA →-CB →)=0,则△ABC ( ) A .是正三角形 B .是直角三角形 C .是等腰三角形D .形状无法确定解析 (CA →+CB →)·(CA →-CB →)=CA →2-CB →2=0,即|CA →|=|CB →|,∴CA =CB ,则△ABC 是等腰三角形.答案 C(2)已知△ABC 中,AB →=a ,AC →=b ,且a ·b <0,则△ABC 的形状为( ) A .钝角三角形 B .直角三角形 C .锐角三角形D .不能确定解析 a ·b =AB →·AC →=|AB →|·|AC →|cos A <0,即cos A <0, 所以π2<A <π,即△ABC 是钝角三角形.答案 A知识点2 向量在物理中的应用1.物理问题中常见的向量有力、速度、位移等. 2.向量的加减法运算体现在一些物理量的合成和分解上. 3.动量m v 是向量的数乘运算. 4.功是力F 与位移s 的数量积.【预习评价】力F =(-1,-2)作用于质点P ,使P 产生的位移为s =(3,4),则力F 对质点P 做的功是________.解析 由题意知W =F ·s =(-1)×3+(-2)×4=-11. 答案 -11题型一 平面几何中的垂直问题 【例1】如图所示,在正方形ABCD 中,E ,F 分别是AB ,BC 的中点,求证:AF ⊥DE . 证明 方法一 设AD →=a ,AB →=b , 则|a |=|b |,a ·b =0.又DE →=DA →+AE →=-a +b 2,AF →=AB →+BF →=b +a 2,所以AF →·DE →=⎝⎛⎭⎫b +a 2·⎝⎛⎭⎫-a +b 2 =-12a 2-34a ·b +b 22=-12|a |2+12|b |2=0.故AF →⊥DE →,即AF ⊥DE .方法二 如图所示,建立平面直角坐标系,设正方形的边长为2,则A (0,0),D (0,2),E (1,0),F (2,1),则AF →=(2,1),DE →=(1,-2).因为AF →·DE →=(2,1)·(1,-2)=2-2=0. 所以AF →⊥DE →,即AF ⊥DE .规律方法 利用向量解决垂直问题的方法和途径方法:对于线段的垂直问题,可以联想到两个向量垂直的条件,即向量的数量积为0. 途径:可以考虑向量关系式的形式,也可以考虑坐标的形式.【训练1】 已知P 是正方形ABCD 对角线BD 上一点,且四边形PFCE 为矩形.求证:P A =EF 且P A ⊥EF .证明 以D 为坐标原点,DC 所在直线为x 轴,DA 所在直线为y 轴,建立平面直角坐标系Oxy (如图所示),设正方形边长为1,|OP →|=λ,则A (0,1),P ⎝⎛⎭⎫2λ2,2λ2,E ⎝⎛⎭⎫1,22λ,F ⎝⎛⎭⎫22λ,0, 于是P A →=⎝⎛⎭⎫-22λ,1-22λ,EF →=⎝⎛⎭⎫22λ-1,-22λ.∵|P A →|= ⎝⎛⎭⎫1-22λ2+⎝⎛⎭⎫-22λ2=λ2-2λ+1,同理|EF →|=λ2-2λ+1,∴|P A →|=|EF →|,∴P A =EF .P A →·EF →=⎝⎛⎭⎫-22λ⎝⎛⎭⎫2λ2-1+⎝⎛⎭⎫1-22λ⎝⎛⎭⎫-22λ=0,∴P A →⊥EF →.∴P A ⊥EF .【例2】 已知在Rt △ABC 中,∠C =90°,设AC =m ,BC =n . (1)若D 为斜边AB 的中点,求证:CD =12AB ;(2)若E 为CD 的中点,连接AE 并延长交BC 于F ,求AF 的长度(用m ,n 表示).(1)证明 以C 为坐标原点,以边CB ,CA 所在的直线分别为x 轴,y 轴建立平面直角坐标系,如图所示,则A (0,m ),B (n,0),因为D 为AB 的中点,所以D (n 2,m 2),所以|CD →|=12m 2+n 2,|AB →|=m 2+n 2,所以|CD →|=12|AB →|,即CD =12AB .(2)解 设F (x,0),因为D (n 2,m 2),所以E (n 4,m4).AE →=(n 4,-34m ),AF →=(x ,-m ),由AE →∥AF →可知存在实数λ,使得AF →=λAE →,即(x ,-m )=λ(n 4,-34m ),即⎩⎨⎧x =n4λ,-m =-34λm ,解得⎩⎨⎧λ=43,x =n3,所以AF →=(n3,-m ),则|AF →|=19n 2+m 2=13n 2+9m 2,即AF =13n 2+9m 2.【迁移1】 若例2的条件不变,求AE 的长. 解 由例2解析知|AE →|=116n 2+916m 2=14n 2+9m 2,即AE =14n 2+9m 2.【迁移2】 若例2的条件不变,求DF 的长. 解 由例2的解析知F (n 3,0),D (n 2,m2),所以DF →=(-n 6,-m 2),故|DF →|=136n 2+14m 2=16n 2+9m 2,即DF =16n 2+9m 2.规律方法 1.用向量法求长度的策略(1)利用图形特点选择基底,用公式|a |2=a 2求解. (2)建立坐标系,确定相应向量的坐标a =(x ,y ),则|a |=x 2+y 2.2.用向量法解决平面几何问题的两种思想方法(1)基向量法:选取适当的基底(基底中的向量尽量已知模或夹角),将题中涉及的向量用基底表示,利用向量的运算法则、运算律或性质计算.(2)坐标法:建立平面直角坐标系,实现向量的坐标化,将几何问题中的长度、垂直、平行等问题转化为代数运算.【训练2】 在△ABC 中,已知A (4,1),B (7,5),C (-4,7),则BC 边的中线AD 的长是( ) A .2 5 B .52 5C .3 5D .725解析 BC 中点为D ⎝⎛⎭⎫32,6,AD →=⎝⎛⎭⎫-52,5, ∴|AD →|=52 5.答案 B题型三 向量在物理中的应用【例3】 (1)一艘船以5 km /h 的速度垂直于对岸的方向行驶,船的实际航行方向与水流方向成30°角,则水流速度为________km/h ;解析 如图所示,船速|v 1|=5,水速度为v 2,实际速度|v |=10,∴|v 2|=|v |cos 30°=53(km/h).答案 5 3(2)如图,用两根绳子把重10 N 的物体W 吊在水平杆子AB 上,∠ACW =150°,∠BCW =120°,求A 和B 处所受绳子的拉力的大小(忽略绳子质量).解 设A ,B 处所受绳子的拉力分别为F 1,F 2,物体10 N 的重力用F 表示,则F 1+F 2=F .以点C 为F 1,F 2的始点,作平行四边形CFWE ,则CW 为对角线,CF →=F 2,CE →=F 1,CW →=F ,。
第二课时 诱导公式(二)预习课本P26~27,思考并完成以下问题 (1)π2-α的终边与α的终边有怎样的对称关系? (2)诱导公式五、六有哪些结构特征?[新知初探]诱导公式五和公式六[点睛] 这两组公式实现正弦和余弦的相互转化.[小试身手]1.判断下列命题是否正确.(正确的打“√”,错误的打“×”) (1)诱导公式五、六中的角α只能是锐角.( ) (2)sin(90°+α)=-cos α.( ) 答案:(1)× (2)×2.已知sin ⎝⎛⎭⎫5π2+α=15,那么cos α=( ) A .-25B .-15C .15D .25答案:C3.若cos ⎝⎛⎭⎫π2-α=12,则cos ⎝⎛⎭⎫π2+α=( ) A .-12B .12C .-32D .32答案:A4.化简:sin ⎝⎛⎭⎫3π2+α=________. 答案:-cos α利用诱导公式化简[典例] 化简: sin ⎝⎛⎭⎫π2+αcos ⎝⎛⎭⎫π2-αcos (π+α)+sin (π-α)cos ⎝⎛⎭⎫π2+αsin (π+α).[解] ∵sin ⎝⎛⎭⎫π2+α=cos α,cos ⎝⎛⎭⎫π2-α=sin α, cos(π+α)=-cos α,sin(π-α)=sin α, cos ⎝⎛⎭⎫π2+α=-sin α,sin(π+α)=-sin α,∴原式=cos α·sin α-cos α+sin α·(-sin α)-sin α=-sin α+sin α=0.化简:(1)cos (α-π)sin (π-α)·sin ⎝⎛⎭⎫α-π2cos ⎝⎛⎭⎫π2+α; (2)sin(-α-5π)cos ⎝⎛⎭⎫α-π2-sin ⎝⎛⎭⎫3π2+αcos(α-2π).解:(1)原式=cos[-(π-α)]sin α·sin ⎣⎡⎦⎤-⎝⎛⎭⎫π2-α(-sin α) =cos (π-α)sin α·⎣⎡⎦⎤-sin ⎝⎛⎭⎫π2-α(-sin α) =-cos αsin α·(-cos α)(-sin α) =-cos 2α.(2)原式=sin(-α-π)cos ⎣⎡⎦⎤-⎝⎛⎭⎫π2-α+cos α· cos[-(2π-α)]=sin[-(α+π)]cos ⎝⎛⎭⎫π2-α+cos αcos(2π-α) =-sin(α+π)sin α+cos αcos α =sin 2α+cos 2α =1.利用诱导公式证明恒等式[典例] 求证:2sin ⎝⎭⎫θ-3π2cos ⎝⎭⎫θ+π2-11-2sin 2(π+θ)=tan (9π+θ)+1tan (π+θ)-1.[证明] 左边=-2sin ⎝⎛⎭⎫3π2-θ·(-sin θ)-11-2sin 2θ=2sin ⎣⎡⎦⎤π+⎝⎛⎭⎫π2-θsin θ-11-2sin 2θ=-2sin ⎝⎛⎭⎫π2-θsin θ-11-2sin 2θ=-2cos θsin θ-1cos 2θ+sin 2θ-2sin 2θ=(sin θ+cos θ)2sin 2θ-cos 2θ=sin θ+cos θsin θ-cos θ. 右边=tan θ+1tan θ-1=sin θ+cos θsin θ-cos θ.∴左边=右边,故原式成立.求证:cos ⎝⎛⎭⎫α-π2sin ⎝⎛⎭⎫5π2+α·sin(α-2π)·cos(2π-α)=sin 2α.证明:左边=cos ⎝⎛⎭⎫π2-αsin ⎝⎛⎭⎫π2+α·[-sin(2π-α)]cos α=sin αcos α[-(-sin α)]cos α=sin αcos α·sin α·cos α=sin 2α=右边,故原式成立.利用诱导公式求值[典例] 已知cos (π-θ)cos θ⎣⎡⎦⎤sin ⎝⎛⎭⎫3π2-θ-1=58,求cos (2π-θ)cos (π+θ)sin ⎝⎛⎭⎫π2+θ-sin ⎝⎛⎭⎫3π2+θ的值.[解] ∵cos (π-θ)cos θ⎣⎡⎦⎤sin ⎝⎛⎭⎫3π2-θ-1=-cos θcos θ(-cos θ-1)=11+cos θ=58,∴cos θ=35.∴cos (2π-θ)cos (π+θ)sin ⎝⎛⎭⎫π2+θ-sin ⎝⎛⎭⎫3π2+θ=cos θ-cos θcos θ+cos θ=11-cos θ=11-35=52.已知cos(75°+α)=13,求cos(105°-α)-sin(15°-α)的值.解:cos(105°-α)-sin(15°-α)=cos[180°-(75°+α)]-sin[90°-(75°+α)] =-cos(75°+α)-cos(75°+α) =-23.层级一 学业水平达标1.若sin ⎝⎛⎭⎫π2+θ<0,且cos ⎝⎛⎭⎫π2-θ>0,则θ是( ) A .第一象限角 B .第二象限角 C .第三象限角D .第四象限角解析:选B 由于sin ⎝⎛⎭⎫π2+θ=cos θ<0,cos ⎝⎛⎭⎫π2-θ=sin θ>0,所以角θ的终边落在第二象限,故选B.2.已知sin θ=15,则cos(450°+θ)的值是( )A .15B .-15C .-265D .265解析:选B cos(450°+θ)=cos(90°+θ)=-sin θ=-15.3.已知cos ⎝⎛⎭⎫π2+φ=32,且|φ|<π2,则tan φ等于( ) A .-33B .33C .- 3D . 3解析:选C 由cos ⎝⎛⎭⎫π2+φ=-sin φ=32,得sin φ=-32.又|φ|<π2,∴φ=-π3,∴tan φ=- 3.4.已知tan θ=2,则sin ⎝⎛⎭⎫π2+θ-cos (π-θ)sin ⎝⎛⎭⎫π2+θ-sin (π-θ)=( )A .2B .-2C .0D .23解析:选B sin ⎝⎛⎭⎫π2+θ-cos (π-θ)sin ⎝⎛⎭⎫π2+θ-sin (π-θ)=cos θ+cos θcos θ-sin θ=21-tan θ=21-2=-2.5.若角A ,B ,C 是△ABC 的三个内角,则下列等式中一定成立的是( ) A .cos(A +B )=cos C B .sin(A +B )=-sin C C .cos A +C2=sin BD .sin B +C 2=cos A 2解析:选D ∵A +B +C =π,∴A +B =π-C , ∴cos(A +B )=-cos C ,sin(A +B )=sin C ,故A ,B 错. ∵A +C =π-B ,∴A +C 2=π-B2, ∴cos A +C 2=cos ⎝⎛⎭⎫π2-B 2=sin B2,故C 错. ∵B +C =π-A ,∴sin B +C 2=sin ⎝⎛⎭⎫π2-A 2=cos A2,故D 正确. 6.sin 95°+cos 175°的值为________.解析:sin 95°+cos 175°=sin(90°+5°)+cos(180°-5°) =cos 5°-cos 5°=0. 答案:07.若sin ⎝⎛⎭⎫π2+θ=35,则cos 2θ-sin 2θ=________. 解析:sin ⎝⎛⎭⎫π2+θ=cos θ=35,从而sin 2θ=1-cos 2θ=1625,所以cos 2θ-sin 2θ=-725. 答案:-7258.化简:sin(-α-7π)·cos ⎝⎛⎭⎫α-3π2=________. 解析:原式=-sin(7π+α)·cos ⎝⎛⎭⎫3π2-α=-sin(π+α)·⎣⎡⎦⎤-cos ⎝⎛⎭⎫π2-α=sin α·(-sin α) =-sin 2α. 答案:-sin 2α9.已知sin(π+α)=-13.求:(1)cos ⎝⎛⎭⎫α-3π2; (2)sin ⎝⎛⎭⎫π2+α. 解:∵sin(π+α)=-sin α=-13,∴sin α=13.(1)cos ⎝⎛⎭⎫α-3π2=cos ⎝⎛⎭⎫3π2-α=-sin α=-13. (2)sin ⎝⎛⎭⎫π2+α=cos α,cos 2α=1-sin 2α=1-19=89. ∵sin α=13,∴α为第一或第二象限角.①当α为第一象限角时,sin ⎝⎛⎭⎫π2+α=cos α=223. ②当α为第二象限角时,sin ⎝⎛⎭⎫π2+α=cos α=-223. 10.已知cos ⎝⎛⎭⎫π2+α=13, 求值:sin ⎝⎛⎭⎫π2+αcos ⎝⎛⎭⎫π2-αcos (π+α)+sin (π-α)cos ⎝⎛⎭⎫3π2+αsin (π+α).解:原式=cos αsin α-cos α+sin αsin α-sin α=-sin α-sin α=-2sin α. 又cos ⎝⎛⎭⎫π2+α=13,所以-sin α=13. 所以原式=-2sin α=23.层级二 应试能力达标1.若sin(π+α)+cos ⎝⎛⎭⎫π2+α=-m ,则cos ⎝⎛⎭⎫3π2-α+2sin(6π-α)的值为( ) A .-23mB .-32mC .23mD .32m解析:选B ∵sin(π+α)+cos ⎝⎛⎭⎫π2+α=-m ,即-sin α-sin α=-2sin α=-m ,从而sin α=m2,∴cos ⎝⎛⎭⎫3π2-α+2sin(6π-α)=-sin α-2sin α=-3sin α=-32m . 2.已知f (x )=sin x ,下列式子成立的是( ) A .f (x +π)=sin x B .f (2π-x )=sin x C .f ⎝⎛⎭⎫x -π2=-cos x D .f (π-x )=-f (x )解析:选C f (x +π)=sin(x +π)=-sin x ; f (2π-x )=sin(2π-x )=sin(-x )=-sin x ; f ⎝⎛⎭⎫x -π2=sin ⎝⎛⎭⎫x -π2=-sin ⎝⎛⎭⎫π2-x =-cos x ; f (π-x )=sin(π-x )=sin x =f (x ),故选C.3.已知α为锐角,2tan(π-α)-3cos ⎝⎛⎭⎫π2+β+5=0,tan(π+α)+6sin(π+β)-1=0,则sin α的值是( )A .355B .377C .31010D .13解析:选C 由已知可得-2tan α+3sin β+5=0,tan α-6sin β-1=0.∴tan α=3,又tan α=sin αcos α,∴9=sin 2αcos 2α=sin 2α1-sin 2α,∴sin 2α=910,∵α为锐角,∴sin α=31010,选C. 4.已知cos(60°+α)=13,且-180°<α<-90°,则cos(30°-α)的值为( )A .-223 B .223 C .-23D .23解析:选A 由-180°<α<-90°,得-120°<60°+α<-30°,又cos(60°+α)=13>0,所以-90°<60°+α<-30°,即-150°<α<-90°,所以120°<30°-α<180°,cos(30°-α)<0,所以cos(30°-α)=sin(60°+α)=-1-cos 2(60°+α)=- 1-⎝⎛⎭⎫132=-223.5.tan(45°+θ)·tan(45°-θ)=________. 解析:原式=sin (45°+θ)cos (45°+θ)·sin (45°-θ)cos (45°-θ)=sin (45°+θ)cos (45°+θ)·sin[90°-(45°+θ)]cos[90°-(45°+θ)]=sin (45°+θ)cos (45°+θ)cos (45°+θ)sin (45°+θ)=1.答案:16.sin 21°+sin 22°+sin 23°+…+sin 288°+sin 289°+sin 290°的值为________. 解析:∵sin 21°+sin 289°=sin 21°+cos 21°=1, sin 22°+sin 288°=sin 22°+cos 22°=1,sin 2x °+sin 2(90°-x °)=sin 2x °+cos 2x °=1(1≤x ≤44, x ∈N),∴原式=(sin 21°+sin 289°)+(sin 22°+sin 288°)+…+(sin 244°+sin 246°)+sin 290°+sin 245°=45+⎝⎛⎭⎫222=912. 答案:9127.已知f (α)=sin (α-3π)cos (2π-α)sin ⎝⎛⎭⎫-α+3π2cos (-π-α)sin (-π-α).(1)化简f (α);(2)若α是第三象限的角,且cos ⎝⎛⎭⎫α-3π2=15,求f (α)的值. 解:(1)f (α)=sin (α-3π)cos (2π-α)sin ⎝⎛⎭⎫-α+3π2cos (-π-α)sin (-π-α)=(-sin α)·cos α·(-cos α)(-cos α)·sin α=-cos α.(2)因为cos ⎝⎛⎭⎫α-3π2=-sin α, 所以sin α=-15.又α是第三象限的角, 所以cos α=- 1-⎝⎛⎭⎫-152=-265. 所以f (α)=265.8.已知sin(3π-α)=2cos ⎝⎛⎭⎫3π2+β,cos(π-α)=63cos(π+β),且0<α<π,0<β<π,求sin α和cos β的值.解:由已知,得sin α=2sin β,①3cos α=2cos β,②由①2+②2,得sin2α+3cos2α=2,即sin2α+3(1-sin2α)=2,所以sin2α=1 2.又0<α<π,则sin α=2 2.将sin α=22代入①,得sin β=12.又0<β<π,故cos β=±3 2.。
2.3 平面向量的基本定理及其坐标表示2.3.1 平面向量基本定理2.3.2 平面向量的正交分解及坐标表示整体设计教学分析平面向量基本定理既是本节的重点又是本节的难点.平面向量基本定理告诉我们同一平面内任一向量都可表示为两个不共线向量的线性组合,这样,如果将平面内向量的始点放在一起,那么由平面向量基本定理可知,平面内的任意一点都可以通过两个不共线的向量得到表示,也就是平面内的点可以由平面内的一个点及两个不共线的向量来表示.这是引进平面向量基本定理的一个原因.在不共线的两个向量中,垂直是一种重要的特殊情形,向量的正交分解是向量分解中常用且重要的一种分解,因为在平面上,如果选取互相垂直的向量作为基底时,会给问题的研究带来方便.联系平面向量基本定理和向量的正交分解,由点在直角坐标系中的表示得到启发,要在平面直角坐标系中表示一个向量,最方便的是分别取与x轴、y轴方向相同的两个单位向量i、j作为基底,这时,对于平面直角坐标系内的一个向量a,由平面向量基本定理可知,有且只有一对实数x、y,使得a=x i+y j.于是,平面内的任一向量a都可由x、y唯一确定,而有序数对(x,y)正好是向量a的终点的坐标,这样的“巧合”使平面直角坐标系内的向量与坐标建立起一一映射,从而实现向量的“量化”表示,使我们在使用向量工具时得以实现“有效能算”的思想.三维目标1.通过探究活动,能推导并理解平面向量基本定理.2.掌握平面里的任何一个向量都可以用两个不共线的向量来表示,理解这是应用向量解决实际问题的重要思想方法.能够在具体问题中适当地选取基底,使其他向量都能够用基底来表达.3.了解向量的夹角与垂直的概念,并能应用于平面向量的正交分解中,会把向量正交分解,会用坐标表示向量.重点难点教学重点:平面向量基本定理、向量的夹角与垂直的定义、平面向量的正交分解、平面向量的坐标表示.教学难点:平面向量基本定理的运用.课时安排1课时教学过程导入新课思路 1.在物理学中我们知道,力是一个向量,力的合成就是向量的加法运算.而且力是可以分解的,任何一个大小不为零的力,都可以分解成两个不同方向的分力之和.将这种力的分解拓展到向量中来,会产生什么样的结论呢?又如一个放在斜面上的物体所受的竖直向下的重力G,可分解为使物体沿斜面下滑的力F1和使物体垂直于斜面且压紧斜面的力F2.我们知道飞机在起飞时若沿仰角α的方向起飞的速度为v,可分解为沿水平方向的速度vcosα和沿竖直方向的速度vsinα.从这两个实例可以看出,把一个向量分解到两个不同的方向,特别是作正交分解,即在两个互相垂直的方向上进行分解,是解决问题的一种十分重要的手段.如果e 1、e 2是同一平面内的两个不共线的向量,a 是这一平面内的任一向量,那么a 与e 1、e 2之间有什么关系呢?在不共线的两个向量中,垂直是一种重要的情形.把一个向量分解为两个互相垂直的向量,叫做把向量正交分解.在平面上,如果选取互相垂直的向量作为基底,是否会给我们带来更方便的研究呢?思路2.前面我们学习了向量的代数运算以及对应的几何意义,如果将平面内向量的始点放在一起,那么平面内的任意一个点或者任意一个向量是否都可以用这两个同起点的不共线向量来表示呢?这样就引进了平面向量基本定理.教师可以通过多对几个向量进行分解或者合成,在黑板上给出图象进行演示和讲解.如果条件允许,用多媒体教学,通过相应的课件来演示平面上任意向量的分解,对两个不共线的向量都乘以不同的系数后再进行合成将会有什么样的结论?推进新课新知探究提出问题图1①给定平面内任意两个不共线的非零向量e 1、e 2,请你作出向量3e 1+2e 2、e 1-2e 2.平面内的任一向量是否都可以用形如λ1e 1+λ2e 2的向量表示呢?②如图1,设e 1、e 2是同一平面内两个不共线的向量,a 是这一平面内的任一向量,我们通过作图研究a 与e 1、e 2之间的关系.活动:如图1,在平面内任取一点O,作OA =e 1,OB =e 2,OC =a .过点C 作平行于直线OB 的直线,与直线OA;过点C 作平行于直线OA 的直线,与直线OB 交于点N.由向量的线性运算性质可知,存在实数λ1、λ2,使得OM =λ1e 1,ON =λ2e 2.由于ON OM OC +=,所以a =λ1e 1+λ2e 2.也就是说,任一向量a 都可以表示成λ1e 1+λ2e 2的形式.由上述过程可以发现,平面内任一向量都可以由这个平面内两个不共线的向量e 1、e 2表示出来.当e 1、e 2确定后,任意一个向量都可以由这两个向量量化,这为我们研究问题带来极大的方便.由此可得:平面向量基本定理:如果e 1、e 2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数λ1、λ2,使a =λ1e 1+λ2e 2.定理说明:(1)我们把不共线向量e 1、e 2叫做表示这一平面内所有向量的一组基底;(2)基底不唯一,关键是不共线;(3)由定理可将任一向量a 在给出基底e 1、e 2的条件下进行分解;(4)基底给定时,分解形式唯一.讨论结果:①可以.②a =λ1e 1+λ2e 2.提出问题①平面中的任意两个向量之间存在夹角吗?若存在,向量的夹角与直线的夹角一样吗? ②对平面中的任意一个向量能否用两个互相垂直的向量来表示?活动:引导学生结合向量的定义和性质,思考平面中的任意两个向量之间的关系是什么样的,结合图形来总结规律.教师通过提问来了解学生总结的情况,对回答正确的学生进行表扬,对回答不全面的学生给予提示和鼓励.然后教师给出总结性的结论:不共线向量存在夹角,关于向量的夹角,我们规定:图2已知两个非零向量a和b(如图2),作OA=a,OB=b,则∠AOB=θ(0°≤θ≤180°)叫做向量a与b的夹角.显然,当θ=0°时,a与b同向;当θ=180°时,a与b反向.因此,两非零向量的夹角在区间[0°,180°]内.如果a与b的夹角是90°,我们说a与b垂直,记作a⊥b.由平面向量的基本定理,对平面上的任意向量a,均可以分解为不共线的两个向量λ1a1和λ2a2,使a=λ1a1+λ2a2.在不共线的两个向量中,垂直是一种重要的情形.把一个向量分解为两个互相垂直的向量,叫做把向量正交分解.如上,重力G沿互相垂直的两个方向分解就是正交分解,正交分解是向量分解中常见的一种情形.在平面上,如果选取互相垂直的向量作为基底时,会为我们研究问题带来方便.讨论结果:①存在夹角且两个非零向量的夹角在区间[0°,180°]内;向量与直线的夹角不一样.②可以.提出问题①我们知道,在平面直角坐标系中,每一个点都可用一对有序实数(即它的坐标)表示.对直角坐标平面内的每一个向量,如何表示呢?②在平面直角坐标系中,一个向量和坐标是否是一一对应的?图3活动:如图3,在平面直角坐标系中,分别取与x轴、y轴方向相同的两个单位向量i、j作为基底.对于平面内的一个向量a,由平面向量基本定理可知,有且只有一对实数x、y,使得a=xi+y j ①这样,平面内的任一向量a都可由x、y唯一确定,我们把有序数对(x,y)叫做向量a的坐标,记作a=(x,y) ②其中x叫做a在x轴上的坐标,y叫做a在y轴上的坐标,②式叫做向量的坐标表示.显然,i=(1,0),j=(0,1),0=(0,0).教师应引导学生特别注意以下几点:(1)向量a与有序实数对(x,y)一一对应.(2)向量a 的坐标与表示该向量的有向线段的起点、终点的具体位置没有关系,只与其相对位置有关系.如图所示,11B A 是表示a 的有向线段,A 1、B 1的坐标分别为(x 1,y 1)、(x 2,y 2),则向量a 的坐标为x=x 2-x 1,y=y 2-y 1,即a 的坐标为(x 2-x 1,y 2-y 1).(3)为简化处理问题的过程,把坐标原点作为表示向量a 的有向线段的起点,这时向量a 的坐标就由表示向量a 的有向线段的终点唯一确定了,即点A 的坐标就是向量a 的坐标,流程表示如下:讨论结果:①平面内的任一向量a 都可由x 、y 唯一确定,我们把有序数对(x,y)叫做向量a 的坐标,记作a =(x,y).②是一一对应的.应用示例思路1例1 如图4,ABCD,AB =a ,AD =b ,H 、M 是AD 、DC 之中点,F 使BF=31BC,以a ,b 为基底分解向量HF AM 和.图4活动:教师引导学生利用平面向量基本定理进行分解,让学生自己动手、动脑.教师可以让学生到黑板上板书步骤,并对书写认真且正确的同学提出表扬,对不能写出完整解题过程的同学给予提示和鼓励.解:由H 、M 、F 所在位置,有+=+=AD DM AD AM a b AB AD DC 212121+=+=AB 21=b +21a . AD AD AB AD BC AH BF AB AH AF HF 21312131-+=-+-+=-= =a 61-b . 点评:以a 、b 为基底分解向量AM 与HF ,实为用a 与b 表示向量AM 与HF . 变式训练图5已知向量e 1、e 2(如图5),求作向量-2.5e 1+3e 2作法:(1)如图,任取一点O,作OA =-2.5e 1,OB =3e 2.(2)作OACB. 故OC OC 就是求作的向量.图6例2 如图6,分别用基底i、j 表示向量a 、b 、c 、d ,并求出它们的坐标.活动:本例要求用基底i 、j 表示a 、b 、c 、d ,其关键是把a 、b 、c 、d 表示为基底i 、j 的线性组合.一种方法是把a 正交分解,看a 在x 轴、y 轴上的分向量的大小.把向量a 用i 、j 表示出来,进而得到向量a 的坐标.另一种方法是把向量a 移到坐标原点,则向量a 终点的坐标就是向量a 的坐标.同样的方法,可以得到向量b 、c 、d 的坐标.另外,本例还可以通过四个向量之间位置的几何关系:a 与b 关于y 轴对称,a 与c 关于坐标原点中心对称,a 与d 关于x 轴对称等.由一个向量的坐标推导出其他三个向量的坐标.解:由图可知,a =1AA +2AA =x i +y j ,∴a =(2,3).同理,b =-2i +3j =(-2,3);c =-2i -3j =(-2,-3);d =2i -3j =(2,-3).点评:本例还可以得到启示,要充分运用图形之间的几何关系,求向量的坐标.变式训练i ,j 是两个不共线的向量,已知AB =3i +2j ,CB =i +λj ,CD =-2i +j ,若A 、B 、D 三点共线,试求实数λ的值.解:∵BD =CD -CB =(-2i +j )-(i +λj )=-3i +(1-λ)j ,又∵A、B 、D 三点共线, ∴向量AB 与BD 共线.因此存在实数υ,使得AB =υBD ,即3i +2j =υ[-3i +(1-λ)j ]=-3υi +υ(1-λ)j .∵i 与j 是两个不共线的向量,故⎩⎨⎧=-=-,2)1(,33λv v∴⎩⎨⎧=-=.3,1λv ∴当A 、B 、D 三点共线时,λ=3.例3 下面三种说法:①一个平面内只有一对不共线向量可作为表示该平面的基底;②一个平面内有无数多对不共线向量可作为该平面所有向量的基底;③零向量不可以作为基底中的向量,其中正确的说法是( )A.①②B.②③C.①③D.①②③ 活动:这是训练学生对平面向量基本定理的正确理解,教师引导学生认真地分析和理解平面向量基本定理的真正内涵.让学生清楚在平面中对于基底的选取是不唯一的,只要是同一平面内的两个不共线的向量都可以作为基底.解:平面内向量的基底是不唯一的.在同一平面内任何一组不共线的向量都可作为平面内所有向量的一组基底;而零向量可看成与任何向量平行,故零向量不可作为基底中的向量.综上所述,②③正确.答案:B点评:本题主要考查的是学生对平面向量定理的理解.思路2图7例1 如图7,M 是△A BC 内一点,且满足条件=++CM BM AM 320,延长CM 交AB 于N,令CM =a ,试用a 表示CN .活动:平面向量基本定理是平面向量的重要定理,它是解决平面向量计算问题的重要工具.由平面向量基本定理,可得到下面两个推论:推论1:e 1与e 2是同一平面内的两个不共线向量,若存在实数λ1、λ2,使得λ1e 1+λ2e 2=0,则λ1=λ2=0.推论2:e 1与e 2是同一平面内的两个不共线向量,若存在实数a 1,a 2,b 1,b 2,使得a =a 1e 1+a 2e 2=b 1e 1+b 2e 2,则⎪⎩⎪⎨⎧==.,2211b a b a 解:∵,,NM BN BM NM AN AM +=+= ∴由CM BM AM 32++=0,得=++++CM NM BN NM AN 3)(2)(0. ∴CM BN NM AN 323+++=0.又∵A、N 、B 三点共线,C 、M 、N 三点共线,由平行向量基本定理,设,,NM CM BN AN μλ== ∴=+++NM BN NM BN μλ3230.∴(λ+2)BN +(3+3μ)NM =0. 由于BN 和NM 不共线,∴⎩⎨⎧=+=+,033,02μλ∴⎩⎨⎧-=-=12μλ ∴.MN NM CM =-=∴CM MN CM CN 2=+==2a .点评:这里选取NM BN ,作为基底,运用化归思想,把问题归结为λ1e 1+λ2e 2=0的形式来解决.变式训练设e 1与e 2是两个不共线向量,a =3e 1+4e 2,b =-2e 1+5e 2,若实数λ、μ满足λa +μb =5e 1-e 2,求λ、μ的值.解:由题设λa +μb =(3λe 1+4λe 2)+(-2μe 1+5μe 2)=(3λ-2μ)e 1+(4λ+5μ)e 2.又λa +μb =5e 1-e 2.由平面向量基本定理,知⎩⎨⎧-=+=-.154,523λλλλ 解之,得λ=1,μ=-1.图8例2 如图8,△A BC 中,AD 为△A BC 边上的中线且AE=2EC,求GEBG GD AG 及的值. 活动:教师让学生先仔细分析题意,以明了本题的真正用意,怎样把平面向量基本定理与三角形中的边相联系?利用化归思想进行转化完后,然后结合向量的相等进行求解比值. 解:设μλ==GEBG GD AG , ∵BD =DC ,即AD -AB =AC -AD , ∴AD =21(AB +AC ). 又∵AG =λGD =λ(AD -AG ), ∴AG =λλ+1AD =)1(2λλ+AB +)1(2λλ+AC . ① 又∵BG =μGE ,即AG -AB =μ(AE -AG ),∴(1+μ)AG =AB +μAG AE ,=AE AB μμμ+++111 又AE =32AC ,∴AG =AB μ+11+)1(32μμ+AC . ② 比较①②,∵AB 、AC 不共线, ∴⎪⎪⎩⎪⎪⎨⎧+=++=+.)1(32)1(2,11)1(2μμλλμλλ解之,得⎪⎩⎪⎨⎧==23,4μλ∴.23,4==GE BG GD AG 点评:本例中,构造向量在同一基底下的两种不同表达形式,利用相同基向量的系数对应相等得到一实数方程组,从而进一步求得结果.变式训练过△O AB 的重心G 的直线与边OA 、OB 分别交于P 、Q,设OP =h OA ,OB k OQ =,试证:311=+kh 解:设OA =a ,OB =b ,OG 交AB 于D,则OD =21(OB OA +)=21(a +b )(图略). ∴OG =32OD =31(a +b ),OQ OG QG -==31(a +b )-k b =31a +331k -b , OQ OP QP -==h a -k b .∵P、G 、Q 三点共线,∴QP QG λ=. ∴31a +331k -b =λh a -λk b .∴⎪⎪⎩⎪⎪⎨⎧-=-=.331,31k k h λλ 两式相除,得.3311hk h k k h k =+⇒-=-, ∴kh 11+=3. 知能训练1.已知G 为△A BC 的重心,设AB =a ,AC =b ,试用a 、b 表示向量AG .2.已知向量a =(x+3,x 2-3x-4)与AB 相等,其中A(1,2),B(3,2),求x.图9解答:1.如图9,AG =32AD , 而=+=+=BC AB BD AB AD 21a +21(b -a )=21a +21b , ∴3232==AD AG (21a +21b )=31a +31b . 点评:利用向量加法、减法及数乘的几何意义. 2.∵A(1,2),B(3,2),∴AB =(2,0). ∵a=AB ,∴(x+3,x 2-3x-4)=(2,0). ∴⎩⎨⎧=--=+043,232x x x 解得⎩⎨⎧=-=-=.41,1x x x 或 ∴x=-1.点评:先将向量AB 用坐标表示出来,然后利用两向量相等的条件就可使问题得到解决. 课堂小结1.先由学生回顾本节学习的数学知识:平面向量的基本定理,向量的夹角与垂直的定义,平面向量的正交分解,平面向量的坐标表示.2.教师与学生一起总结本节学习的数学方法,如待定系数法,定义法,归纳与类比,数形结合,几何作图.作业课本习题2.3 A 组1.设计感想1.本节课内容是为了研究向量方便而引入的一个新定理——平面向量基本定理.教科书首先通过“思考”:让学生思考对于平面内给定的任意两个向量进行加减的线性运算时所表示的新向量有什么特点,反过来,对平面内的任意向量是否都可以用形如λ1e 1+λ2e 2的向量表示.2.教师应该多提出问题,多让学生自己动手作图来发现规律,通过解题来总结方法,引导学生理解“化归”思想对解题的帮助,也要让学生善于用“数形结合”的思想来解决这部分的题.3.如果条件允许,借助多媒体进行教学会有意想不到的效果.整节课的教学主线应以学生练习为主,教师给与引导和提示.充分让学生经历分析、探究并解决实际问题的过程,这也是学习数学,领悟思想方法的最好载体.学生这种经历的实践活动越多,解决实际问题的方法就越恰当而简捷.。
2.3.2 & 2.3.3平面向量的正交分解及坐标表示平面向量的坐标运算预习课本P94~98,思考并完成以下问题(1)怎样分解一个向量才为正交分解?(2)如何由a,b的坐标求a+b,a-b,λa的坐标?[新知初探]1.平面向量正交分解的定义把一个平面向量分解为两个互相垂直的向量.2.平面向量的坐标表示(1)基底:在平面直角坐标系中,分别取与x轴、y轴方向相同的两个单位向量i,j作为基底.(2)坐标:对于平面内的一个向量a,有且仅有一对实数x,y,使得a=xi+yj,则有序实数对(x,y)叫做向量a的坐标.(3)坐标表示:a=(x,y).(4)特殊向量的坐标:i=(1,0),j=(0,1),0=(0,0).[点睛](1)平面向量的正交分解实质上是平面向量基本定理的一种应用形式,只是两个基向量e1和e2互相垂直.(2)由向量坐标的定义,知两向量相等的充要条件是它们的横、纵坐标对应相等,即a =b⇔x1=x2且y1=y2,其中a=(x1,y1),b=(x2,y2).3.平面向量的坐标运算设向量a=(x1,y1),b=(x2,y2),λ∈R,则有下表:AB (2)当向量确定以后,向量的坐标就是唯一确定的,因此向量在平移前后,其坐标不变.[小试身手]1.判断下列命题是否正确.(正确的打“√”,错误的打“×”) (1)相等向量的坐标相同与向量的起点、终点无关.( )(2)当向量的始点在坐标原点时,向量的坐标就是向量终点的坐标.( ) (3)两向量差的坐标与两向量的顺序无关.( ) (4)点的坐标与向量的坐标相同.( ) 答案:(1)√ (2)√ (3)× (4)×2.若a =(2,1),b =(1,0),则3a +2b 的坐标是() A .(5,3) B .(4,3) C .(8,3) D.(0,-1)答案:C3.若向量AB =(1,2),BC =(3,4),则AC =( ) A .(4,6) B .(-4,-6) C .(-2,-2) D .(2,2) 答案:A4.若点M (3,5),点N (2,1),用坐标表示向量MN =______. 答案:(-1,-4)[典例]如图,在边长为1的正方形ABCD 中,AB 与x 轴正半轴成30°角.求点B 和点D 的坐标和AB 与AD 的坐标.[解] 由题知B ,D 分别是30°,120°角的终边与单位圆的交点. 设B (x 1,y 1),D (x 2,y 2). 由三角函数的定义,得 x 1=cos 30°=32,y 1=sin 30°=12,∴B ⎝⎛⎭⎫32,12. x 2=cos 120°=-12,y 2=sin 120°=32,∴D ⎝⎛⎭⎫-12,32. ∴AB =⎝⎛⎭⎫32,12,AD =⎝⎛⎭⎫-12,32.[活学活用]已知O 是坐标原点,点A 在第一象限,|OA |=43,∠xOA =60°, (1)求向量OA 的坐标;(2)若B (3,-1),求BA 的坐标.解:(1)设点A (x ,y ),则x =43cos 60°=23, y =43sin 60°=6,即A (23,6),OA =(23,6). (2)BA =(23,6)-(3,-1)=(3,7).[典例] (1)已知三点A (2,-1),B (3,4),C (-2,0),则向量3AB +2CA =________,BC -2AB =________.(2)已知向量a ,b 的坐标分别是(-1,2),(3,-5),求a +b ,a -b,3a,2a +3b 的坐标. [解析] (1)∵A (2,-1),B (3,4),C (-2,0), ∴AB =(1,5),CA =(4,-1),BC =(-5,-4).∴3AB +2CA =3(1,5)+2(4,-1) =(3+8,15-2) =(11,13).BC -2AB =(-5,-4)-2(1,5)=(-5-2,-4-10) =(-7,-14).[答案] (11,13) (-7,-14)(2)解:a +b =(-1,2)+(3,-5)=(2,-3), a -b =(-1,2)-(3,-5)=(-4,7), 3a =3(-1,2)=(-3,6), 2a +3b =2(-1,2)+3(3,-5) =(-2,4)+(9,-15) =(7,-11).[活学活用]1.设平面向量a =(3,5),b =(-2,1),则a -2b =( ) A .(7,3) B .(7,7) C .(1,7)D .(1,3)解析:选A ∵2b =2(-2,1)=(-4,2), ∴a -2b =(3,5)-(-4,2)=(7,3).2.已知M (3,-2),N (-5,-1),MP =12MN ,则P 点坐标为______.解析:设P (x ,y ),MP =(x -3,y +2),MN =(-8,1), ∴MP =12MN =12(-8,1)=⎝⎛⎭⎫-4,12, ∴⎩⎪⎨⎪⎧ x -3=-4,y +2=12.∴⎩⎪⎨⎪⎧x =-1,y =-32.答案:⎝⎛⎭⎫-1,-32及OP =OA +t AB ,轴上?点P 在y 轴上?点P 在第二象限?[解] 因为OP =OA +t AB =(1,2)+t (3,3)=(1+3t,2+3t ), 若点P 在x 轴上,则2+3t =0, 所以t =-23.若点P 在y 轴上,则1+3t =0, 所以t =-13.若点P 在第二象限,则⎩⎪⎨⎪⎧1+3t <0,2+3t >0,所以-23<t <-13.[一题多变]1.[变条件]本例中条件“点P 在x 轴上,点P 在y 轴上,点P 在第二象限”若换为“B 为线段AP 的中点”试求t 的值.解:由典例知P (1+3t,2+3t ),则⎩⎨⎧1+1+3t2=4,2+2+3t2=5,解得t =2.2.[变设问]本例条件不变,试问四边形OABP 能为平行四边形吗?若能,求出t 值;若不能,说明理由.解:OA =(1,2),PB =(3-3t,3-3t ).若四边形OABP 为平行四边形,则OA =PB ,所以⎩⎪⎨⎪⎧3-3t =1,3-3t =2,该方程组无解.故四边形OABP 不能成为平行四边形.层级一 学业水平达标1.如果用i ,j 分别表示x 轴和y 轴方向上的单位向量,且A (2,3),B (4,2),则AB 可以表示为( )A .2i +3jB .4i +2jC .2i -jD .-2i +j解析:选C 记O 为坐标原点,则OA =2i +3j ,OB =4i +2j ,所以AB =OB -OA =2i -j .2.已知AB =a ,且A ⎝⎛⎭⎫12,4,B ⎝⎛⎭⎫14,2,又λ=12,则λa 等于( ) A .⎝⎛⎭⎫-18,-1 B .⎝⎛⎭⎫14,3 C .⎝⎛⎭⎫18,1D .⎝⎛⎭⎫-14,-3 解析:选A ∵a =AB =⎝⎛⎭⎫14,2-⎝⎛⎭⎫12,4=⎝⎛⎭⎫-14,-2, ∴λa =12a =⎝⎛⎭⎫-18,-1. 3.已知向量a =(1,2),2a +b =(3,2),则b =( ) A .(1,-2) B .(1,2) C .(5,6)D .(2,0)解析:选A b =(3,2)-2a =(3,2)-(2,4)=(1,-2).4.在平行四边形ABCD 中,AC 为一条对角线,AB =(2,4),AC =(1,3),则DA =( ) A .(2,4) B .(3,5) C .(1,1)D .(-1,-1)解析:选C DA =-AD =-BC =-(AC -AB )=(1,1).5.已知M (-2,7),N (10,-2),点P 是线段MN 上的点,且PN =-2PM ,则P 点的坐标为( )A .(-14,16)B .(22,-11)C .(6,1)D .(2,4)解析:选D 设P (x ,y ),则PN =(10-x ,-2-y ),PM =(-2-x,7-y ),由PN =-2PM得⎩⎪⎨⎪⎧ 10-x =4+2x ,-2-y =-14+2y ,所以⎩⎪⎨⎪⎧x =2,y =4.6.(江苏高考)已知向量a =(2,1),b =(1,-2),若ma +nb =(9,-8)(m ,n ∈R),则m -n 的值为________.解析:∵ma +nb =(2m +n ,m -2n )=(9,-8),∴⎩⎪⎨⎪⎧ 2m +n =9,m -2n =-8,∴⎩⎪⎨⎪⎧m =2,n =5,∴m -n =2-5=-3. 答案:-37.若A (2,-1),B (4,2),C (1,5),则AB +2BC =________. 解析:∵A (2,-1),B (4,2),C (1,5), ∴AB =(2,3),BC =(-3,3).∴AB +2BC =(2,3)+2(-3,3)=(2,3)+(-6,6)=(-4,9). 答案:(-4,9)8.已知O 是坐标原点,点A 在第二象限,|OA |=6,∠xOA =150°,向量OA 的坐标为________.解析:设点A (x ,y ),则x =|OA |cos 150°=6cos 150°=-33, y =|OA |sin 150°=6sin 150°=3, 即A (-33,3),所以OA =(-33,3). 答案:(-33,3)9.已知a =AB ,B 点坐标为(1,0),b =(-3,4),c =(-1,1),且a =3b -2c ,求点A 的坐标.解:∵b =(-3,4),c =(-1,1),∴3b -2c =3(-3,4)-2(-1,1)=(-9,12)-(-2,2)=(-7,10), 即a =(-7,10)=AB .又B (1,0),设A 点坐标为(x ,y ), 则AB =(1-x,0-y )=(-7,10),∴⎩⎪⎨⎪⎧ 1-x =-7,0-y =10⇒⎩⎪⎨⎪⎧x =8,y =-10, 即A 点坐标为(8,-10).10.已知向量AB =(4,3),AD =(-3,-1),点A (-1,-2). (1)求线段BD 的中点M 的坐标.(2)若点P (2,y )满足PB =λBD (λ∈R),求λ与y 的值.解:(1)设B (x 1,y 1),因为AB =(4,3),A (-1,-2), 所以(x 1+1,y 1+2)=(4,3),所以⎩⎪⎨⎪⎧ x 1+1=4,y 1+2=3,所以⎩⎪⎨⎪⎧x 1=3,y 1=1,所以B (3,1).同理可得D (-4,-3), 设BD 的中点M (x 2,y 2), 则x 2=3-42=-12,y 2=1-32=-1, 所以M ⎝⎛⎭⎫-12,-1. (2)由PB =(3,1)-(2,y )=(1,1-y ),BD =(-4,-3)-(3,1)=(-7,-4),又PB =λBD (λ∈R),所以(1,1-y )=λ(-7,-4)=(-7λ,-4λ),所以⎩⎪⎨⎪⎧1=-7λ,1-y =-4λ,所以⎩⎨⎧λ=-17,y =37.层级二 应试能力达标1.已知向量AB =(2,4),AC =(0,2),则12BC =( )A .(-2,-2)B .(2,2)C .(1,1)D .(-1,-1)解析:选D12BC =12(AC -AB )=12(-2,-2)=(-1,-1),故选D. 2.已知向量a =(1,2),b =(2,3),c =(3,4),且c =λ1a +λ2b ,则λ1,λ2的值分别为( ) A .-2,1 B .1,-2 C .2,-1D .-1,2解析:选D ∵c =λ1a +λ2b ,∴(3,4)=λ1(1,2)+λ2(2,3)=(λ1+2λ2,2λ1+3λ2),∴⎩⎪⎨⎪⎧λ1+2λ2=3,2λ1+3λ2=4,解得λ1=-1,λ2=2.3.已知四边形ABCD 的三个顶点A (0,2),B (-1,-2),C (3,1),且BC =2AD ,则顶点D 的坐标为( )A .⎝⎛⎭⎫2,72B .⎝⎛⎭⎫2,-12 C .(3,2)D .(1,3)解析:选A 设点D (m ,n ),则由题意得(4,3)=2(m ,n -2)=(2m,2n -4),故⎩⎪⎨⎪⎧2m =4,2n -4=3,解得⎩⎪⎨⎪⎧m =2,n =72,即点D ⎝⎛⎭⎫2,72,故选A. 4.对于任意的两个向量m =(a ,b ),n =(c ,d ),规定运算“”为m n =(ac -bd ,bc +ad ),运算“”为m n =(a +c ,b +d ).设f =(p ,q ),若f =(5,0),则f等于( )A .(4,0)B .(2,0)C .(0,2)D .(0,-4)解析:选B 由(1,2)⊗f =(5,0),得⎩⎪⎨⎪⎧ p -2q =5,2p +q =0,解得⎩⎪⎨⎪⎧p =1,q =-2,所以f =(1,-2),所以f =,-2)=(2,0).5.已知向量i =(1,0),j =(0,1),对坐标平面内的任一向量a ,给出下列四个结论: ①存在唯一的一对实数x ,y ,使得a =(x ,y );②若x 1,x 2,y 1,y 2∈R ,a =(x 1,y 1)≠(x 2,y 2),则x 1≠x 2,且y 1≠y 2; ③若x ,y ∈R ,a =(x ,y ),且a ≠0,则a 的起点是原点O ; ④若x ,y ∈R ,a ≠0,且a 的终点坐标是(x ,y ),则a =(x ,y ). 其中,正确结论有________个.解析:由平面向量基本定理,可知①正确;例如,a =(1,0)≠(1,3),但1=1,故②错误;因为向量可以平移,所以a =(x ,y )与a 的起点是不是原点无关,故③错误;当a 的终点坐标是(x ,y )时,a =(x ,y )是以a 的起点是原点为前提的,故④错误.答案:16.已知A (-3,0),B (0,2),O 为坐标原点,点C 在∠AOB 内,|OC |=22,且∠AOC =π4.设OC =λOA +OB (λ∈R),则λ= ________. 解析:过C 作CE ⊥x 轴于点E ,由∠AOC =π4知,|OE |=|CE |=2,所以OC =OE +OB =λOA +OB ,即OE =λOA ,所以(-2,0)=λ(-3,0),故λ=23.答案:237.在△ABC 中,已知A (7,8),B (3,5),C (4,3),M ,N ,D 分别是AB ,AC ,BC 的中点,且MN 与AD 交于点F ,求DF 的坐标.解:∵A (7,8),B (3,5),C (4,3), ∴AB =(3-7,5-8)=(-4,-3),AC =(4-7,3-8)=(-3,-5).∵D 是BC 的中点,∴AD =12(AB +AC )=12(-4-3,-3-5)=12(-7,-8)=⎝⎛⎭⎫-72,-4. ∵M ,N 分别为AB ,AC 的中点,∴F 为AD 的中点. ∴DF =-FD =-12AD =-12⎝⎛⎭⎫-72,-4=⎝⎛⎭⎫74,2.8.在直角坐标系xOy 中,已知点A (1,1),B (2,3),C (3,2), (1)若PA +PB +PC =0,求OP 的坐标.(2)若OP =m AB +n AC (m ,n ∈R),且点P 在函数y =x +1的图象上,求m -n . 解:(1)设点P 的坐标为(x ,y ), 因为PA +PB +PC =0,又PA +PB +PC =(1-x,1-y )+(2-x,3-y )+(3-x,2-y )=(6-3x,6-3y ).所以⎩⎪⎨⎪⎧ 6-3x =0,6-3y =0,解得⎩⎪⎨⎪⎧x =2,y =2.所以点P 的坐标为(2,2), 故OP =(2,2).(2)设点P 的坐标为(x 0,y 0),因为A (1,1),B (2,3),C (3,2), 所以AB =(2,3)-(1,1)=(1,2),AC =(3,2)-(1,1)=(2,1),因为OP =m AB +n AC ,所以(x 0,y 0)=m (1,2)+n (2,1)=(m +2n,2m +n ),所以⎩⎪⎨⎪⎧x 0=m +2n ,y 0=2m +n ,两式相减得m-n=y0-x0,又因为点P在函数y=x+1的图象上,所以y0-x0=1,所以m-n=1.。
2.3.2 & 2.3.3平面向量的正交分解及坐标表示平面向量的坐标运算预习课本P94~98,思考并完成以下问题(1)怎样分解一个向量才为正交分解?(2)如何由a,b的坐标求a+b,a-b,λa的坐标?[新知初探]1.平面向量正交分解的定义把一个平面向量分解为两个互相垂直的向量.2.平面向量的坐标表示(1)基底:在平面直角坐标系中,分别取与x轴、y轴方向相同的两个单位向量i,j作为基底.(2)坐标:对于平面内的一个向量a,有且仅有一对实数x,y,使得a=xi+yj,则有序实数对(x,y)叫做向量a的坐标.(3)坐标表示:a=(x,y).(4)特殊向量的坐标:i=(1,0),j=(0,1),0=(0,0).[点睛](1)平面向量的正交分解实质上是平面向量基本定理的一种应用形式,只是两个基向量e1和e2互相垂直.(2)由向量坐标的定义,知两向量相等的充要条件是它们的横、纵坐标对应相等,即a =b⇔x1=x2且y1=y2,其中a=(x1,y1),b=(x2,y2).3.平面向量的坐标运算设向量a=(x1,y1),b=(x2,y2),λ∈R,则有下表:AB =[点睛] (1)向量的坐标只与起点、终点的相对位置有关,而与它们的具体位置无关. (2)当向量确定以后,向量的坐标就是唯一确定的,因此向量在平移前后,其坐标不变.[小试身手]1.判断下列命题是否正确.(正确的打“√”,错误的打“×”) (1)相等向量的坐标相同与向量的起点、终点无关.( )(2)当向量的始点在坐标原点时,向量的坐标就是向量终点的坐标.( ) (3)两向量差的坐标与两向量的顺序无关.( ) (4)点的坐标与向量的坐标相同.( ) 答案:(1)√ (2)√ (3)× (4)×2.若a =(2,1),b =(1,0),则3a +2b 的坐标是( ) A .(5,3)B .(4,3)C .(8,3)D .(0,-1)答案:C3.若向量AB =(1,2),BC =(3,4),则AC =( ) A .(4,6) B .(-4,-6) C .(-2,-2) D .(2,2) 答案:A4.若点M (3,5),点N (2,1),用坐标表示向量MN =______. 答案:(-1,-4)[典例]如图,在边长为1的正方形ABCD 中,AB 与x 轴正半轴成30°角.求点B 和点D 的坐标和AB 与AD 的坐标.[解] 由题知B ,D 分别是30°,120°角的终边与单位圆的交点. 设B (x 1,y 1),D (x 2,y 2). 由三角函数的定义,得 x 1=cos 30°=32,y 1=sin 30°=12,∴B ⎝⎛⎭⎫32,12. x 2=cos 120°=-12,y 2=sin 120°=32,∴D ⎝⎛⎭⎫-12,32.∴AB =⎝⎛⎭⎫32,12,AD =⎝⎛⎭⎫-12,32.[活学活用]已知O 是坐标原点,点A 在第一象限,|OA |=43,∠xOA =60°, (1)求向量OA 的坐标;(2)若B (3,-1),求BA 的坐标.解:(1)设点A (x ,y ),则x =43cos 60°=23, y =43sin 60°=6,即A (23,6),OA =(23,6). (2)BA =(23,6)-(3,-1)=(3,7).[典例] (1)已知三点A (2,-1),B (3,4),C (-2,0),则向量3AB +2CA =________,BC -2AB =________.(2)已知向量a,b的坐标分别是(-1,2),(3,-5),求a+b,a-b,3a,2a+3b的坐标.[解析](1)∵A(2,-1),B(3,4),C(-2,0),∴AB=(1,5),CA=(4,-1),BC=(-5,-4).∴3AB+2CA=3(1,5)+2(4,-1)=(3+8,15-2)=(11,13).BC-2AB=(-5,-4)-2(1,5)=(-5-2,-4-10)=(-7,-14).[答案](11,13)(-7,-14)(2)解:a+b=(-1,2)+(3,-5)=(2,-3),a-b=(-1,2)-(3,-5)=(-4,7),3a=3(-1,2)=(-3,6),2a+3b=2(-1,2)+3(3,-5)=(-2,4)+(9,-15)=(7,-11).[活学活用]1.设平面向量a=(3,5),b=(-2,1),则a-2b=()A.(7,3)B.(7,7)C.(1,7) D.(1,3)解析:选A∵2b=2(-2,1)=(-4,2),∴a -2b =(3,5)-(-4,2)=(7,3).2.已知M (3,-2),N (-5,-1),MP =12MN ,则P 点坐标为______.解析:设P (x ,y ),MP =(x -3,y +2),MN =(-8,1), ∴MP =12MN =12(-8,1)=⎝⎛⎭⎫-4,12, ∴⎩⎪⎨⎪⎧ x -3=-4,y +2=12.∴⎩⎪⎨⎪⎧x =-1,y =-32.答案:⎝⎛⎭⎫-1,-32[典例] 已知点O (0,0),A (1,2),B (4,5)及OP =OA +t AB ,t 为何值时,点P 在x 轴上?点P 在y 轴上?点P 在第二象限?[解] 因为OP =OA +t AB =(1,2)+t (3,3)=(1+3t,2+3t ), 若点P 在x 轴上,则2+3t =0, 所以t =-23.若点P 在y 轴上,则1+3t =0, 所以t =-13.若点P 在第二象限,则⎩⎪⎨⎪⎧1+3t <0,2+3t >0,所以-23<t <-13.[一题多变]1.[变条件]本例中条件“点P 在x 轴上,点P 在y 轴上,点P 在第二象限”若换为“B 为线段AP 的中点”试求t 的值.解:由典例知P (1+3t,2+3t ),则⎩⎪⎨⎪⎧1+1+3t 2=4,2+2+3t 2=5,解得t =2.2.[变设问]本例条件不变,试问四边形OABP 能为平行四边形吗?若能,求出t 值;若不能,说明理由.解:OA =(1,2),PB =(3-3t,3-3t ).若四边形OABP 为平行四边形,则OA =PB ,所以⎩⎪⎨⎪⎧3-3t =1,3-3t =2,该方程组无解.故四边形OABP 不能成为平行四边形.层级一 学业水平达标1.如果用i ,j 分别表示x 轴和y 轴方向上的单位向量,且A (2,3),B (4,2),则AB 可以表示为( )A .2i +3jB .4i +2jC .2i -jD .-2i +j解析:选C 记O 为坐标原点,则OA =2i +3j ,OB =4i +2j ,所以AB =OB -OA =2i -j .2.已知AB =a ,且A ⎝⎛⎭⎫12,4,B ⎝⎛⎭⎫14,2,又λ=12,则λa 等于( ) A .⎝⎛⎭⎫-18,-1 B .⎝⎛⎭⎫14,3 C .⎝⎛⎭⎫18,1D .⎝⎛⎭⎫-14,-3解析:选A ∵a =AB =⎝⎛⎭⎫14,2-⎝⎛⎭⎫12,4=⎝⎛⎭⎫-14,-2, ∴λa =12a =⎝⎛⎭⎫-18,-1. 3.已知向量a =(1,2),2a +b =(3,2),则b =( ) A .(1,-2) B .(1,2) C .(5,6)D .(2,0)解析:选A b =(3,2)-2a =(3,2)-(2,4)=(1,-2).4.在平行四边形ABCD 中,AC 为一条对角线,AB =(2,4),AC =(1,3),则DA =( ) A .(2,4) B .(3,5) C .(1,1)D .(-1,-1)解析:选C DA =-AD =-BC =-(AC -AB )=(1,1).5.已知M (-2,7),N (10,-2),点P 是线段MN 上的点,且PN =-2PM ,则P 点的坐标为( )A .(-14,16)B .(22,-11)C .(6,1)D .(2,4)解析:选D 设P (x ,y ),则PN =(10-x ,-2-y ),PM =(-2-x,7-y ),由PN =-2PM 得⎩⎪⎨⎪⎧ 10-x =4+2x ,-2-y =-14+2y ,所以⎩⎪⎨⎪⎧x =2,y =4.6.(江苏高考)已知向量a =(2,1),b =(1,-2),若ma +nb =(9,-8)(m ,n ∈R),则m -n 的值为________.解析:∵ma +nb =(2m +n ,m -2n )=(9,-8),∴⎩⎪⎨⎪⎧ 2m +n =9,m -2n =-8,∴⎩⎪⎨⎪⎧m =2,n =5,∴m -n =2-5=-3. 答案:-37.若A (2,-1),B (4,2),C (1,5),则AB +2BC =________. 解析:∵A (2,-1),B (4,2),C (1,5), ∴AB =(2,3),BC =(-3,3).∴AB +2BC =(2,3)+2(-3,3)=(2,3)+(-6,6)=(-4,9). 答案:(-4,9)8.已知O 是坐标原点,点A 在第二象限,|OA |=6,∠xOA =150°,向量OA 的坐标为________.解析:设点A (x ,y ),则x =|OA |cos 150°=6cos 150°=-33, y =|OA |sin 150°=6sin 150°=3, 即A (-33,3),所以OA =(-33,3). 答案:(-33,3)9.已知a =AB ,B 点坐标为(1,0),b =(-3,4),c =(-1,1),且a =3b -2c ,求点A 的坐标.解:∵b =(-3,4),c =(-1,1),∴3b -2c =3(-3,4)-2(-1,1)=(-9,12)-(-2,2)=(-7,10), 即a =(-7,10)=AB .又B (1,0),设A 点坐标为(x ,y ), 则AB =(1-x,0-y )=(-7,10),∴⎩⎪⎨⎪⎧ 1-x =-7,0-y =10⇒⎩⎪⎨⎪⎧x =8,y =-10,即A 点坐标为(8,-10).10.已知向量AB =(4,3),AD =(-3,-1),点A (-1,-2). (1)求线段BD 的中点M 的坐标.(2)若点P (2,y )满足PB =λBD (λ∈R),求λ与y 的值. 解:(1)设B (x 1,y 1),因为AB =(4,3),A (-1,-2), 所以(x 1+1,y 1+2)=(4,3),所以⎩⎪⎨⎪⎧ x 1+1=4,y 1+2=3,所以⎩⎪⎨⎪⎧x 1=3,y 1=1,所以B (3,1).同理可得D (-4,-3), 设BD 的中点M (x 2,y 2),则x 2=3-42=-12,y 2=1-32=-1,所以M ⎝⎛⎭⎫-12,-1. (2)由PB =(3,1)-(2,y )=(1,1-y ),BD =(-4,-3)-(3,1)=(-7,-4),又PB =λBD (λ∈R),所以(1,1-y )=λ(-7,-4)=(-7λ,-4λ),所以⎩⎪⎨⎪⎧1=-7λ,1-y =-4λ,所以⎩⎨⎧λ=-17,y =37.层级二 应试能力达标1.已知向量AB =(2,4),AC =(0,2),则12BC =( )A .(-2,-2)B .(2,2)C .(1,1)D .(-1,-1)解析:选D12BC =12(AC -AB )=12(-2,-2)=(-1,-1),故选D. 2.已知向量a =(1,2),b =(2,3),c =(3,4),且c =λ1a +λ2b ,则λ1,λ2的值分别为( ) A .-2,1 B .1,-2 C .2,-1D .-1,2解析:选D ∵c =λ1a +λ2b ,∴(3,4)=λ1(1,2)+λ2(2,3)=(λ1+2λ2,2λ1+3λ2),∴⎩⎪⎨⎪⎧λ1+2λ2=3,2λ1+3λ2=4,解得λ1=-1,λ2=2. 3.已知四边形ABCD 的三个顶点A (0,2),B (-1,-2),C (3,1),且BC =2AD ,则顶点D 的坐标为( )A .⎝⎛⎭⎫2,72 B .⎝⎛⎭⎫2,-12 C .(3,2)D .(1,3)解析:选A 设点D (m ,n ),则由题意得(4,3)=2(m ,n -2)=(2m,2n -4),故⎩⎪⎨⎪⎧2m =4,2n -4=3,解得⎩⎪⎨⎪⎧m =2,n =72,即点D ⎝⎛⎭⎫2,72,故选A. 4.对于任意的两个向量m =(a ,b ),n =(c ,d ),规定运算“”为m n =(ac -bd ,bc +ad ),运算“”为m n =(a +c ,b +d ).设f =(p ,q ),若f =(5,0),则f等于( )A .(4,0)B .(2,0)C .(0,2)D .(0,-4)解析:选B 由(1,2)⊗f =(5,0),得⎩⎪⎨⎪⎧ p -2q =5,2p +q =0,解得⎩⎪⎨⎪⎧p =1,q =-2,所以f =(1,-2),所以f =,-2)=(2,0).5.已知向量i =(1,0),j =(0,1),对坐标平面内的任一向量a ,给出下列四个结论: ①存在唯一的一对实数x ,y ,使得a =(x ,y );②若x 1,x 2,y 1,y 2∈R ,a =(x 1,y 1)≠(x 2,y 2),则x 1≠x 2,且y 1≠y 2; ③若x ,y ∈R ,a =(x ,y ),且a ≠0,则a 的起点是原点O ; ④若x ,y ∈R ,a ≠0,且a 的终点坐标是(x ,y ),则a =(x ,y ). 其中,正确结论有________个.解析:由平面向量基本定理,可知①正确;例如,a =(1,0)≠(1,3),但1=1,故②错误;因为向量可以平移,所以a =(x ,y )与a 的起点是不是原点无关,故③错误;当a 的终点坐标是(x ,y )时,a =(x ,y )是以a 的起点是原点为前提的,故④错误.答案:16.已知A (-3,0),B (0,2),O 为坐标原点,点C 在∠AOB 内,|OC |=22,且∠AOC =π4.设OC =λOA +OB (λ∈R),则λ= ________. 解析:过C 作CE ⊥x 轴于点E ,由∠AOC =π4知,|OE |=|CE |=2,所以OC =OE +OB =λOA +OB ,即OE =λOA ,所以(-2,0)=λ(-3,0),故λ=23.。