2016-2017学年七年级数学下期中试卷(含答案和解释)
- 格式:doc
- 大小:34.50 KB
- 文档页数:16
2016-2017学年七年级(下)期中数学试卷一、选择题(每题3分,共24分,答案填在上方的表格里)1.下列图形中,∠1与∠2是内错角的是()A.B.C.D.2.在下面四根木棒中,选一根能与长为4cm,9cm的两根木棒首尾依次相接钉成一个三角形的是()A.4cm B.5cm C.9cm D.13cm3.计算x3•x3的结果是()A.2x3B.2x6C.x6D.x94.下列现象:①电梯的升降运动,②飞机在地面上沿直线滑行,③风车的转动,④冷水加热过程中气泡的上升.其中属于平移的是()A.①②B.①③ C.②③ D.③④5.计算﹣2a(a2﹣1)的结果是()A.﹣2a3﹣2a B.﹣2a3+a C.﹣2a3+2a D.﹣a3+2a6.下列各式中,计算结果为81﹣x2的是()A.(x+9)(x﹣9)B.(x+9)(﹣x﹣9)C.(﹣x+9)(﹣x﹣9)D.(﹣x﹣9)(x﹣9)7.下列方程中是二元一次方程的是()A.3x+y=0 B.2x﹣1=4 C.2x2﹣y=2 D.2x+y=3z8.如图,AB∥CD,DE⊥CE,∠1=34°,则∠DCE的度数为()A.34°B.56°C.66°D.54°二、填空题(每题3分,共30分)9.一种细菌的半径是0.00003厘米,这个数用科学记数法表示为厘米.10.已知a+b=3,ab=2,计算:a2b+ab2等于.11.如果一个正多边形的一个外角是36°,那么该正多边形的边数为.12.计算:(2x)2•3x=.13.(y﹣1)2=.14.因式分解:a2﹣4=.15.请你写一个关于x,y的二元一次方程组,使得它的解为.16.如图,已知AB∥CD,则∠1与∠2,∠3的关系是.17.计算0.1252015×(﹣8)2016=.18.小丽在计算一个二项式的平方时,得到正确结果m2﹣10mn+■,但最后一项不慎被墨水污染,这一项应是.三、解答题(本大题共有9小题,满分66分)19.计算(每题4分,共8分):(1)()﹣1+()2×(﹣2)3﹣(π﹣3)0.(2)4xy2•(﹣x2yz3).20.因式分解(每题4分,共8分);(1)2a2﹣2;(2)m2﹣12mn+36n2.21.解下列方程组(每题5分,共10分)(1)(2)22.(8分)已知,如图,在正方形网格中,每个小正方形的边长均为1,将△ABC先向上平移3格,再向左平移2格.(1)画出平移后的图形△A′B′C′;(2)直接写出△A′B′C′的面积.23.(6分)已知:A=4x+y,B=4x﹣y,计算A2﹣B2.24.(6分)已知a x=5,a x+y=30,求a x+a y的值.25.(6分)如图,BD是△ABD与△CBD的公共边,AB∥CD,∠A=∠C,试判断AD与BC的位置关系,并说明理由.26.(6分)七年级一班在召开期末总结表彰会前,班主任安排班长李小波去商店买奖品,下面是李小波与售货员的对话:李小波:阿姨,您好!售货员:同学,你好,想买点什么?李小波:我只有100元,请帮我安排买10支钢笔和15本笔记本.售货员:好,每支钢笔比每本笔记本贵2元,退你5元,请清点好,再见.根据这段对话,你能算出钢笔和笔记本的单价各是多少吗?27.(8分)如图1,是一个长为2m、宽为2n的长方形,沿图中虚线剪成四个完全一样的小长方形,然后按图2的形状拼成一个正方形.(1)图2中阴影部分的面积为;(2)用两种不同的方法计算图2中阴影部分的面积,可以得到的等式是(只填序号);①(m+n)2=m2+2mn+n2 ②(m﹣n)2=m2﹣2mn+n2③(m﹣n)2=(m+n)2﹣4mn(3)若x﹣y=﹣4,xy=,则x+y=.2016-2017学年七年级(下)期中数学试卷参考答案与试题解析一、选择题(每题3分,共24分)二、填空题(每题3分,共30分)9.3×10﹣510.6.11.10.12. 12x3.13.y2+1﹣2y.14.(a+2)(a﹣2).15..16.∠1=∠2+∠3.178.18.25n2.三、解答题(本大题共有9小题,满分66分)19.计算:(1)()﹣1+()2×(﹣2)3﹣(π﹣3)0.(2)4xy2•(﹣x2yz3).解:(1)原式=﹣2﹣1=3﹣2﹣1=0;(2)4xy2•(﹣x2yz3)=4×(﹣)(x•x2)(y2•y)z3=﹣x3y3z3.20.因式分解;(1)2a2﹣2;(2)m2﹣12mn+36n2.解:(1)原式=2(a2﹣1)=2(a+1)(a﹣1);(2)原式=(m﹣6n)2.21.解:(1),把?代入?得:6y+y+7=0,即y=﹣1,把y=﹣1代入?得:x=﹣3,则方程组的解为;(2),?﹣?×2得:7y=35,即y=5,把y=5代入?得:x=2,则方程组的解为.22.解:(1)如图所示:△A'B'C'即为所求;(2)△A'B'C'的面积为:×4×4=8.故答案为:8.23.已知:A=4x+y,B=4x﹣y,计算A2﹣B2.解:∵A=4x+y,B=4x﹣y,∴A2﹣B2=(A+B)(A﹣B)=(4x+y+4x﹣y)(4x+y﹣4x+y)=8x×2y=16xy.24.已知a x=5,a x+y=30,求a x+a y的值.解:∵a x=5,a x+y=30,∴a y=a x+y﹣x=30÷5=6,∴a x+a y=5+6=11,即a x+a y的值是11.25.解:AD∥BC.理由:∵AB∥CD,∴∠A+∠ADC=180°.∵∠A=∠C,∴∠C+∠ADC=180°,∴AD∥BC.26.解:设钢笔每支为x元,笔记本每本y元,据题意得答:钢笔每支5元,笔记本每本3元。
20162017 年度七年级下期中测试数学试卷 ( 含答案 )————————————————————————————————作者:————————————————————————————————日期:2016-2017 学年度七年级下期中考试数学试卷一、精心选一选.(本大题共 10 个小题,每题 3 分,共 30 分.1.以下运算正确的选项是().A . a5+ a5 =a 10B . a6×a4=a 24C . a0÷a -1 =aD. (a2)3=a 52.以下关系式中,正确的是()..A.(a -b) 2 =a 2-b 2B.(a+ b) (a-b)=a 2-b 2C.(a+b) 2 =a 2+b 2D.(a+b) 2=a 2+ ab +b 23.大象是世界上最大的陆栖动物,它的体重的百万分之一相当于()的体重A. 袋鼠B. 啄木鸟C. 蜜蜂D. 小鸡4.假如一个角的补角是 130 °,那么这个角的余角的度数是()A.20°B. 40°C.70° D .130 °5. 以下哪组数能构成三角形()A、4,5,9B、8,7,15C、5,5,11D、13 ,12,206.4 ㎝,另一边为5 ㎝,则它的周长为 ()假如一个等腰三角形的一边为A、 14B、 13C、14 或 13 D 、、没法计算7.以下说法中,正确的选项是()A.内错角相等.B.同旁内角互补.C.同角的补角相等.D. 相等的角是对顶角.8.以长为 3,5,7,10 的四条线段中的三条为边,能构成三角形的个数为()A. 1B.2C.3 D . 49.如图1,以下条件中,能判断DE∥AC的是()A. ∠EDC= ∠EFCB.∠AFE= ∠ACDC. ∠1= ∠2D. ∠3= ∠4图1 10. 已知 x a=3,x b =5, 则 x2a-b =()A. 3B.6C.9D. 1 555二、仔细填一填(每题 3 分,合计 24)11.有两根长 3 ㎝、4 ㎝的木棒,选择第三根木棒构成三角形,则第三根木棒第范围是。
2016-2017学年度第二学期期中考试七年级数学试卷一、选择题(本题有 小题,每题 分,共 分) 、下面四个图形中 与 是对顶角的是( )✌. . . .、方程组的解为( ) ✌....、在♊ ⍓;♋⌧﹣ ⍓;♌⌧⍓;♍ ⍓四个式子中,不是二元一次方程的有( ) ✌. 个 . 个 . 个 . 个 、如图所示,图中 与 是同位角的是( )2(1)11212(3)12(4)✌、 个 、 个 、 个 、 个 .下列运动属于平移的是( )✌.冷水加热过程中小气泡上升成为大气泡 .急刹车时汽车在地面上的滑动 .投篮时的篮球运动 .随风飘动的树叶在空中的运动、如图 ,下列能判定✌的条件有☎ ✆个☎✆ ︒=∠+∠180BCD B ; ☎✆21∠=∠;☎✆ 43∠=∠; ☎✆ 5∠=∠B✌. . . 、下列语句是真命题的有☎ ✆♊点到直线的垂线段叫做点到直线的距离; ♋内错角相等;♌两点之间线段最短; ♍过一点有且只有一条直54D3E21C B A图线与已知直线平行;♎在同一平面内,若两条直线都与第三条直线垂直,那么这两条直线互相平行.✌. 个 . 个 . 个. 个、如图 ,把一个长方形纸片沿☜☞折叠后,点 、 分别落在 、 的位置,若 ☜☞,则 ✌☜☎ ✆✌、 、 、 、 、如图 ,直线21//l l , ✌, ,则 ( )✌. . . . 、如图 ,两个全等的直角三角形重叠在一起,将其中的一个三角形沿着点 到 的方向平移到 ☜☞的位置,✌, ,平移距离为 ,则阴影部分面积为( )✌∙∙∙∙ ∙∙∙∙ ∙∙∙∙ ∙∙二、填空题(本题有 小题, 题 分,其余每题 分,共 分) 、﹣ 的立方根是的平方根是 如果,那么♋ ,的绝对值是 , 2的小数部分是♉♉♉♉♉♉♉、命题❽对顶角相等❾的题设 ,结论、( )点 在第二象限内, 到⌧轴的距离是 ,到⍓轴的距离是 ,那么点 的坐标为♉♉♉♉♉♉♉ ( )若,则、如图 ,一艘船在✌处遇险后向相距 海里位于 处的救生船报警.用方向和距离描述遇险船相对于救生船的位置图图F EDCB音乐台湖心亭牡丹园望春亭游乐园(2,-2)孔桥、 ✌的两边与 的两边互相平行,且 ✌比 的 倍少 ,则 ✌的度数为♉♉♉♉♉♉♉、在平面直角坐标系⌧⍓中,对于点 (⌧,⍓),我们把点 ( ⍓,⌧)叫做点 的伴随点.已知点✌ 的伴随点为✌ ,点✌ 的伴随点为✌ ,点✌ 的伴随点为✌ ,⑤,这样依次得到点✌ ,✌ ,✌ ,⑤,✌⏹,⑤.若点✌ 的坐标为( , ),则点✌ 的坐标为 , 点✌ 的坐标为♉♉♉♉♉♉♉♉♉ 三、解答题(本题有 小题,共 分)、(本题有 小题,每小题 分,共 分)(一)计算:( )322769----)( ( ))13(28323-++-☎✆ ☎- ✆+ ☎ +✆. (二)解方程:( ) ⌧ . ( )(⌧﹣ ) ( )、(本小题 分)把下列各数分别填入相应的集合里:38,3,- ,3π,722,32-,87-, ,- ••02, ,7-, ⑤☎每两个相邻的 中间依次多 个 ✆. ☎✆正有理数集合: ⑤❝; ☎✆负无理数集合:⑤❝;、(本小题 分)王霞和爸爸、妈妈到人民公园游玩,回到家后,她利用平面直角坐标系画出了公园的景区地图,如图所示 可是她忘记了在图中标出原点和⌧轴 ⍓轴 只知道游乐园 的坐标为( ,- ), 请你帮她画出坐标系,并写出其他各景点的坐标、(本小题 分)已知 是⌧的立方根,且(⍓) ,求的值.、(本小题 分)如图,直线✌、 、☜☞相交于点 .( )写出 ☜的邻补角;( )分别写出 ☜和 ☜的对顶角;( )如果 ,EFAB ,求 ☞和 ☞的度数.、(本小题 分)某公路规定行驶汽车速度不得超过 千米 时,当发生交通事故时,交通警察通常根据刹车后车轮滑过的距离估计车辆的行驶速度,所用的经验公式是,其中❖表示车速(单位:千米 时),♎表示刹车后车轮滑过的距离(单位:米),♐表示摩擦系数.在一次交通事故中,经测量♎米,♐.请你判断一下,肇事汽车当时是否超出了规定的速度?、(本小题 分)完成下列推理说明:( )如图,已知 , ,可推出✌.理由如下:因为 (已知),且 ( )所以 (等量代换) 所以 ☜☞( )所以 ( )又因为 (已知) 所以 (等量代换)所以✌( )( )如图,已知 , .求证: ☜ ☞☜.证明: (已知),✌ ( )( )又 (已知), (等量代换)✌☜( ) ☜ ☞☜( )、(本小题 分)如图,长方形 ✌中, 为平面直角坐标系的原点,点✌、 的坐标分别为✌( , ), ( , ),点 在第一象限.( )写出点 的坐标 ;( )若过点 的直线交长方形的 ✌边于点 ,且把长方形 ✌的周长分成 : 的两部分,求点 的坐标;( )如果将( )中的线段 向下平移 个单位长度,得到对应线段 , 在平面直角坐标系中画出 ,并求出它的面积.、(本小题 分)如图,已知 , ,你能判断 与 ✌☜的大小关系吗?并说明理由(本小题 分)如图,在平面直角坐标系中,点✌, 的坐标分别为(﹣ , ),( , ),现同时将点✌, 分别向上平移 个单位,再向右平移 个单位,分别得到点✌, 的对应点 , ,连接✌, , .得平行四边形✌( )直接写出点 , 的坐标;( )若在⍓轴上存在点 ,连接 ✌, ,使 ✌ 平行四边形✌,求出点 的坐标.( )若点 在直线 上运动,连接 , .请画出图形,直接写出 、 、 的数量关系. 学年度第二学期期中联考数学科 评分标准一、选择题(本大题共 小题,每小题 分,共 分)二、填空题(本大题共 小题, 题 分,其余每小题 分,共 分). 、 ± 、 、 ﹣、 2 .题设 两个角是对顶角 结论 这两个角相等.( ) ( , ) ( ) . 南偏西 °, 海里. °或 ° ☎答出一种情况 分) . ( ) 、 ( )三、解答题(本大题共 小题,共 分)☎分)☎一✆( )322769----)( ( ))13(28323-++-解:原式= (- ) … 解:原式=232223-++-…… = …………………… =…233-……… ☎✆ ☎- ✆+ ☎ +✆. 解:原式=13222++-……=222+ ……………………(二)( ) ⌧ . ( )(⌧﹣ ) 题号答案✌✌✌解:⌧ ,…… ⌧﹣ 或⌧﹣ ﹣ ……⌧±,…… ⌧═ 或⌧…… (求出一根给 分)( ),(⌧ ) ,…… ⌧ ,…… ⌧.……(本小题 分)解:☎✆正有理数集合: 38,722, ,…❝ …… 分 ☎✆负无理数集合: 32-,7-,…❝.…… 分(本小题 分)解:( )正确画出直角坐标系;…… 分( )各点的坐标为✌☎✆( , ), (﹣ , ),☜( , ),☞( , );…… 分 (本小题 分)解:∵ 是⌧的立方根, ∴⌧,…… ∵(⍓﹣ ) ,∴, 解得:,……∴.……(本小题 分)解:( )∠ ☞和∠☜……( )∠ ☜和∠ ☜的对顶角分别为∠ ☞和∠✌☞.…… ( )∵✌⊥☜☞ ∴∠✌☞∠ ☞°∴∠ ☞∠ ☞∠ ° ° °…… 又∵∠✌∠ °∴∠☞∠✌☞∠✌° ° °.……(本小题 分)解:把♎,♐代入❖ ,❖ ( ❍♒)……∵ > , ……∴肇事汽车当时的速度超出了规定的速度.…….( 分)( )如图,已知∠ ∠ ,∠ ∠ ,可推出✌∥ .理由如下:因为∠ ∠ (已知),且∠ ∠ (对顶角相等)……所以∠ ∠ (等量代换)所以 ☜∥ ☞(同位角相等,两直线平行)……所以∠ ∠ (两直线平行,同位角相等)……又因为∠ ∠ (已知)所以∠ ∠ (等量代换)所以✌∥ (内错角相等,两直线平行)……( )在括号内填写理由.如图,已知∠ ∠ °,∠ ∠ .求证:∠☜∠ ☞☜.证明:∵∠ ∠ °(已知),∴✌∥ (同旁内角互补,两直线平行)……∴∠ ∠ ☜(两直线平行,同位角相等)……又∵∠ ∠ (已知),∴∠ ☜∠ (等量代换)……∴✌∥ ☜(内错角相等,两直线平行)……∴∠☜∠ ☞☜(两直线平行,内错角相等)…….( 分)解:( )点 的坐标( , );……( )长方形 ✌周长 ×( ) ,∵长方形 ✌的周长分成 : 的两部分,∴两个部分的周长分别为 , ,∵ ✌∴ ∵ ,∴ ,∴点 的坐标为( , );……( )如图所示,△ ′ ′即为所求作的三角形,……′ ,点 ′到 ′的距离为 ,所以,△ ′ ′的面积 × × .……( 分)解:∠ 与∠✌☜相等,……理由为:证明:∵∠ ∠ °,∠ ∠ ☞☜°,∴∠ ∠ ☞☜ ……∴✌∥☜☞∴∠ ∠✌☜ ……又∠ ∠∴∠ ∠✌☜∴ ☜∥ ……∴∠ ∠✌☜……、(本小题 分)解:( ) ( , ), ( , );……( )∵✌, ,∴ 平行四边形✌ ✌• × ,设 坐标为( ,❍),∴× × ❍,解得❍±∴ 点的坐标为( , )或( ,﹣ );…… (求出一点给 分)( )当点 在 上,如图 ,∠ ∠ ∠ ;……当点 在线段 的延长线上时,如图 ,,∠ ﹣∠ ∠ ;……同理可得当点 在线段 的延长线上时,∠ ﹣∠ ∠ .…… ☎每种情况正确画出图形给 分✆。
2016-2017学年山东省泰安市岱岳区七年级(下)期中数学试卷一、选择题1.方程mx﹣2y=5是二元一次方程时,常数m的取值为()A.m≠0 B.m≠1 C.m≠﹣1 D.m≠22.掷一枚骰子,朝上的一面出现奇数的概率是()A.B.C.D.3.用代入法解方程组,能使代入后化简比较容易的变形是()A.由①得x=B.由①得y=C.由②得x=D.由②得y=2x﹣54.用加减法解方程时,要使两个方程中同一未知数的系数相等或相反,有以下四种变形的结果①②③④其中变形正确的是()A.①②B.③④C.①③D.②④5.如图,能判断AB∥CD的条件是()A.∠1=∠2 B.∠1+∠2=180°C.∠3=∠4 D.∠3+∠4=90°6.下列命题是真命题的有几个?()①对顶角相等;②相等的角是对顶角;③若两个角不相等,则这两个角一定不是对顶角;④若两个角不是对顶角,则这两个角不相等.A.1个 B.2个 C.3个 D.4个7.两平行直线被第三条直线所截,一组同位角的角平分线()A.互相重合B.互相平行C.互相垂直D.相交但不垂直8.下列说法中不正确的是()A.抛掷一枚硬币,硬币落地时正面朝上是随机事件B.把4个球放入三个抽屉中,其中一个抽屉中至少有2个球是必然事件C.任意打开七年级下册数学教科书,正好是97页是确定事件D.一个盒子中有白球3个,红球6个,(每个球除了颜色外都相同),如果从中任取一个球,取得红球的可能性大9.如图,AB∥CD∥EF,AC∥DF,若∠BAC=120°,则∠CDF=()A.60°B.120°C.150° D.180°第1页(共18页)第2页(共18页)10.如图,直线a 、b 被直线c 所截,a ∥b ,∠1=∠2,若∠3=40°,则∠4等于( )A .40°B .50°C .70°D .80°11.如图,直线a ∥b ,三角板的直角顶点在直线a 上,已知∠1=25°,则∠2的度数是( )A .25°B .55°C .65°D .155°12.一个布袋里装有6个只有颜色可以不同的球,其中2个红球,4个白球.从布袋里任意摸出1个球,则摸出的球是红球的概率为( ) A . B . C . D .13.下面四条直线,其中直线上每个点的坐标都是二元一次方程x ﹣2y=2的解是( )A .B .C .D .14.学习平行线的性质后,老师给小明出了一道题:如图,一条公路修到湖边时,需拐弯绕湖而过,如果第一次拐的角∠A 是120°,第二次拐的角∠B 是150°,第三次拐的角是∠C ,这时的道路恰好和第一次拐弯之前的道路平行,则∠C 是多少度?请你帮小明求出( )A .120°B .130°C .140°D .150°15.新学期开始,七年级2班34名同学参加劳动,分别搬运课本与作业本,其中搬运课本的人数是搬运作业本人数的2倍多1人,求搬运课本与作业本的人数各是多少?设搬运课本人数为x 人,搬运作业本人数为y 人,下面所列的方程组正确的是( )A .B .C .D .16.命题“垂直于同一条直线的两条直线互相平行”的条件是( ) A .垂直B .两条直线互相平行C.同一条直线D.两条直线垂直于同一条直线17.下列选项中,可以用来证明命题“若a2>1,则a>1”是假命题的反例是()A.a=﹣2 B.a=﹣1 C.a=1 D.a=218.如果二元一次方程组的解是二元一次方程2x﹣3y+12=0的一个解,那么a的值是()A.B.﹣ C.D.﹣19.已知,则2a+2b等于()A.6 B.C.4 D.220.A和B两城市相距420千米,一辆小汽车和一辆客车同时从A、B两地相向开出,经过2.5小时相遇,相遇时,小汽车比客车多行驶70千米,设小汽车和客车的平均速度分别为x千米/小时和y千米/小时,则下列方程组正确的是()A.B.C.D.二、填空题21.已知方程组的解是,则一次函数y=ax+b与y=kx的交点P的坐标是.22.如图,∠1+∠2+∠3+∠4+∠5+∠6=度.23.如图,把一个长方形纸片沿EF折叠后,点D、C分别落在D′、C′位置,若∠EFB=65°,则∠AED′=°.24.有一箱规格相同的红、黄两种颜色的小塑料球共1000个.为了估计这两种颜色的球各有多少个,小明将箱子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回箱子中,多次重复上述过程后.发现摸到红球的频率约为0.6,据此可以估计红球的个数约为.三、解答题25.如图,∠ACE=∠FEC,∠EFB=∠A,试说明FB∥AE.26.(1)用代入消元法解方程组第3页(共18页)(2)用加减消元法解方程组.27.如图,CF是∠ACB的平分线,CG是∠ACB外角的平分线,FG∥BC交CG于点G,已知∠A=45°,∠B=55°,求∠FGC和∠FCG的度数.28.(列方程组解应用题)新新儿童服装店对“天使”牌服装进行调价,其中A型每件的价格上调了10%,B型每件的价格下调了5%,已知调价前买这两种服装各一件共花费70元,调价后买3件A型服装和2件B型服装共花费175元,问这两种服装在调价前每件各多少元?29.我校学生会组织学生到距学校6千米的敬老院打扫卫生,如图所示,11、12分别表示步行和骑车同学前往目的地所走的路程y(千米)与所用时间x(分钟)之间的函数图象,求在距学校多远处骑车的同学追上步行的同学,此时步行的同学走了多少分钟?第4页(共18页)第5页(共18页)2016-2017学年山东省泰安市岱岳区七年级(下)期中数学试卷参考答案与试题解析一、选择题1.方程mx﹣2y=5是二元一次方程时,常数m的取值为()A.m≠0 B.m≠1 C.m≠﹣1 D.m≠2【考点】91:二元一次方程的定义.【分析】根据二元一次方程的定义,从二元一次方程的未知数的个数这个方面考虑.【解答】解:mx﹣2y=5,根据二元一次方程的定义,得,m≠0,故选A.2.掷一枚骰子,朝上的一面出现奇数的概率是()A.B.C.D.【考点】X4:概率公式.【分析】任意掷一枚均匀的骰子总共有6种情况,其中奇数有3种情况,利用概率公式进行计算即可.【解答】解:正方体骰子,六个面上分别刻有的1,2,3,4,5,6六个数字中,奇数为1,3,5,则向上一面的数字是奇数的概率为=.故选C.3.用代入法解方程组,能使代入后化简比较容易的变形是()A.由①得x=B.由①得y=C.由②得x=D.由②得y=2x﹣5【考点】98:解二元一次方程组.【分析】观察方程组发现第二个方程y系数为﹣1,故变形第二个方程表示出y较为容易.【解答】解:用代入法解方程组,能使代入后化简比较容易的变形是由②得y=2x﹣5,故选D4.用加减法解方程时,要使两个方程中同一未知数的系数相等或相反,有以下四种变形的结果第6页(共18页)①②③④其中变形正确的是()A.①②B.③④C.①③D.②④【考点】98:解二元一次方程组.【分析】根据加减法的要求将方程组变形,即可作出判断.【解答】解:用加减法解方程时,要使两个方程中同一未知数的系数相等或相反,正确的结果为③;④,故选B5.如图,能判断AB∥CD的条件是()A.∠1=∠2 B.∠1+∠2=180°C.∠3=∠4 D.∠3+∠4=90°【考点】J9:平行线的判定.【分析】如图,利用平角定义得到∠1+∠5=180°,则当∠1+∠2=180°时,∠2=∠5,然后根据平行线的判定可判断AB∥CD.【解答】解:如图,因为∠1+∠5=180°,所以当∠1+∠2=180°时,∠2=∠5,所以AB∥CD.故选B.6.下列命题是真命题的有几个?()①对顶角相等;②相等的角是对顶角;③若两个角不相等,则这两个角一定不是对顶角;④若两个角不是对顶角,则这两个角不相等.A.1个 B.2个 C.3个 D.4个【考点】O1:命题与定理.【分析】根据题目中的说法可以判断各个命题是否为真命题,从而可以解答本题.【解答】解:对顶角相等,故①是真命题,第7页(共18页)相等的角不一定是对顶角,如两直线平行,同位角相等,而这两个同位角不是对顶角,故②是假命题,因为对顶角相等,所以两个角不相等,则这两个角一定不是对顶角,故③是真命题,若两个角不是对顶角,则这两个角可能相等,如两直线平行,同位角相等,则这两个同位角不是对顶角,故④是真命题,故选C.7.两平行直线被第三条直线所截,一组同位角的角平分线()A.互相重合B.互相平行C.互相垂直D.相交但不垂直【考点】JA:平行线的性质;IJ:角平分线的定义;J9:平行线的判定.【分析】依照题意,画出图形,根据平行线的性质可得∠ABC=∠ADE,利用角平分线的定义可得出∠ABM=∠ADN,由此即可证出BM∥DN.【解答】解:依照题意,画出图形,如图所示.∵BC∥DE,∴∠ABC=∠ADE.∵BM平分∠ABC,DN平分∠ADE,∴∠ABM=∠ADN,∴BM∥DN.故选B.8.下列说法中不正确的是()A.抛掷一枚硬币,硬币落地时正面朝上是随机事件B.把4个球放入三个抽屉中,其中一个抽屉中至少有2个球是必然事件C.任意打开七年级下册数学教科书,正好是97页是确定事件D.一个盒子中有白球3个,红球6个,(每个球除了颜色外都相同),如果从中任取一个球,取得红球的可能性大【考点】X2:可能性的大小;X1:随机事件.【分析】根据可能性的大小,以及随机事件的判断方法,逐项判断即可.【解答】解:∵抛掷一枚硬币,硬币落地时正面朝上是随机事件,∴选项A不符合题意;∵把4个球放入三个抽屉中,其中一个抽屉中至少有2个球是必然事件,∴选项B不符合题意;∵任意打开七年级下册数学教科书,正好是97页是随机事件,∴选项C符合题意;第8页(共18页)∵一个盒子中有白球3个,红球6个,(每个球除了颜色外都相同),如果从中任取一个球,取得红球的可能性大,∴选项D不符合题意.故选:C.9.如图,AB∥CD∥EF,AC∥DF,若∠BAC=120°,则∠CDF=()A.60°B.120°C.150° D.180°【考点】JA:平行线的性质.【分析】根据两直线平行,同旁内角互补由AB∥CD得到∠BAC+∠ACD=180°,可计算出∠ACD=60°,然后由AC∥DF,根据平行线的性质得到∠ACD=∠CDF=60°.【解答】解:∵AB∥CD,∴∠BAC+∠ACD=180°,∵∠BAC=120°,∴∠ACD=180°﹣120°=60°,∵AC∥DF,∴∠ACD=∠CDF,∴∠CDF=60°.故选A.10.如图,直线a、b被直线c所截,a∥b,∠1=∠2,若∠3=40°,则∠4等于()A.40°B.50°C.70°D.80°【考点】JA:平行线的性质.【分析】通过角的计算可求出∠1的度数,再根据平行线的性质即可得出∠4=∠1,此题得解.【解答】解:∵∠1=∠2,∠1+∠2+∠3=180°,∴∠1==70°.∵a∥b,∴∠4=∠1=70°.故选C.11.如图,直线a∥b,三角板的直角顶点在直线a上,已知∠1=25°,则第9页(共18页)∠2的度数是()A.25°B.55°C.65°D.155°【考点】JA:平行线的性质.【分析】先根据平角等于180°求出∠3,再利用两直线平行,同位角相等解答.【解答】解:∵∠1=25°,∴∠3=180°﹣90°﹣25°=65°,∵a∥b,∴∠2=∠3=65°.故选C.12.一个布袋里装有6个只有颜色可以不同的球,其中2个红球,4个白球.从布袋里任意摸出1个球,则摸出的球是红球的概率为()A.B.C.D.【考点】X4:概率公式.【分析】让红球的个数除以球的总个数即为所求的概率.【解答】解:因为一共有6个球,红球有2个,所以从布袋里任意摸出1个球,摸到红球的概率为:=.故选D.13.下面四条直线,其中直线上每个点的坐标都是二元一次方程x﹣2y=2的解是()A. B. C.D.【考点】FE:一次函数与二元一次方程(组).【分析】根据两点确定一条直线,当x=0,求出y的值,再利用y=0,求出x的值,即可得出一次函数图象与坐标轴交点,即可得出图象.【解答】解:∵x﹣2y=2,第10页(共18页)∴y=x﹣1,∴当x=0,y=﹣1,当y=0,x=2,∴一次函数y=x﹣1,与y轴交于点(0,﹣1),与x轴交于点(2,0),即可得出C符合要求,故选:C.14.学习平行线的性质后,老师给小明出了一道题:如图,一条公路修到湖边时,需拐弯绕湖而过,如果第一次拐的角∠A是120°,第二次拐的角∠B是150°,第三次拐的角是∠C,这时的道路恰好和第一次拐弯之前的道路平行,则∠C是多少度?请你帮小明求出()A.120°B.130°C.140° D.150°【考点】JA:平行线的性质.【分析】作BD∥AE,如图,利用平行线的传递性得到BD∥CF,再根据平行线的性质由BD∥AE得到∠ABD=∠A=120°,则∠DBC=30°,然后利用BD ∥CF求出∠C.【解答】解:作BD∥AE,如图,∵AE∥CF,∴BD∥CF,∵BD∥AE,∴∠ABD=∠A=120°,∴∠DBC=150°﹣120°=30°,∵BD∥CF,∴∠C+∠DBC=180°,∴∠C=180°﹣30°=150°.故选D.15.新学期开始,七年级2班34名同学参加劳动,分别搬运课本与作业本,其中搬运课本的人数是搬运作业本人数的2倍多1人,求搬运课本与作业本的人数各是多少?设搬运课本人数为x人,搬运作业本人数为y人,下面所列的方程组正确的是()A.B.C.D.第11页(共18页)【考点】99:由实际问题抽象出二元一次方程组.【分析】根据题意可以列出相应的方程组,从而可以解答本题.【解答】解:由题意可得,,故选B.16.命题“垂直于同一条直线的两条直线互相平行”的条件是()A.垂直B.两条直线互相平行C.同一条直线D.两条直线垂直于同一条直线【考点】O1:命题与定理.【分析】命题有条件和结论两部分组成,条件是已知的部分,结论是由条件得出的推论.【解答】解:“垂直于同一条直线的两条直线互相平行”的条件是“两条直线垂直于同一条直线”,结论是“两条直线互相平行”.故选:D.17.下列选项中,可以用来证明命题“若a2>1,则a>1”是假命题的反例是()A.a=﹣2 B.a=﹣1 C.a=1 D.a=2【考点】O3:反证法.【分析】根据要证明一个结论不成立,可以通过举反例的方法来证明一个命题是假命题.【解答】解:用来证明命题“若a2>1,则a>1”是假命题的反例可以是:a=﹣2,∵(﹣2)2>1,但是a=﹣2<1,∴A正确;故选:A.18.如果二元一次方程组的解是二元一次方程2x﹣3y+12=0的一个解,那么a的值是()A.B.﹣ C.D.﹣【考点】97:二元一次方程组的解;92:二元一次方程的解.【分析】将a看做已知数,求出方程组的解得到x与y,代入方程中计算即可求出a的值.【解答】解:依题意知,,由①+②得x=6a,把x=6a代入①得y=﹣3a,把代入2x﹣3y+12=0得2×6a﹣3(﹣3a)+12=0,解得:a=﹣.故选B.第12页(共18页)19.已知,则2a+2b等于()A.6 B.C.4 D.2【考点】98:解二元一次方程组.【分析】方程组两方程相加,求出2a+2b的值即可.【解答】解:,①+②得:4a+4b=12,则2a+2b=6,故选A20.A和B两城市相距420千米,一辆小汽车和一辆客车同时从A、B两地相向开出,经过2.5小时相遇,相遇时,小汽车比客车多行驶70千米,设小汽车和客车的平均速度分别为x千米/小时和y千米/小时,则下列方程组正确的是()A.B.C.D.【考点】99:由实际问题抽象出二元一次方程组.【分析】根据题意可以列出相应的方程组,从而可以解答本题.【解答】解:由题意可得,,故选D.二、填空题21.已知方程组的解是,则一次函数y=ax+b与y=kx的交点P的坐标是(1,3).【考点】FE:一次函数与二元一次方程(组).【分析】两条直线的交点坐标应该是联立两个一次函数解析式所组方程组的解.【解答】解:∵方程组的解是,∴一次函数y=ax+b与y=kx的交点P的坐标是(1,3).22.如图,∠1+∠2+∠3+∠4+∠5+∠6=360度.第13页(共18页)【考点】L3:多边形内角与外角;K7:三角形内角和定理;K8:三角形的外角性质.【分析】根据三角形中内角和为180°,有∠HGT=180°﹣(∠1+∠2),∠GHT=180°﹣(∠5+∠6),∠GTH=180°﹣(∠3+∠4),三式相加,再利用三角形中内角和为180°即可求得.【解答】解:如图,根据三角形中内角和为180°,有∠HGT=180°﹣(∠1+∠2),∠GHT=180°﹣(∠5+∠6),∠GTH=180°﹣(∠3+∠4),∴∠HGT+∠GHT+∠GTH=540°﹣(∠1+∠2+∠3+∠4+∠5+∠6),∵∠HGT+∠GHT+∠GTH=180°,∴180°=540°﹣(∠1+∠2+∠3+∠4+∠5+∠6),∴∠1+∠2+∠3+∠4+∠5+∠6=360°,故答案为:360.23.如图,把一个长方形纸片沿EF折叠后,点D、C分别落在D′、C′位置,若∠EFB=65°,则∠AED′=57.5°.【考点】JA:平行线的性质.【分析】先利用平行线的性质得∠AEF=115°,然后根据折叠的性质可计算出∠AED′=∠AEF=57.5°.【解答】解:∵AD∥BC,∴∠EFB+∠AEF=180°,∴∠AEF=180°﹣65°=115°,∵长方形纸片沿EF折叠后,点D、C分别落在D′、C′位置,∴∠AED′=∠FED′=∠AEF=57.5°.故答案为57.5.24.有一箱规格相同的红、黄两种颜色的小塑料球共1000个.为了估计这两种颜色的球各有多少个,小明将箱子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回箱子中,多次重复上述过程后.发现摸到红球的频率约为0.6,据此可以估计红球的个数约为600个.第14页(共18页)【考点】X8:利用频率估计概率.【分析】因为多次重复上述过程后,发现摸到红球的频率约为0.6,所以红球所占的百分比也就是60%,根据总数可求出红球个数.【解答】解:∵摸到红球的频率约为0.6,∴红球所占的百分比是60%.∴1000×60%=600(个).故答案为:600个.三、解答题25.如图,∠ACE=∠FEC,∠EFB=∠A,试说明FB∥AE.【考点】J9:平行线的判定.【分析】首先根据内错角相等得到EF∥AD,进而得到∠EFB=∠DBF,进而利用同位角相等,证明出两直线平行.【解答】解:∵∠ACE=∠D,∴EF∥AD.∴∠EFB=∠DBF,∵∠EFB=∠A ∴∠DBF=∠A,∴AE∥BF.26.(1)用代入消元法解方程组(2)用加减消元法解方程组.【考点】98:解二元一次方程组.【分析】(1)用代入消元法,求出方程组的解是多少即可.(2)用加减消元法,求出方程组的解是多少即可.【解答】解:(1)由②,可得:y=2x﹣1③③代入①,可得:3x+2(2x﹣1)=19,解得x=3,∴y=2×3﹣1=5,∴原方程组的解是.(2)①+②,可得:3x=6,解得x=2,第15页(共18页)∴y=2﹣1=1,∴原方程组的解是.27.如图,CF是∠ACB的平分线,CG是∠ACB外角的平分线,FG∥BC交CG于点G,已知∠A=45°,∠B=55°,求∠FGC和∠FCG的度数.【考点】JA:平行线的性质.【分析】首先利用三角形的外角等于不相邻的两个内角的和求得∠ACE的度数,然后根据角的平分线的定义求得∠GCE的度数,再利用平行线的性质求得∠FGC;利用角的平分线的定义可以得到∠FCG=∠ACF+∠ACG=(∠ACB+∠ACE),从而求得∠FCG.【解答】解:∵∠ACE=∠A+∠B=45°+55°=100°,又∵CG是∠ACE的平分线,∴∠GCE=∠ACG=∠ACE=50°,∵FG∥BC,∴∠FGC=∠GCE=50°.∵CF平分∠ACB,∴∠ACF=∠ACB,又∵∠ACG=∠ACE,∴∠FCG=∠ACF+∠ACG=∠ACB+∠ACE=×180°=90°.28.(列方程组解应用题)新新儿童服装店对“天使”牌服装进行调价,其中A型每件的价格上调了10%,B型每件的价格下调了5%,已知调价前买这两种服装各一件共花费70元,调价后买3件A型服装和2件B型服装共花费175元,问这两种服装在调价前每件各多少元?【考点】9A:二元一次方程组的应用.【分析】设调价前A型服装每件x元,B型服装每件y元,根据“调价前买这两种服装各一件共花费70元,调价后买3件A型服装和2件B型服装共花费175元”结合调价规则,即可得出关于x、y的二元一次方程,解之即可得出结论.【解答】解:设调价前A型服装每件x元,B型服装每件y元,根据题意得:,解得:.答:调价前A型服装每件30元,B型服装每件40元.第16页(共18页)29.我校学生会组织学生到距学校6千米的敬老院打扫卫生,如图所示,11、12分别表示步行和骑车同学前往目的地所走的路程y(千米)与所用时间x(分钟)之间的函数图象,求在距学校多远处骑车的同学追上步行的同学,此时步行的同学走了多少分钟?【考点】FH:一次函数的应用.【分析】根据图象上特殊点的坐标及利用速度=路程÷时间的数量关系求出步行和骑车同学的速度,再根据追击时间=路程差÷速度差求出追击时间,再根据路程=速度×时间就可以求出结论.【解答】解:6÷60=0.1(千米/分钟),6÷(54﹣30)=0.25(千米/分钟),0.1×30÷(0.25﹣0.1)=3÷0.15=20(分钟),0.25×20=5(千米).故在距学校5千米远处骑车的同学追上步行的同学,此时步行的同学走了20分钟.第17页(共18页)2017年6月4日第18页(共18页)。
54D 3E21C B A2016-2017学年第二学期期中考试七年级数学试卷(问卷)(卷面分值:100分;考试时间:100分钟)同学们,半个学期的勤奋,今天将展现在试卷上,老师相信你一定会把诚信答满试卷,......................................也一定会让努力书写成功,答题时记住细心和耐心。
.......................注意事项:本卷由问卷和答卷两部分组成,其中问卷共4页,答卷共2页,在问卷上答题无效。
一.选择题(本大题共8小题,每小题3分,共24分)1. 4的平方根是( )A . ±2B .2C .±D .2.点P (-1,5)所在的象限是( )A .第一象限B .第二象限C.第三象限 D.第四象限3.下列各组图形,可由一个图形平移得到另一个图形的是( )A B C D4.如图,直线AB 、CD 相交于点O,若∠1+∠2=100°,则∠BOC 等于 ( )A.130°B.140°C.150°D.160 (第4题图)5.已知是二元一次方程4x+ay=7的一组解,则a 的值为( )A .﹣5B .5C .D .﹣6.如右图,下列能判定AB ∥CD 的条件有( )个. (第6题图) (1) ︒=∠+∠180BCD B (2)21∠=∠(3) 43∠=∠ (4) 5∠=∠B A . 1 B .2 C .3D.4 7.下列各组数中,互为相反数的组是( )A .﹣2与B .﹣2和C .﹣与2D .|﹣2|和28.下列命题:①两直线平行,内错角相等;②如果m 是无理数,那么m 是无限小数;③64的立方根是8;④同旁内角相等,两直线平行;⑤如果a 是实数,那么a 是无理数.其中正确的有( )A .1个B .2个C .3个D .4个二.填空(本大题共6小题,每小题3分,共18分)9.若32123=---n m y x 是二元一次方程,则m=____,n=____.10.计算:|3﹣π|+的结果是 .11.已知点P(0,a)在y 轴的负半轴上,则点Q(-2a -1,-a+1)在第 象限.12.已知a 、b 满足方程组2226a b a b -=⎧⎨+=⎩,则3a b +的值为 . (第13题图) 13.如图,一张宽度相等的纸条,折叠后,若∠ABC=120°,则∠1的度数为 .14.在平面直角坐标系中,点A 的坐标为(﹣1,3),线段AB ∥x 轴,且AB =4,则点B 的坐标为 .三、计算解答题 (每小题5分,共20分)15.计算:364+2)3(--31- 16.1+2)451(- .17.解二元一次方程组:18.已知2a-1的平方根是±3,3a-b+2的算术平方根是4,求a+3b的立方根.四、解答题:(19题6分,20题8分,21题6分,22题8分,23题10分共38分)19. 某工程队承包了修建隧道施工任务,甲、乙两个班组分别从东、西两端同时掘进.已知甲组比乙组平均每天多掘进0.6米,经过5天施工,两组共掘进了50米.求甲、乙两个班组平均每天各掘进多少米?20.已知:如图,∠1=∠2,∠3=∠E.求证:AD∥BE.证明:∵∠1=∠2 (已知)∴∥()∴∠E=∠()又∵∠E=∠3 (已知)∴∠3=∠()∴AD∥BE.()21.如图,直线AB∥CD,直线EF分别交AB、CD于点M、N,∠EMB=50°,MG平分∠BMF,MG交CD于G,求∠1的度数.22.如图,已知△ABC平移后得到△A1B1C1,点A(﹣1,3)平移后得到A1(﹣4,2),(1)写出B,C的坐标:B(,),C(,).(2)画出△ABC,并指出平移规律;(3)求△ABC的面积.A PB 1l 2l 3l 1 2 323如图,已知直线 1l ∥2l ,且 3l 和1l 、2l 分别交于A 、B 两点,点P 在直线AB 上.(1)试找出∠1、∠2、∠3之间的关系并说明理由;(2)当点P 在A 、B 两点间运动时,问∠1、∠2、∠3之间的关系是否发生变化?(只写结论)(3)如果点P 在A 、B 两点外侧运动时,试探究∠1、∠2、∠3 之间的关系。
2016-2017学年安徽省合肥七年级(下)期中数学试卷一、选择题(每小题3分,共30分)1.等于()A.﹣3 B.3 C.D.﹣2.下列运算正确的是()A.3a+2b=5ab B.a3•a2=a5 C.a8•a2=a4 D.(2a2)3=﹣6a63.已知空气的单位体积质量为1.24×10﹣3克/厘米3,1.24×10﹣3用小数表示为()A.0.000124 B.0.0124 C.﹣0.00124 D.0.001244.计算的平方根为()A.±4 B.±2 C.4 D.±5.若2x=3,4y=5,则2x﹣2y的值为()A.B.﹣2 C.D.6.加上下列单项式后,仍不能使4x2+1成为一个整式的完全平方式的是()A.4x4B.4x C.﹣4x D.2x7.长方形的面积为4a2﹣6ab+2a,若它的一边长为2a,则它的周长为()A.4a﹣3b B.8a﹣6b C.4a﹣3b+1 D.8a﹣6b+28.若使代数式的值在﹣1和2之间,m可以取的整数有()A.1个B.2个C.3个D.4个9.已知关于x的不等式组整数解有4个,则b的取值范围是()A.7≤b<8 B.7≤b≤8 C.8≤b<9 D.8≤b≤910.7张如图1的长为a,宽为b(a>b)的小长方形纸片,按图2的方式不重叠地放在矩形ABCD内,未被覆盖的部分(两个矩形)用阴影表示.设左上角与右下角的阴影部分的面积的差为S,当BC的长度变化时,按照同样的放置方式,S始终保持不变,则a,b满足()A.a=b B.a=3b C.a=b D.a=4b二、填空题(每小题4分,共20分)11.因式分解:4mn﹣mn3= .12.若与|x+2y﹣5|互为相反数,则(x﹣y)2017= .13.某数的平方根是2a+3和a﹣15,则这个数为.14.已知不等式组的解集为﹣1<x<2,则(m+n)2012= .15.在数轴上,点A(表示整数a)在原点的左侧,点B(表示整数b)在原点的右侧.若|a﹣b|=2016,且AO=2BO,则a+b的值为.三、解答题(第16、17、18题各6分,第19、20题各10分,第21题12分,共50分)16.计算:17.解不等式组,并将解集在数轴上表示出来.18.先化简,再求值,(3x+2)(3x﹣2)﹣5x(x﹣1)﹣(2x﹣1)2,其中x=﹣.19.已知:a+b=2,ab=1.求:(1)a﹣b(2)a2﹣b2+4b.20.若2(x+4)﹣5<3(x+1)+4的最小整数解是方程的解,求代数式m2﹣2m+11的平方根的值.21.某学校组织340名师生进行长途考察活动,带有行李170件,计划租用甲、乙两种型号的汽车10辆.经了解,甲车每辆最多能载40人和16件行李,乙车每辆最多能载30人和20件行李.(1)请你帮助学校设计所有可行的租车方案;(2)如果甲车的租金为每辆2000元,乙车的租金为每辆1800元,问哪种可行方案使租车费用最省?2016-2017学年安徽省合肥七年级(下)期中数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.等于()A.﹣3 B.3 C.D.﹣【考点】24:立方根.【分析】运用开立方的方法计算.【解答】解: =﹣3,故选A.2.下列运算正确的是()A.3a+2b=5ab B.a3•a2=a5 C.a8•a2=a4 D.(2a2)3=﹣6a6【考点】48:同底数幂的除法;35:合并同类项;46:同底数幂的乘法;47:幂的乘方与积的乘方.【分析】根据同底数幂的除法,底数不变指数相减;合并同类项,系数相加字母和字母的指数不变;同底数幂的乘法,底数不变指数相加;幂的乘方,底数不变指数相乘,对各选项计算后利用排除法求解.【解答】解:A、不是同类项,不能合并,选项错误;B、正确;C、a8•a2=a10,选项错误;D、(2a2)3=8a6,选项错误.故选B.3.已知空气的单位体积质量为1.24×10﹣3克/厘米3,1.24×10﹣3用小数表示为()A.0.000124 B.0.0124 C.﹣0.00124 D.0.00124【考点】1K:科学记数法—原数.【分析】科学记数法的标准形式为a×10n(1≤|a|<10,n为整数).本题把数据“1.24×10﹣3中1.24的小数点向左移动3位就可以得到.24.故选D.4.计算的平方根为()A.±4 B.±2 C.4 D.±【考点】21:平方根;22:算术平方根.【分析】首先根据算术平方根的定义求出的值,然后根据平方根的定义即可求出结果.【解答】解:∵=4,又∵(±2)2=4,∴4的平方根是±2,即的平方根±2.故选B.5.若2x=3,4y=5,则2x﹣2y的值为()A.B.﹣2 C.D.【考点】48:同底数幂的除法.【分析】利用同底数幂除法的逆运算法则计算即可.【解答】解:∵2x=3,4y=5,∴2x﹣2y=2x÷22y,=2x÷4y,=3÷5,=0.6.故选:A.6.加上下列单项式后,仍不能使4x2+1成为一个整式的完全平方式的是()A.4x4B.4x C.﹣4x D.2x【考点】4E:完全平方式.【分析】根据完全平方公式的结构对各选项进行验证即可得解.【解答】解:A、4x4+4x2+1=(2x2+1)2,故本选项错误;B、4x+4x2+1=(2x+1)2,故本选项错误;C、﹣4x+4x2+1=(2x﹣1)2,故本选项错误;D、2x+4x2+1不能构成完全平方公式结构,故本选项正确.7.长方形的面积为4a2﹣6ab+2a,若它的一边长为2a,则它的周长为()A.4a﹣3b B.8a﹣6b C.4a﹣3b+1 D.8a﹣6b+2【考点】4H:整式的除法.【分析】首先利用面积除以一边长即可求得令一边长,则周长即可求解.【解答】解:另一边长是:(4a2﹣6ab+2a)÷2a=2a﹣3b+1,则周长是:2[(2a﹣3b+1)+2a]=8a﹣6b+2.故选D.8.若使代数式的值在﹣1和2之间,m可以取的整数有()A.1个B.2个C.3个D.4个【考点】CC:一元一次不等式组的整数解.【分析】由题意可得不等式组,解不等式组,得到不等式组的解集,然后求其整数解.【解答】解:由题意可得,由①得m>﹣,由②得m<,所以不等式组的解集为﹣<x<,则m可以取的整数有0,1共2个.故选:B.9.已知关于x的不等式组整数解有4个,则b的取值范围是()A.7≤b<8 B.7≤b≤8 C.8≤b<9 D.8≤b≤9【考点】CC:一元一次不等式组的整数解.【分析】首先确定不等式组的解集,先利用含b的式子表示,根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于b的不等式,从而求出b的范围.【解答】解:由不等式x﹣b≤0,得:x≤b,由不等式x﹣2≥3,得:x≥5,∵不等式组有4个整数解,∴其整数解为5、6、7、8,则8≤b<9,10.7张如图1的长为a,宽为b(a>b)的小长方形纸片,按图2的方式不重叠地放在矩形ABCD内,未被覆盖的部分(两个矩形)用阴影表示.设左上角与右下角的阴影部分的面积的差为S,当BC的长度变化时,按照同样的放置方式,S始终保持不变,则a,b满足()A.a=b B.a=3b C.a=b D.a=4b【考点】4I:整式的混合运算.【分析】表示出左上角与右下角部分的面积,求出之差,根据差与BC无关即可求出a 与b的关系式.【解答】解:左上角阴影部分的长为AE,宽为AF=3b,右下角阴影部分的长为PC,宽为a,∵AD=BC,即AE+ED=AE+a,BC=BP+PC=4b+PC,∴AE+a=4b+PC,即AE﹣PC=4b﹣a,∴阴影部分面积之差S=AE•AF﹣PC•CG=3bAE﹣aPC=3b(PC+4b﹣a)﹣aPC=(3b﹣a)PC+12b2﹣3ab,则3b﹣a=0,即a=3b.解法二:既然BC是变化的,当点P与点C重合开始,然后BC向右伸展,设向右伸展长度为X,左上阴影增加的是3bX,右下阴影增加的是aX,因为S不变,∴增加的面积相等,∴3bX=aX,∴a=3b.故选:B.二、填空题(每小题4分,共20分)11.因式分解:4mn﹣mn3= mn(2+n)(2﹣n).【考点】55:提公因式法与公式法的综合运用.【分析】原式提取公因式,再利用平方差公式分解即可.【解答】解:原式=mn(4﹣n2)=mn(2+n)(2﹣n),故答案为:mn(2+n)(2﹣n)12.若与|x+2y﹣5|互为相反数,则(x﹣y)2017= ﹣1 .【考点】98:解二元一次方程组;16:非负数的性质:绝对值;23:非负数的性质:算术平方根.【分析】利用相反数性质及非负数性质列出方程组,求出方程组的解得到x与y的值,代入原式计算即可得到结果.【解答】解:∵与|x+2y﹣5|互为相反数,∴+|x+2y﹣5|=0,∴,①×2+②得:5x=5,解得:x=1,把x=1代入②得:y=2,则原式=﹣1,故答案为:﹣113.某数的平方根是2a+3和a﹣15,则这个数为121 .【考点】21:平方根;86:解一元一次方程.【分析】根据正数有两个平方根,这两个平方根互为相反数,据此即可得到关于a的方程即可求得a的值,进而求得这个数的值.【解答】解:根据题意得:2a+3+(a﹣15)=0,解得a=4,则这个数是(2a+3)2=121.故答案为:121.14.已知不等式组的解集为﹣1<x<2,则(m+n)2012= 1 .【考点】CB:解一元一次不等式组;98:解二元一次方程组;C6:解一元一次不等式.【分析】求出不等式组的解集,根据已知不等式组的解集得出m+n﹣2=﹣1,m=2,求出m、n的值,再代入求出即可.【解答】解:,解不等式②得:x<m,∴不等式组的解集为:m+n﹣2<x<m,∵不等式组的解集为﹣1<x<2,∴m+n﹣2=﹣1,m=2,解得:m=2,n=﹣1,∴(m+n)2012=(2﹣1)2012=1.故答案为:1.15.在数轴上,点A(表示整数a)在原点的左侧,点B(表示整数b)在原点的右侧.若|a﹣b|=2016,且AO=2BO,则a+b的值为﹣672 .【考点】33:代数式求值;13:数轴.【分析】依据绝对自的定义可知b﹣a=2016,﹣a=2b,从而可求得a、b的值,故此可求得a+b的值.【解答】解:∵点A(表示整数a)在原点的左侧,点B(表示整数b)在原点的右侧,∴a<0,b>0.又∵|a﹣b|=2016,∴b﹣a=2016.∵AO=2BO,∴﹣a=2b.∴3b=2016.解得:b=672.∴a=﹣1344.∴a+b=﹣1344+672=﹣672.故答案为:﹣672.三、解答题(第16、17、18题各6分,第19、20题各10分,第21题12分,共50分)16.计算:【考点】73:二次根式的性质与化简;15:绝对值;6E:零指数幂;6F:负整数指数幂.个数的负指数次幂等于这个数的正指数次幂的倒数;任何不等于0的数的0次幂都等于1.【解答】解:原式=2﹣+﹣1=1.17.解不等式组,并将解集在数轴上表示出来.【考点】CB:解一元一次不等式组;C4:在数轴上表示不等式的解集.【分析】分别解出两不等式的解集再求其公共解.【解答】解:解不等式①得x<﹣解不等式②得x≥﹣1∴不等式组的解集为﹣1≤x<﹣.其解集在数轴上表示为:如图所示.18.先化简,再求值,(3x+2)(3x﹣2)﹣5x(x﹣1)﹣(2x﹣1)2,其中x=﹣.【考点】4J:整式的混合运算—化简求值.【分析】首先根据整式相乘的法则和平方差公式、完全平方公式去掉括号,然后合并同类项,最后代入数据计算即可求解.【解答】解:原式=9x2﹣4﹣(5x2﹣5x)﹣(4x2﹣4x+1)=9x2﹣4﹣5x2+5x﹣4x2+4x﹣1=9x﹣5,当时,原式==﹣3﹣5=﹣8.19.已知:a+b=2,ab=1.求:(1)a﹣b(2)a2﹣b2+4b.【考点】4C:完全平方公式.【分析】根据完全平方公式进行变形,再整体代入求出即可.【解答】解:(1)∵a+b=2,ab=1,∴(a﹣b)2=(a+b)2﹣4ab=4﹣4=0,(2)∵a+b=2,ab=1,a﹣b=0∴a2﹣b2+4b=420.若2(x+4)﹣5<3(x+1)+4的最小整数解是方程的解,求代数式m2﹣2m+11的平方根的值.【考点】C7:一元一次不等式的整数解;21:平方根;85:一元一次方程的解.【分析】首先计算出不等式的解集,从而确定出最小整数解,进而得到x的值,再把x的值代入方程算出m的值,然后再次把m的值代入代数式m2﹣2m+11计算出结果,再算出平方根即可.【解答】解:解不等式得:x>﹣4则x的最小整数解为﹣3,当x=﹣3时,×(﹣3)+3m=5,解得:m=2,把m=2代入m2﹣2m+11得:22﹣2×2+11=11,11平方根为±.故代数式m2﹣2m+11的平方根的值为±.21.某学校组织340名师生进行长途考察活动,带有行李170件,计划租用甲、乙两种型号的汽车10辆.经了解,甲车每辆最多能载40人和16件行李,乙车每辆最多能载30人和20件行李.(1)请你帮助学校设计所有可行的租车方案;(2)如果甲车的租金为每辆2000元,乙车的租金为每辆1800元,问哪种可行方案使租车费用最省?【考点】CE:一元一次不等式组的应用.【分析】(1)设租用甲车x辆,则乙车(10﹣x)辆.不等关系:①两种车共坐人数不小于340人;②两种车共载行李不小于170件.(2)因为车的总数是一定的,所以费用少的车越多越省.【解答】解:(1)设租用甲车x辆,则乙车(10﹣x)辆.根据题意,得,解,得4≤x≤7.5.又x是整数,∴x=4或5或6或7.共有四种方案:①甲4辆,乙6辆;②甲5辆,乙5辆;③甲6辆,乙4辆;④甲7辆,乙3辆.(2)①甲4辆,乙6辆;总费用为4×2000+6×1800=18800元;②甲5辆,乙5辆;总费用5×2000+5×1800=19000元;③甲6辆,乙4辆;总费用为6×2000+4×1800=19200元;④甲7辆,乙3辆.总费用为7×2000+3×1800=19400元;因为乙车的租金少,所以乙车越多,总费用越少.故选方案①.2017年5月24日。
2016-2017学年安徽省合肥七年级(下)期中数学试卷一、选择题(每小题3分,共30分)1.等于()A.﹣3 B.3 C.D.﹣2.下列运算正确的是()A.3a+2b=5ab B.a3•a2=a5 C.a8•a2=a4 D.(2a2)3=﹣6a63.已知空气的单位体积质量为1.24×10﹣3克/厘米3,1.24×10﹣3用小数表示为()A.0.000124 B.0.0124 C.﹣0.00124 D.0.001244.计算的平方根为()A.±4 B.±2 C.4 D.±5.若2x=3,4y=5,则2x﹣2y的值为()A.B.﹣2 C.D.6.加上下列单项式后,仍不能使4x2+1成为一个整式的完全平方式的是()A.4x4B.4x C.﹣4x D.2x7.长方形的面积为4a2﹣6ab+2a,若它的一边长为2a,则它的周长为()A.4a﹣3b B.8a﹣6b C.4a﹣3b+1 D.8a﹣6b+28.若使代数式的值在﹣1和2之间,m可以取的整数有()A.1个B.2个C.3个D.4个9.已知关于x的不等式组整数解有4个,则b的取值范围是()A.7≤b<8 B.7≤b≤8 C.8≤b<9 D.8≤b≤910.7张如图1的长为a,宽为b(a>b)的小长方形纸片,按图2的方式不重叠地放在矩形ABCD内,未被覆盖的部分(两个矩形)用阴影表示.设左上角与右下角的阴影部分的面积的差为S,当BC的长度变化时,按照同样的放置方式,S始终保持不变,则a,b满足()A.a=b B.a=3b C.a=b D.a=4b二、填空题(每小题4分,共20分)11.因式分解:4mn﹣mn3= .12.若与|x+2y﹣5|互为相反数,则(x﹣y)2017= .13.某数的平方根是2a+3和a﹣15,则这个数为.14.已知不等式组的解集为﹣1<x<2,则(m+n)2012= .15.在数轴上,点A(表示整数a)在原点的左侧,点B(表示整数b)在原点的右侧.若|a﹣b|=2016,且AO=2BO,则a+b的值为.三、解答题(第16、17、18题各6分,第19、20题各10分,第21题12分,共50分)16.计算:17.解不等式组,并将解集在数轴上表示出来.18.先化简,再求值,(3x+2)(3x﹣2)﹣5x(x﹣1)﹣(2x﹣1)2,其中x=﹣.19.已知:a+b=2,ab=1.求:(1)a﹣b(2)a2﹣b2+4b.20.若2(x+4)﹣5<3(x+1)+4的最小整数解是方程的解,求代数式m2﹣2m+11的平方根的值.21.某学校组织340名师生进行长途考察活动,带有行李170件,计划租用甲、乙两种型号的汽车10辆.经了解,甲车每辆最多能载40人和16件行李,乙车每辆最多能载30人和20件行李.(1)请你帮助学校设计所有可行的租车方案;(2)如果甲车的租金为每辆2000元,乙车的租金为每辆1800元,问哪种可行方案使租车费用最省?2016-2017学年安徽省合肥七年级(下)期中数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.等于()A.﹣3 B.3 C.D.﹣【考点】24:立方根.【分析】运用开立方的方法计算.【解答】解: =﹣3,故选A.2.下列运算正确的是()A.3a+2b=5ab B.a3•a2=a5 C.a8•a2=a4 D.(2a2)3=﹣6a6【考点】48:同底数幂的除法;35:合并同类项;46:同底数幂的乘法;47:幂的乘方与积的乘方.【分析】根据同底数幂的除法,底数不变指数相减;合并同类项,系数相加字母和字母的指数不变;同底数幂的乘法,底数不变指数相加;幂的乘方,底数不变指数相乘,对各选项计算后利用排除法求解.【解答】解:A、不是同类项,不能合并,选项错误;B、正确;C、a8•a2=a10,选项错误;D、(2a2)3=8a6,选项错误.故选B.3.已知空气的单位体积质量为1.24×10﹣3克/厘米3,1.24×10﹣3用小数表示为()A.0.000124 B.0.0124 C.﹣0.00124 D.0.00124【考点】1K:科学记数法—原数.【分析】科学记数法的标准形式为a×10n(1≤|a|<10,n为整数).本题把数据“1.24×10﹣3中1.24的小数点向左移动3位就可以得到.24.故选D.4.计算的平方根为()A.±4 B.±2 C.4 D.±【考点】21:平方根;22:算术平方根.【分析】首先根据算术平方根的定义求出的值,然后根据平方根的定义即可求出结果.【解答】解:∵=4,又∵(±2)2=4,∴4的平方根是±2,即的平方根±2.故选B.5.若2x=3,4y=5,则2x﹣2y的值为()A.B.﹣2 C.D.【考点】48:同底数幂的除法.【分析】利用同底数幂除法的逆运算法则计算即可.【解答】解:∵2x=3,4y=5,∴2x﹣2y=2x÷22y,=2x÷4y,=3÷5,=0.6.故选:A.6.加上下列单项式后,仍不能使4x2+1成为一个整式的完全平方式的是()A.4x4B.4x C.﹣4x D.2x【考点】4E:完全平方式.【分析】根据完全平方公式的结构对各选项进行验证即可得解.【解答】解:A、4x4+4x2+1=(2x2+1)2,故本选项错误;B、4x+4x2+1=(2x+1)2,故本选项错误;C、﹣4x+4x2+1=(2x﹣1)2,故本选项错误;D、2x+4x2+1不能构成完全平方公式结构,故本选项正确.7.长方形的面积为4a2﹣6ab+2a,若它的一边长为2a,则它的周长为()A.4a﹣3b B.8a﹣6b C.4a﹣3b+1 D.8a﹣6b+2【考点】4H:整式的除法.【分析】首先利用面积除以一边长即可求得令一边长,则周长即可求解.【解答】解:另一边长是:(4a2﹣6ab+2a)÷2a=2a﹣3b+1,则周长是:2[(2a﹣3b+1)+2a]=8a﹣6b+2.故选D.8.若使代数式的值在﹣1和2之间,m可以取的整数有()A.1个B.2个C.3个D.4个【考点】CC:一元一次不等式组的整数解.【分析】由题意可得不等式组,解不等式组,得到不等式组的解集,然后求其整数解.【解答】解:由题意可得,由①得m>﹣,由②得m<,所以不等式组的解集为﹣<x<,则m可以取的整数有0,1共2个.故选:B.9.已知关于x的不等式组整数解有4个,则b的取值范围是()A.7≤b<8 B.7≤b≤8 C.8≤b<9 D.8≤b≤9【考点】CC:一元一次不等式组的整数解.【分析】首先确定不等式组的解集,先利用含b的式子表示,根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于b的不等式,从而求出b的范围.【解答】解:由不等式x﹣b≤0,得:x≤b,由不等式x﹣2≥3,得:x≥5,∵不等式组有4个整数解,∴其整数解为5、6、7、8,则8≤b<9,10.7张如图1的长为a,宽为b(a>b)的小长方形纸片,按图2的方式不重叠地放在矩形ABCD内,未被覆盖的部分(两个矩形)用阴影表示.设左上角与右下角的阴影部分的面积的差为S,当BC的长度变化时,按照同样的放置方式,S始终保持不变,则a,b满足()A.a=b B.a=3b C.a=b D.a=4b【考点】4I:整式的混合运算.【分析】表示出左上角与右下角部分的面积,求出之差,根据差与BC无关即可求出a 与b的关系式.【解答】解:左上角阴影部分的长为AE,宽为AF=3b,右下角阴影部分的长为PC,宽为a,∵AD=BC,即AE+ED=AE+a,BC=BP+PC=4b+PC,∴AE+a=4b+PC,即AE﹣PC=4b﹣a,∴阴影部分面积之差S=AE•AF﹣PC•CG=3bAE﹣aPC=3b(PC+4b﹣a)﹣aPC=(3b﹣a)PC+12b2﹣3ab,则3b﹣a=0,即a=3b.解法二:既然BC是变化的,当点P与点C重合开始,然后BC向右伸展,设向右伸展长度为X,左上阴影增加的是3bX,右下阴影增加的是aX,因为S不变,∴增加的面积相等,∴3bX=aX,∴a=3b.故选:B.二、填空题(每小题4分,共20分)11.因式分解:4mn﹣mn3= mn(2+n)(2﹣n).【考点】55:提公因式法与公式法的综合运用.【分析】原式提取公因式,再利用平方差公式分解即可.【解答】解:原式=mn(4﹣n2)=mn(2+n)(2﹣n),故答案为:mn(2+n)(2﹣n)12.若与|x+2y﹣5|互为相反数,则(x﹣y)2017= ﹣1 .【考点】98:解二元一次方程组;16:非负数的性质:绝对值;23:非负数的性质:算术平方根.【分析】利用相反数性质及非负数性质列出方程组,求出方程组的解得到x与y的值,代入原式计算即可得到结果.【解答】解:∵与|x+2y﹣5|互为相反数,∴+|x+2y﹣5|=0,∴,①×2+②得:5x=5,解得:x=1,把x=1代入②得:y=2,则原式=﹣1,故答案为:﹣113.某数的平方根是2a+3和a﹣15,则这个数为121 .【考点】21:平方根;86:解一元一次方程.【分析】根据正数有两个平方根,这两个平方根互为相反数,据此即可得到关于a的方程即可求得a的值,进而求得这个数的值.【解答】解:根据题意得:2a+3+(a﹣15)=0,解得a=4,则这个数是(2a+3)2=121.故答案为:121.14.已知不等式组的解集为﹣1<x<2,则(m+n)2012= 1 .【考点】CB:解一元一次不等式组;98:解二元一次方程组;C6:解一元一次不等式.【分析】求出不等式组的解集,根据已知不等式组的解集得出m+n﹣2=﹣1,m=2,求出m、n的值,再代入求出即可.【解答】解:,解不等式②得:x<m,∴不等式组的解集为:m+n﹣2<x<m,∵不等式组的解集为﹣1<x<2,∴m+n﹣2=﹣1,m=2,解得:m=2,n=﹣1,∴(m+n)2012=(2﹣1)2012=1.故答案为:1.15.在数轴上,点A(表示整数a)在原点的左侧,点B(表示整数b)在原点的右侧.若|a﹣b|=2016,且AO=2BO,则a+b的值为﹣672 .【考点】33:代数式求值;13:数轴.【分析】依据绝对自的定义可知b﹣a=2016,﹣a=2b,从而可求得a、b的值,故此可求得a+b的值.【解答】解:∵点A(表示整数a)在原点的左侧,点B(表示整数b)在原点的右侧,∴a<0,b>0.又∵|a﹣b|=2016,∴b﹣a=2016.∵AO=2BO,∴﹣a=2b.∴3b=2016.解得:b=672.∴a=﹣1344.∴a+b=﹣1344+672=﹣672.故答案为:﹣672.三、解答题(第16、17、18题各6分,第19、20题各10分,第21题12分,共50分)16.计算:【考点】73:二次根式的性质与化简;15:绝对值;6E:零指数幂;6F:负整数指数幂.个数的负指数次幂等于这个数的正指数次幂的倒数;任何不等于0的数的0次幂都等于1.【解答】解:原式=2﹣+﹣1=1.17.解不等式组,并将解集在数轴上表示出来.【考点】CB:解一元一次不等式组;C4:在数轴上表示不等式的解集.【分析】分别解出两不等式的解集再求其公共解.【解答】解:解不等式①得x<﹣解不等式②得x≥﹣1∴不等式组的解集为﹣1≤x<﹣.其解集在数轴上表示为:如图所示.18.先化简,再求值,(3x+2)(3x﹣2)﹣5x(x﹣1)﹣(2x﹣1)2,其中x=﹣.【考点】4J:整式的混合运算—化简求值.【分析】首先根据整式相乘的法则和平方差公式、完全平方公式去掉括号,然后合并同类项,最后代入数据计算即可求解.【解答】解:原式=9x2﹣4﹣(5x2﹣5x)﹣(4x2﹣4x+1)=9x2﹣4﹣5x2+5x﹣4x2+4x﹣1=9x﹣5,当时,原式==﹣3﹣5=﹣8.19.已知:a+b=2,ab=1.求:(1)a﹣b(2)a2﹣b2+4b.【考点】4C:完全平方公式.【分析】根据完全平方公式进行变形,再整体代入求出即可.【解答】解:(1)∵a+b=2,ab=1,∴(a﹣b)2=(a+b)2﹣4ab=4﹣4=0,(2)∵a+b=2,ab=1,a﹣b=0∴a2﹣b2+4b=420.若2(x+4)﹣5<3(x+1)+4的最小整数解是方程的解,求代数式m2﹣2m+11的平方根的值.【考点】C7:一元一次不等式的整数解;21:平方根;85:一元一次方程的解.【分析】首先计算出不等式的解集,从而确定出最小整数解,进而得到x的值,再把x的值代入方程算出m的值,然后再次把m的值代入代数式m2﹣2m+11计算出结果,再算出平方根即可.【解答】解:解不等式得:x>﹣4则x的最小整数解为﹣3,当x=﹣3时,×(﹣3)+3m=5,解得:m=2,把m=2代入m2﹣2m+11得:22﹣2×2+11=11,11平方根为±.故代数式m2﹣2m+11的平方根的值为±.21.某学校组织340名师生进行长途考察活动,带有行李170件,计划租用甲、乙两种型号的汽车10辆.经了解,甲车每辆最多能载40人和16件行李,乙车每辆最多能载30人和20件行李.(1)请你帮助学校设计所有可行的租车方案;(2)如果甲车的租金为每辆2000元,乙车的租金为每辆1800元,问哪种可行方案使租车费用最省?【考点】CE:一元一次不等式组的应用.【分析】(1)设租用甲车x辆,则乙车(10﹣x)辆.不等关系:①两种车共坐人数不小于340人;②两种车共载行李不小于170件.(2)因为车的总数是一定的,所以费用少的车越多越省.【解答】解:(1)设租用甲车x辆,则乙车(10﹣x)辆.根据题意,得,解,得4≤x≤7.5.又x是整数,∴x=4或5或6或7.共有四种方案:①甲4辆,乙6辆;②甲5辆,乙5辆;③甲6辆,乙4辆;④甲7辆,乙3辆.(2)①甲4辆,乙6辆;总费用为4×2000+6×1800=18800元;②甲5辆,乙5辆;总费用5×2000+5×1800=19000元;③甲6辆,乙4辆;总费用为6×2000+4×1800=19200元;④甲7辆,乙3辆.总费用为7×2000+3×1800=19400元;因为乙车的租金少,所以乙车越多,总费用越少.故选方案①.2017年5月24日。
2016—2017学年度第二学期初一年级数学期中试卷一、选择题(每小题3分,共30分) 1.下列运算中,正确的是 ( )A.326a a a ⋅= B. 448b b b += C.824a a a ÷=D.2363(3)27p q p q -=-2.下列多项式相乘,能用平方差公式计算的是( )A .(2)(2)a b b a +-B .(23)(32)a b b a -+C .(3)(3)m n m n --+D 3. 如图,把三角板的直角顶点放在直尺的一边上,若∠1=30°,则∠2的度数为( ) A .30° B .45° C . 60° D .75°第3题图 第5题图4.要使2(2)()x x b x a -+-中不含x 的一次项和二次项,则,a b 的值分别为( ) A .2,4a b =-=- B .2,4a b == C .2,4a b ==- D .2,4a b =-= 5.如图,给出下列条件:①∠3=∠4;②∠1=∠2;③∠5=∠B ;④AD ∥BE ,且∠D=∠B ;⑤∠1+∠3+∠B=180°.其中能说明AB ∥DC 的条件有 ( ) A .5个 B .4个 C . 3个 D .2个6. 海水受日月的引力而产生潮汐现象,早晨海水上涨叫做潮,黄昏海水上涨叫做汐,合称潮汐.潮汐与人类的生活有着密切的联系.如下图所示,是某港口从0时到12时的水深情况,下列说法不正确的是 ( ) A .时间是自变量,水深是因变量;B .3时时水最深,9时时水最浅;C .0时到3时港口水深在增加,3时到12时港口水深在减少;D .图象上共有3个时刻水深恰好为5米.第6题图7. 已知3,2x y xy -=-=,则(2)(2)x y +-的值是( ) A .4 B .-8 C .12 D .08. 下列说法中,正确的个数是( ) (1)在同一平面内,不相交的两条线段一定平行; (2)相等的角是对顶角;(3)两条直线被第三条直线所截,同位角相等;(4)两条平行线被第三条直线所截,一对内错角的角平分线互相平行; (5)从直线外一点到这条直线的垂线段,叫做这个点到直线的距离; (6)两个角互补,则一个角一定是钝角,另一个角一定是锐角. A . 1个 B.2个 C .3个 D .4个9. 如图,直线AB 、CD 相交于点O ,OE 平分∠BOC ,OF ⊥OE 于O ,若∠AOD=70°,则∠AOF=( ).A .35°B .45°C .55°D .65°10. 已知2510a a --= ,则221a a +的值为( ) A .5 B .25 C . 23 D .27第9题图 二、填空题(每小题3分,共18分)11.(1)(1)p p -+= ,62()a a ÷-= ,201620170.25(4)⨯-= ;12. 在电子显微镜下测得一个球体细胞的直径是5510cm -⨯,3102⨯个这样的细胞排成的细AB CDEF1 胞链的长度是 ;13.一个角的余角与它的补角之比为1:4,则这个角的度数是 ; 14. 已知2249x mxy y -+是关于,x y 的完全平方式,则m = ;15. 如图,把矩形ABCD 沿EF 对折,若∠1 = 500,则∠AEF 等于 ;16. 已知 925,310,a b ==则23a b -= .第15题图三、解答题(共52分) 17.(共12分)计算题:(1)22313()2a b ab ⋅-(2)(23)()(2)(2)a b a b a b a b -+--+(3)43()()()x y y x y x -÷-⋅-(4)(23)(23)m n m n -++-18.(5,其中2,1x y =-=.19.(5分)尺规作图(保留作图痕迹,不写作法):已知αβ∠∠、,求作一个角,使它等于αβ∠-∠.20.(5分)如图所示,梯形上底的长是x,下底的长是15,高是8,梯形面积是y .(1)梯形面积y与上底长x之间的关系式是什么?(2)用表格表示当x从10变到15时(每次增加1),y的相应值;(3)当x每增加1时,y如何变化?(4)当x=0时,y等于什么?此时图形是什么?21.(4分)如图所示,一个窗户被装饰布挡住了一部分,其中窗户的长a与宽b之比是3:2,部分的面积.(结果用只含字母b的代数式表示,保留 .)22.(6分)如图,已知∠1=∠2,∠B=∠C,试证明AB∥CD.23.(7分)图①是一个长为2m、宽为2n的长方形,沿图中虚线用剪刀将其均分成四块小长方形,然后按图②的形状拼成一个正方形.(1)你认为图②中的阴影部分的正方形的边长等于_____________; (2)请用两种不同的方法求图②中阴影部分的面积:方法1:___________________; 方法2:___________________. (3)根据(2)请写出代数式22(),(),m n m n mn +-之间的等量关系__________________________;(4)根据(3)题中的等量关系,解决如下问题:若7,5,a b ab +==求2()a b -的值.24.(8分)探究:如图①,已知直线12//l l ,直线3l 和12l l 、分别交于点C 和D ,直线3l 上有一点P.(1)若点P 在C 、D 之间运动时,问∠PAC ,∠APB ,∠PBD 之间有怎样的关系?并说明理由.(2)若点P 在C 、D 两点的外侧运动时(点P 与点C 、D 不重合),请尝试自己画图,写出∠PAC ,∠APB ,∠PBD 之间的关系,并说明理由.(3)如图②,AB ∥EF ,∠C=90°,我们可以用类似的方法求出αβγ∠∠∠、、之间的关系,请直接写出αβγ∠∠∠、、之间的关系.图①图②西北大学附中初一年级数学期中试卷答案一、选择题 1. D 2. B 3. C 4. D 5. C 6. C 7. A 8. A 9. C 10. D 一、填空题11. 21p - 4a - -4 12. 1110-⨯cm 或0.1cm 13. 60° 14. 12± 15. 115° 16.120三、解答题17. (1)5738a b -(2)22a ab b -+ (3)222x xy y -+(4)224129m n n -+-18. 3126x x y --- 13319. 图略,注意写结论20.(1)1(15)84602y x x =+⨯=+ (2)(3)增加4(4)y=60 三角形 21.223216S b b π=- 22.141224//33//CE BF C B C B AB CD∠=∠∠=∠∴∠=∠∴∴∠=∠∠=∠∴∠=∠∴23. (1)m-n(2) 22(),()4m n m n mn -+- (3) 22()()4m n m n mn -=+- (4) 2924. (1)APB PAC PBD ∠=∠+∠ (2)上方:APB PBD PAC ∠=∠-∠ 下方:APB PAC PBD ∠=∠-∠(3)90αβγ∠+∠=∠+。
2016-2017学年安徽省合肥七年级(下)期中数学试卷一、选择题(每小题3分,共30分)1.等于()A.﹣3 B.3 C.D.﹣2.下列运算正确的是()A.3a+2b=5ab B.a3•a2=a5 C.a8•a2=a4 D.(2a2)3=﹣6a63.已知空气的单位体积质量为1.24×10﹣3克/厘米3,1.24×10﹣3用小数表示为()A.0.000124 B.0.0124 C.﹣0.00124 D.0.001244.计算的平方根为()A.±4 B.±2 C.4 D.±5.若2x=3,4y=5,则2x﹣2y的值为()A.B.﹣2 C.D.6.加上下列单项式后,仍不能使4x2+1成为一个整式的完全平方式的是()A.4x4B.4x C.﹣4x D.2x7.长方形的面积为4a2﹣6ab+2a,若它的一边长为2a,则它的周长为()A.4a﹣3b B.8a﹣6b C.4a﹣3b+1 D.8a﹣6b+28.若使代数式的值在﹣1和2之间,m可以取的整数有()A.1个B.2个C.3个D.4个9.已知关于x的不等式组整数解有4个,则b的取值范围是()A.7≤b<8 B.7≤b≤8 C.8≤b<9 D.8≤b≤910.7张如图1的长为a,宽为b(a>b)的小长方形纸片,按图2的方式不重叠地放在矩形ABCD内,未被覆盖的部分(两个矩形)用阴影表示.设左上角与右下角的阴影部分的面积的差为S,当BC的长度变化时,按照同样的放置方式,S始终保持不变,则a,b满足()A.a=b B.a=3b C.a=b D.a=4b二、填空题(每小题4分,共20分)11.因式分解:4mn﹣mn3= .12.若与|x+2y﹣5|互为相反数,则(x﹣y)2017= .13.某数的平方根是2a+3和a﹣15,则这个数为.14.已知不等式组的解集为﹣1<x<2,则(m+n)2012= .15.在数轴上,点A(表示整数a)在原点的左侧,点B(表示整数b)在原点的右侧.若|a﹣b|=2016,且AO=2BO,则a+b的值为.三、解答题(第16、17、18题各6分,第19、20题各10分,第21题12分,共50分)16.计算:17.解不等式组,并将解集在数轴上表示出来.18.先化简,再求值,(3x+2)(3x﹣2)﹣5x(x﹣1)﹣(2x﹣1)2,其中x=﹣.19.已知:a+b=2,ab=1.求:(1)a﹣b(2)a2﹣b2+4b.20.若2(x+4)﹣5<3(x+1)+4的最小整数解是方程的解,求代数式m2﹣2m+11的平方根的值.21.某学校组织340名师生进行长途考察活动,带有行李170件,计划租用甲、乙两种型号的汽车10辆.经了解,甲车每辆最多能载40人和16件行李,乙车每辆最多能载30人和20件行李.(1)请你帮助学校设计所有可行的租车方案;(2)如果甲车的租金为每辆2000元,乙车的租金为每辆1800元,问哪种可行方案使租车费用最省?2016-2017学年安徽省合肥七年级(下)期中数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.等于()A.﹣3 B.3 C.D.﹣【考点】24:立方根.【分析】运用开立方的方法计算.【解答】解: =﹣3,故选A.2.下列运算正确的是()A.3a+2b=5ab B.a3•a2=a5 C.a8•a2=a4 D.(2a2)3=﹣6a6【考点】48:同底数幂的除法;35:合并同类项;46:同底数幂的乘法;47:幂的乘方与积的乘方.【分析】根据同底数幂的除法,底数不变指数相减;合并同类项,系数相加字母和字母的指数不变;同底数幂的乘法,底数不变指数相加;幂的乘方,底数不变指数相乘,对各选项计算后利用排除法求解.【解答】解:A、不是同类项,不能合并,选项错误;B、正确;C、a8•a2=a10,选项错误;D、(2a2)3=8a6,选项错误.故选B.3.已知空气的单位体积质量为1.24×10﹣3克/厘米3,1.24×10﹣3用小数表示为()A.0.000124 B.0.0124 C.﹣0.00124 D.0.00124【考点】1K:科学记数法—原数.【分析】科学记数法的标准形式为a×10n(1≤|a|<10,n为整数).本题把数据“1.24×10﹣3中1.24的小数点向左移动3位就可以得到.24.故选D.4.计算的平方根为()A.±4 B.±2 C.4 D.±【考点】21:平方根;22:算术平方根.【分析】首先根据算术平方根的定义求出的值,然后根据平方根的定义即可求出结果.【解答】解:∵=4,又∵(±2)2=4,∴4的平方根是±2,即的平方根±2.故选B.5.若2x=3,4y=5,则2x﹣2y的值为()A.B.﹣2 C.D.【考点】48:同底数幂的除法.【分析】利用同底数幂除法的逆运算法则计算即可.【解答】解:∵2x=3,4y=5,∴2x﹣2y=2x÷22y,=2x÷4y,=3÷5,=0.6.故选:A.6.加上下列单项式后,仍不能使4x2+1成为一个整式的完全平方式的是()A.4x4B.4x C.﹣4x D.2x【考点】4E:完全平方式.【分析】根据完全平方公式的结构对各选项进行验证即可得解.【解答】解:A、4x4+4x2+1=(2x2+1)2,故本选项错误;B、4x+4x2+1=(2x+1)2,故本选项错误;C、﹣4x+4x2+1=(2x﹣1)2,故本选项错误;D、2x+4x2+1不能构成完全平方公式结构,故本选项正确.7.长方形的面积为4a2﹣6ab+2a,若它的一边长为2a,则它的周长为()A.4a﹣3b B.8a﹣6b C.4a﹣3b+1 D.8a﹣6b+2【考点】4H:整式的除法.【分析】首先利用面积除以一边长即可求得令一边长,则周长即可求解.【解答】解:另一边长是:(4a2﹣6ab+2a)÷2a=2a﹣3b+1,则周长是:2[(2a﹣3b+1)+2a]=8a﹣6b+2.故选D.8.若使代数式的值在﹣1和2之间,m可以取的整数有()A.1个B.2个C.3个D.4个【考点】CC:一元一次不等式组的整数解.【分析】由题意可得不等式组,解不等式组,得到不等式组的解集,然后求其整数解.【解答】解:由题意可得,由①得m>﹣,由②得m<,所以不等式组的解集为﹣<x<,则m可以取的整数有0,1共2个.故选:B.9.已知关于x的不等式组整数解有4个,则b的取值范围是()A.7≤b<8 B.7≤b≤8 C.8≤b<9 D.8≤b≤9【考点】CC:一元一次不等式组的整数解.【分析】首先确定不等式组的解集,先利用含b的式子表示,根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于b的不等式,从而求出b的范围.【解答】解:由不等式x﹣b≤0,得:x≤b,由不等式x﹣2≥3,得:x≥5,∵不等式组有4个整数解,∴其整数解为5、6、7、8,则8≤b<9,10.7张如图1的长为a,宽为b(a>b)的小长方形纸片,按图2的方式不重叠地放在矩形ABCD内,未被覆盖的部分(两个矩形)用阴影表示.设左上角与右下角的阴影部分的面积的差为S,当BC的长度变化时,按照同样的放置方式,S始终保持不变,则a,b满足()A.a=b B.a=3b C.a=b D.a=4b【考点】4I:整式的混合运算.【分析】表示出左上角与右下角部分的面积,求出之差,根据差与BC无关即可求出a 与b的关系式.【解答】解:左上角阴影部分的长为AE,宽为AF=3b,右下角阴影部分的长为PC,宽为a,∵AD=BC,即AE+ED=AE+a,BC=BP+PC=4b+PC,∴AE+a=4b+PC,即AE﹣PC=4b﹣a,∴阴影部分面积之差S=AE•AF﹣PC•CG=3bAE﹣aPC=3b(PC+4b﹣a)﹣aPC=(3b﹣a)PC+12b2﹣3ab,则3b﹣a=0,即a=3b.解法二:既然BC是变化的,当点P与点C重合开始,然后BC向右伸展,设向右伸展长度为X,左上阴影增加的是3bX,右下阴影增加的是aX,因为S不变,∴增加的面积相等,∴3bX=aX,∴a=3b.故选:B.二、填空题(每小题4分,共20分)11.因式分解:4mn﹣mn3= mn(2+n)(2﹣n).【考点】55:提公因式法与公式法的综合运用.【分析】原式提取公因式,再利用平方差公式分解即可.【解答】解:原式=mn(4﹣n2)=mn(2+n)(2﹣n),故答案为:mn(2+n)(2﹣n)12.若与|x+2y﹣5|互为相反数,则(x﹣y)2017= ﹣1 .【考点】98:解二元一次方程组;16:非负数的性质:绝对值;23:非负数的性质:算术平方根.【分析】利用相反数性质及非负数性质列出方程组,求出方程组的解得到x与y的值,代入原式计算即可得到结果.【解答】解:∵与|x+2y﹣5|互为相反数,∴+|x+2y﹣5|=0,∴,①×2+②得:5x=5,解得:x=1,把x=1代入②得:y=2,则原式=﹣1,故答案为:﹣113.某数的平方根是2a+3和a﹣15,则这个数为121 .【考点】21:平方根;86:解一元一次方程.【分析】根据正数有两个平方根,这两个平方根互为相反数,据此即可得到关于a的方程即可求得a的值,进而求得这个数的值.【解答】解:根据题意得:2a+3+(a﹣15)=0,解得a=4,则这个数是(2a+3)2=121.故答案为:121.14.已知不等式组的解集为﹣1<x<2,则(m+n)2012= 1 .【考点】CB:解一元一次不等式组;98:解二元一次方程组;C6:解一元一次不等式.【分析】求出不等式组的解集,根据已知不等式组的解集得出m+n﹣2=﹣1,m=2,求出m、n的值,再代入求出即可.【解答】解:,解不等式②得:x<m,∴不等式组的解集为:m+n﹣2<x<m,∵不等式组的解集为﹣1<x<2,∴m+n﹣2=﹣1,m=2,解得:m=2,n=﹣1,∴(m+n)2012=(2﹣1)2012=1.故答案为:1.15.在数轴上,点A(表示整数a)在原点的左侧,点B(表示整数b)在原点的右侧.若|a﹣b|=2016,且AO=2BO,则a+b的值为﹣672 .【考点】33:代数式求值;13:数轴.【分析】依据绝对自的定义可知b﹣a=2016,﹣a=2b,从而可求得a、b的值,故此可求得a+b的值.【解答】解:∵点A(表示整数a)在原点的左侧,点B(表示整数b)在原点的右侧,∴a<0,b>0.又∵|a﹣b|=2016,∴b﹣a=2016.∵AO=2BO,∴﹣a=2b.∴3b=2016.解得:b=672.∴a=﹣1344.∴a+b=﹣1344+672=﹣672.故答案为:﹣672.三、解答题(第16、17、18题各6分,第19、20题各10分,第21题12分,共50分)16.计算:【考点】73:二次根式的性质与化简;15:绝对值;6E:零指数幂;6F:负整数指数幂.个数的负指数次幂等于这个数的正指数次幂的倒数;任何不等于0的数的0次幂都等于1.【解答】解:原式=2﹣+﹣1=1.17.解不等式组,并将解集在数轴上表示出来.【考点】CB:解一元一次不等式组;C4:在数轴上表示不等式的解集.【分析】分别解出两不等式的解集再求其公共解.【解答】解:解不等式①得x<﹣解不等式②得x≥﹣1∴不等式组的解集为﹣1≤x<﹣.其解集在数轴上表示为:如图所示.18.先化简,再求值,(3x+2)(3x﹣2)﹣5x(x﹣1)﹣(2x﹣1)2,其中x=﹣.【考点】4J:整式的混合运算—化简求值.【分析】首先根据整式相乘的法则和平方差公式、完全平方公式去掉括号,然后合并同类项,最后代入数据计算即可求解.【解答】解:原式=9x2﹣4﹣(5x2﹣5x)﹣(4x2﹣4x+1)=9x2﹣4﹣5x2+5x﹣4x2+4x﹣1=9x﹣5,当时,原式==﹣3﹣5=﹣8.19.已知:a+b=2,ab=1.求:(1)a﹣b(2)a2﹣b2+4b.【考点】4C:完全平方公式.【分析】根据完全平方公式进行变形,再整体代入求出即可.【解答】解:(1)∵a+b=2,ab=1,∴(a﹣b)2=(a+b)2﹣4ab=4﹣4=0,(2)∵a+b=2,ab=1,a﹣b=0∴a2﹣b2+4b=420.若2(x+4)﹣5<3(x+1)+4的最小整数解是方程的解,求代数式m2﹣2m+11的平方根的值.【考点】C7:一元一次不等式的整数解;21:平方根;85:一元一次方程的解.【分析】首先计算出不等式的解集,从而确定出最小整数解,进而得到x的值,再把x的值代入方程算出m的值,然后再次把m的值代入代数式m2﹣2m+11计算出结果,再算出平方根即可.【解答】解:解不等式得:x>﹣4则x的最小整数解为﹣3,当x=﹣3时,×(﹣3)+3m=5,解得:m=2,把m=2代入m2﹣2m+11得:22﹣2×2+11=11,11平方根为±.故代数式m2﹣2m+11的平方根的值为±.21.某学校组织340名师生进行长途考察活动,带有行李170件,计划租用甲、乙两种型号的汽车10辆.经了解,甲车每辆最多能载40人和16件行李,乙车每辆最多能载30人和20件行李.(1)请你帮助学校设计所有可行的租车方案;(2)如果甲车的租金为每辆2000元,乙车的租金为每辆1800元,问哪种可行方案使租车费用最省?【考点】CE:一元一次不等式组的应用.【分析】(1)设租用甲车x辆,则乙车(10﹣x)辆.不等关系:①两种车共坐人数不小于340人;②两种车共载行李不小于170件.(2)因为车的总数是一定的,所以费用少的车越多越省.【解答】解:(1)设租用甲车x辆,则乙车(10﹣x)辆.根据题意,得,解,得4≤x≤7.5.又x是整数,∴x=4或5或6或7.共有四种方案:①甲4辆,乙6辆;②甲5辆,乙5辆;③甲6辆,乙4辆;④甲7辆,乙3辆.(2)①甲4辆,乙6辆;总费用为4×2000+6×1800=18800元;②甲5辆,乙5辆;总费用5×2000+5×1800=19000元;③甲6辆,乙4辆;总费用为6×2000+4×1800=19200元;④甲7辆,乙3辆.总费用为7×2000+3×1800=19400元;因为乙车的租金少,所以乙车越多,总费用越少.故选方案①.2017年5月24日。
2016-2017学年数学七年级下学期期中试卷(考试时间120分钟满分150分)一.单项选择题(每小题3分,共36分)1.计算的结果是()A.﹣2 B.±2 C.2 D.42.在﹣1.732,,π,2+,3.212212221…(按照规律,两个1之间增加一个2)这些数中,无理数的个数为()A.5 B.2 C.3 D.43.在下图中,∠1,∠2是对顶角的图形是()A.B.C.D.4.点P(1,﹣5)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限5.在下列式子中,正确的是()A.=﹣B.﹣=﹣0.6 C.=﹣13 D.=±6 6.如图,∠1=15°,∠AOC=90°,点B,O,D在同一直线上,则∠2的度数为()A.75°B.15°C.105° D.165°7.如图,不能推出a∥b的条件是()A.∠1=∠3 B.∠2=∠4 C.∠2=∠3 D.∠2+∠3=180°8.下列语句中,错误的是()A.一条直线有且只有一条垂线B.不相等的两个角一定不是对顶角C.直角的补角必是直角D.两直线平行,同旁内角互补9.下列说法中正确的是()A.实数﹣a2是负数 B.C.|﹣a|一定是正数D.实数﹣a的绝对值是a10.(﹣0.7)2的平方根是()A.﹣0.7 B.±0.7 C.0.7 D.0.4911.下列说法正确的是()A.a,b,c是直线,且a∥b,b∥c,则a∥cB.a,b,c是直线,且a⊥b,b⊥c,则a⊥cC.a,b,c是直线,且a∥b,b⊥c,则a∥cD.a,b,c是直线,且a∥b,b∥c,则a⊥c12.下列各组数中互为相反数的是()A.﹣2与B.﹣2与C.﹣2与D.2与|﹣2|二.填空题(每小题4分,共24分)13.若x的立方根是﹣,则x=.14.已知一个正数的平方根是3x﹣2和5x+6,则这个数是.15.的相反数是.16.点A在y轴左侧,在x轴的上侧,距离每个坐标轴都是4个单位长度,则点A的坐标为.17.的算术平方根是.18.在数轴上表示a的点到原点的距离为3,则a﹣3=.三、计算(共90分)19.计算求值:(1)+﹣(2)﹣(3)|﹣|+2(4)3(x﹣1)3=﹣24.20.若a、b满足|a﹣2|+=0,求代数式的值.21.已知:如图,∠ADE=∠B,∠DEC=115°.求∠C的度数.22.已知:如图,a∥b,∠1=55°,∠2=40°,求∠3和∠4的度数.23.已知:如图,∠A=∠F,∠C=∠D.求证:BD∥CE.24.完成下面推理过程:如图,已知∠1=∠2,∠B=∠C,可推得AB∥CD.理由如下:∵∠1=∠2,且∠1=∠CGD,∴∠2=∠CG,∴CE∥BF,∴∠=∠C 两直线平行,同位角相等;又∵∠B=∠C(已知),∴∠BFD=∠B,∴AB∥CD.25.如图,(1)请写出在直角坐标系中的房子的A、B、C、D、E、F、G的坐标.(2)小影想把房子向下平移3个单位长度,你能帮他办到吗?请作出相应图案,并写出平移后的7个点的坐标.26.如图,AB∥CD,直L交AB、CD分别于点E、F,点M在线段EF上(点M 不与E、F重合),N是直线CD上的一个动点(点N不与F重合)(1)当点N在射线FC上运动时(F点除外),则∠FMN+∠FNM=∠AEF,说明理由?(2)当点N在射线FD上运动时(F点除外),∠FMN+∠FNM与∠AEF有什么关系?画出图形,猜想结论并证明.参考答案一.单项选择题1.C.2.D.3.C.4.D.5.A.6.C.7.C.8.A.9.B.10.B.11.A.12.A.二. 填空题13.答案为:﹣.14.答案为:.15.答案为:﹣2.16.答案为(﹣4,4).17.答案为:2.18.答案为:0或﹣6.三、计算题19.解:(1)+﹣=2+15﹣20=﹣3;(2)﹣=0.3﹣0.6=﹣0.3;(3)|﹣|+2=﹣+2=+;(4)3(x﹣1)3=﹣24,∴(x﹣1)3=﹣8,故x﹣1=﹣2,解得:x=﹣1.20.解:∵|a﹣2|+=0,∴a=2,b=﹣1.∴原式==﹣.21.解:∵∠ADE=∠B,∴DE∥BC,∴∠DEC+∠C=180°,又∵∠DEC=115°,∴∠C=65°.22.解:∵a∥b,∠1=55°,∠2=40°,∴∠5=∠1=55°,∠4=∠2+∠5=95°;∵∠2+∠3+∠5=180°,∴∠3=85°.∴∠3=85°,∠4=95°.23.证明:∵∠A=∠F,∴AC∥DF,∴∠C=∠FEC,∵∠C=∠D,∴∠D=∠FEC,∴BD∥CE.24.解:∵∠1=∠2(已知),且∠1=∠CGD(对顶角相等),∴∠2=∠CGD(等量代换),∴CE∥BF(同位角相等,两直线平行),∴∠C=∠BFD(两直线平行,同位角相等),又∵∠B=∠C(已知),∴∠BFD=∠B(等量代换),∴AB∥CD(内错角相等,两直线平行).故答案为:(已知),(对顶角相等),(等量代换),(同位角相等,两直线平行),BFD,(内错角相等,两直线平行).25.解:(1)(2,3),(6,5),(10,3),(3,3),(9,3),(3,0),(9,0);(2)下平移3个单位长度,即所有点纵坐标减3,可得平移后坐标依次为(2,0),(6,2),(10,0),(3,0),(9,0),(3,﹣3),(9,﹣3).26.解:(1)∵AB∥CD,∴∠AEF+∠MFN=180°.∵∠MFN+∠FMN+∠FNM=180°,∴∠FMN+∠FNM=∠AEF.(2)∠FMN+∠FNM+∠AEF=180°.理由:如图所示,∵AB∥CD,∴∠AEF=∠MFN.∵∠MFN+∠FMN+∠FNM=180°,∴∠FMN+∠FNM+∠AEF=180°.。
2016-2017学年七年级数学下期中试卷(含答案和解释)2016-2017学年安徽省合肥七年级(下)期中数学试卷一、选择题(每小题3分,共30分)1.等于()A.﹣3B.3.D.﹣2.下列运算正确的是()A.3a+2b=abB.a3•a2=a.a8•a2=a4D.(2a2)3=﹣6a6 3.已知空气的单位体积质量为124×10﹣3克/厘米3,124×10﹣3用小数表示为()A.0000124B.00124.﹣000124D.0001244.计算的平方根为()A.±4B.±2.4D.±.若2x=3,4=,则2x﹣2的值为()A.B.﹣2.D.6.加上下列单项式后,仍不能使4x2+1成为一个整式的完全平方式的是()A.4x4B.4x.﹣4xD.2x7.长方形的面积为4a2﹣6ab+2a,若它的一边长为2a,则它的周长为()A.4a﹣3bB.8a﹣6b.4a﹣3b+1D.8a﹣6b+28.若使代数式的值在﹣1和2之间,可以取的整数有()A.1个B.2个.3个D.4个9.已知关于x的不等式组整数解有4个,则b的取值范围是()A.7≤b<8B.7≤b≤8.8≤b<9D.8≤b≤910.7张如图1的长为a,宽为b(a>b)的小长方形纸片,按图2的方式不重叠地放在矩形ABD内,未被覆盖的部分(两个矩形)用阴影表示.设左上角与右下角的阴影部分的面积的差为S,当B的长度变化时,按照同样的放置方式,S始终保持不变,则a,b满足()A.a= bB.a=3b.a= bD.a=4b二、填空题(每小题4分,共20分)11.因式分解:4n﹣n3=.12.若与|x+2﹣|互为相反数,则(x﹣)2017=.13.某数的平方根是2a+3和a﹣1,则这个数为.14.已知不等式组的解集为﹣1<x<2,则(+n)2012=.1.在数轴上,点A(表示整数a)在原点的左侧,点B(表示整数b)在原点的右侧.若|a﹣b|=2016,且A=2B,则a+b的值为.三、解答题(第16、17、18题各6分,第19、20题各10分,第21题12分,共0分)16.计算:17.解不等式组,并将解集在数轴上表示出.18.先化简,再求值,(3x+2)(3x﹣2)﹣x(x﹣1)﹣(2x﹣1)2,其中x=﹣.19.已知:a+b=2,ab=1.求:(1)a﹣b(2)a2﹣b2+4b.20.若2(x+4)﹣<3(x+1)+4的最小整数解是方程的解,求代数式2﹣2+11的平方根的值.21.某学校组织340名师生进行长途考察活动,带有行李170,计划租用甲、乙两种型号的汽车10辆.经了解,甲车每辆最多能载40人和16行李,乙车每辆最多能载30人和20行李.(1)请你帮助学校设计所有可行的租车方案;(2)如果甲车的租金为每辆2000元,乙车的租金为每辆1800元,问哪种可行方案使租车费用最省?2016-2017学年安徽省合肥七年级(下)期中数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.等于()A.﹣3B.3.D.﹣【考点】24:立方根.【分析】运用开立方的方法计算.【解答】解:=﹣3,故选A.2.下列运算正确的是()A.3a+2b=abB.a3•a2=a.a8•a2=a4D.(2a2)3=﹣6a6 【考点】48:同底数幂的除法;3:合并同类项;46:同底数幂的乘法;47:幂的乘方与积的乘方.【分析】根据同底数幂的除法,底数不变指数相减;合并同类项,系数相加字母和字母的指数不变;同底数幂的乘法,底数不变指数相加;幂的乘方,底数不变指数相乘,对各选项计算后利用排除法求解.【解答】解:A、不是同类项,不能合并,选项错误;B、正确;、a8•a2=a10,选项错误;D、(2a2)3=8a6,选项错误.故选B.3.已知空气的单位体积质量为124×10﹣3克/厘米3,124×10﹣3用小数表示为()A.0000124B.00124.﹣000124D.000124【考点】1:科学记数法—原数.【分析】科学记数法的标准形式为a×10n(1≤|a|<10,n为整数).本题把数据“124×10﹣3中124的小数点向左移动3位就可以得到.【解答】解:把数据“124×10﹣3中124的小数点向左移动3位就可以得到为0001 24.故选D.4.计算的平方根为()A.±4B.±2.4D.±【考点】21:平方根;22:算术平方根.【分析】首先根据算术平方根的定义求出的值,然后根据平方根的定义即可求出结果.【解答】解:∵=4,又∵(±2)2=4,∴4的平方根是±2,即的平方根±2.故选B..若2x=3,4=,则2x﹣2的值为()A.B.﹣2.D.【考点】48:同底数幂的除法.【分析】利用同底数幂除法的逆运算法则计算即可.【解答】解:∵2x=3,4=,∴2x﹣2=2x÷22,=2x÷4,=3÷,=06.故选:A.6.加上下列单项式后,仍不能使4x2+1成为一个整式的完全平方式的是()A.4x4B.4x.﹣4xD.2x【考点】4E:完全平方式.【分析】根据完全平方公式的结构对各选项进行验证即可得解.【解答】解:A、4x4+4x2+1=(2x2+1)2,故本选项错误;B、4x+4x2+1=(2x+1)2,故本选项错误;、﹣4x+4x2+1=(2x﹣1)2,故本选项错误;D、2x+4x2+1不能构成完全平方公式结构,故本选项正确.故选D.7.长方形的面积为4a2﹣6ab+2a,若它的一边长为2a,则它的周长为()A.4a﹣3bB.8a﹣6b.4a﹣3b+1D.8a﹣6b+2【考点】4H:整式的除法.【分析】首先利用面积除以一边长即可求得令一边长,则周长即可求解.【解答】解:另一边长是:(4a2﹣6ab+2a)÷2a=2a﹣3b+1,则周长是:2[(2a﹣3b+1)+2a]=8a﹣6b+2.故选D.8.若使代数式的值在﹣1和2之间,可以取的整数有()A.1个B.2个.3个D.4个【考点】:一元一次不等式组的整数解.【分析】由题意可得不等式组,解不等式组,得到不等式组的解集,然后求其整数解.【解答】解:由题意可得,由①得>﹣,由②得<,所以不等式组的解集为﹣<x<,则可以取的整数有0,1共2个.故选:B.9.已知关于x的不等式组整数解有4个,则b的取值范围是()A.7≤b<8B.7≤b≤8.8≤b<9D.8≤b≤9【考点】:一元一次不等式组的整数解.【分析】首先确定不等式组的解集,先利用含b的式子表示,根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于b 的不等式,从而求出b的范围.【解答】解:由不等式x﹣b≤0,得:x≤b,由不等式x﹣2≥3,得:x≥,∵不等式组有4个整数解,∴其整数解为、6、7、8,则8≤b<9,故选:.10.7张如图1的长为a,宽为b(a>b)的小长方形纸片,按图2的方式不重叠地放在矩形ABD内,未被覆盖的部分(两个矩形)用阴影表示.设左上角与右下角的阴影部分的面积的差为S,当B的长度变化时,按照同样的放置方式,S始终保持不变,则a,b满足()A.a= bB.a=3b.a= bD.a=4b【考点】4I:整式的混合运算.【分析】表示出左上角与右下角部分的面积,求出之差,根据差与B 无关即可求出a与b的关系式.【解答】解:左上角阴影部分的长为AE,宽为AF=3b,右下角阴影部分的长为P,宽为a,∵AD=B,即AE+ED=AE+a,B=BP+P=4b+P,∴AE+a=4b+P,即AE﹣P=4b﹣a,∴阴影部分面积之差S=AE•AF﹣P•G=3bAE﹣aP=3b(P+4b﹣a)﹣aP=(3b﹣a)P+12b2﹣3ab,则3b﹣a=0,即a=3b.解法二:既然B是变化的,当点P与点重合开始,然后B向右伸展,设向右伸展长度为X,左上阴影增加的是3bX,右下阴影增加的是aX,因为S不变,∴增加的面积相等,∴3bX=aX,∴a=3b.故选:B.二、填空题(每小题4分,共20分)11.因式分解:4n﹣n3=n(2+n)(2﹣n).【考点】:提公因式法与公式法的综合运用.【分析】原式提取公因式,再利用平方差公式分解即可.【解答】解:原式=n(4﹣n2)=n(2+n)(2﹣n),故答案为:n(2+n)(2﹣n)12.若与|x+2﹣|互为相反数,则(x﹣)2017=﹣1.【考点】98:解二元一次方程组;16:非负数的性质:绝对值;23:非负数的性质:算术平方根.【分析】利用相反数性质及非负数性质列出方程组,求出方程组的解得到x与的值,代入原式计算即可得到结果.【解答】解:∵与|x+2﹣|互为相反数,∴+|x+2﹣|=0,∴,①×2+②得:x=,解得:x=1,把x=1代入②得:=2,则原式=﹣1,故答案为:﹣113.某数的平方根是2a+3和a﹣1,则这个数为121.【考点】21:平方根;86:解一元一次方程.【分析】根据正数有两个平方根,这两个平方根互为相反数,据此即可得到关于a的方程即可求得a的值,进而求得这个数的值.【解答】解:根据题意得:2a+3+(a﹣1)=0,解得a=4,则这个数是(2a+3)2=121.故答案为:121.14.已知不等式组的解集为﹣1<x<2,则(+n)2012=1.【考点】B:解一元一次不等式组;98:解二元一次方程组;6:解一元一次不等式.【分析】求出不等式组的解集,根据已知不等式组的解集得出+n﹣2=﹣1,=2,求出、n的值,再代入求出即可.【解答】解:,解不等式①得:x>+n﹣2,解不等式②得:x<,∴不等式组的解集为:+n﹣2<x<,∵不等式组的解集为﹣1<x<2,∴+n﹣2=﹣1,=2,解得:=2,n=﹣1,∴(+n)2012=(2﹣1)2012=1.故答案为:1.1.在数轴上,点A(表示整数a)在原点的左侧,点B(表示整数b)在原点的右侧.若|a﹣b|=2016,且A=2B,则a+b的值为﹣672.【考点】33:代数式求值;13:数轴.【分析】依据绝对自的定义可知b﹣a=2016,﹣a=2b,从而可求得a、b的值,故此可求得a+b的值.【解答】解:∵点A(表示整数a)在原点的左侧,点B(表示整数b)在原点的右侧,∴a<0,b>0.又∵|a﹣b|=2016,∴b﹣a=2016.∵A=2B,∴﹣a=2b.∴3b=2016.解得:b=672.∴a=﹣1344.∴a+b=﹣1344+672=﹣672.故答案为:﹣672.三、解答题(第16、17、18题各6分,第19、20题各10分,第21题12分,共0分)16.计算:【考点】73:二次根式的性质与化简;1:绝对值;6E:零指数幂;6F:负整数指数幂.【分析】理解绝对值的意义:负数的绝对值是它的相反数;表示的算术平方根即;一个数的负指数次幂等于这个数的正指数次幂的倒数;任何不等于0的数的0次幂都等于1.【解答】解:原式=2﹣+ ﹣1=1.17.解不等式组,并将解集在数轴上表示出.【考点】B:解一元一次不等式组;4:在数轴上表示不等式的解集.【分析】分别解出两不等式的解集再求其公共解.【解答】解:解不等式①得x<﹣解不等式②得x≥﹣1∴不等式组的解集为﹣1≤x<﹣.其解集在数轴上表示为:如图所示.18.先化简,再求值,(3x+2)(3x﹣2)﹣x(x﹣1)﹣(2x﹣1)2,其中x=﹣.【考点】4:整式的混合运算—化简求值.【分析】首先根据整式相乘的法则和平方差公式、完全平方公式去掉括号,然后合并同类项,最后代入数据计算即可求解.【解答】解:原式=9x2﹣4﹣(x2﹣x)﹣(4x2﹣4x+1)=9x2﹣4﹣x2+x﹣4x2+4x﹣1=9x﹣,当时,原式= =﹣3﹣=﹣8.19.已知:a+b=2,ab=1.求:(1)a﹣b(2)a2﹣b2+4b.【考点】4:完全平方公式.【分析】根据完全平方公式进行变形,再整体代入求出即可.【解答】解:(1)∵a+b=2,ab=1,∴(a﹣b)2=(a+b)2﹣4ab=4﹣4=0,则a﹣b=0,(2)∵a+b=2,ab=1,a﹣b=0∴a2﹣b2+4b=420.若2(x+4)﹣<3(x+1)+4的最小整数解是方程的解,求代数式2﹣2+11的平方根的值.【考点】7:一元一次不等式的整数解;21:平方根;8:一元一次方程的解.【分析】首先计算出不等式的解集,从而确定出最小整数解,进而得到x的值,再把x的值代入方程算出的值,然后再次把的值代入代数式2﹣2+11计算出结果,再算出平方根即可.【解答】解:解不等式得:x>﹣4则x的最小整数解为﹣3,当x=﹣3时,×(﹣3)+3=,解得:=2,把=2代入2﹣2+11得:22﹣2×2+11=11,11平方根为±.故代数式2﹣2+11的平方根的值为±.21.某学校组织340名师生进行长途考察活动,带有行李170,计划租用甲、乙两种型号的汽车10辆.经了解,甲车每辆最多能载40人和16行李,乙车每辆最多能载30人和20行李.(1)请你帮助学校设计所有可行的租车方案;(2)如果甲车的租金为每辆2000元,乙车的租金为每辆1800元,问哪种可行方案使租车费用最省?【考点】E:一元一次不等式组的应用.【分析】(1)设租用甲车x辆,则乙车(10﹣x)辆.不等关系:①两种车共坐人数不小于340人;②两种车共载行李不小于170.(2)因为车的总数是一定的,所以费用少的车越多越省.【解答】解:(1)设租用甲车x辆,则乙车(10﹣x)辆.根据题意,得,解,得4≤x≤7.又x是整数,∴x=4或或6或7.共有四种方案:①甲4辆,乙6辆;②甲辆,乙辆;③甲6辆,乙4辆;④甲7辆,乙3辆.(2)①甲4辆,乙6辆;总费用为4×2000+6×1800=18800元;②甲辆,乙辆;总费用×2000+×1800=19000元;③甲6辆,乙4辆;总费用为6×2000+4×1800=19200元;④甲7辆,乙3辆.总费用为7×2000+3×1800=19400元;因为乙车的租金少,所以乙车越多,总费用越少.故选方案①.2017年月24日。