轴系及受力分析
- 格式:ppt
- 大小:2.67 MB
- 文档页数:17
轴系设计与分析实验报告1. 引言轴系设计与分析是机械工程中的重要内容之一。
通过对轴系的设计与分析,可以确保机械系统的运行稳定性和效率。
本实验旨在通过实际操作和分析来学习轴系设计与分析的基本原理和方法。
2. 实验目的本实验的主要目的是掌握轴系设计与分析的基本步骤和方法,包括轴的选择、轴的尺寸设计、轴的强度校核等。
3. 实验步骤本实验的具体步骤如下:3.1 确定传动系统参数根据所给的传动要求和实际情况,确定传动系统的参数,包括输入功率、输出转速、传动比等。
3.2 选择轴材料根据所需承受的载荷和工作环境条件,选择合适的轴材料。
考虑诸如强度、刚度、耐磨性等因素,选择最优的轴材料。
3.3 选择轴的类型和形状根据传动系统的需求和工作条件,选择合适的轴类型和形状。
常见的轴类型有实心轴、空心轴、中空轴等,而轴的形状可以是圆柱形、锥形、多边形等。
3.4 设计轴的尺寸根据轴的类型、轴材料和传动系统参数,进行轴的尺寸设计。
首先确定轴的直径或截面尺寸,然后考虑轴的长度和轴上的零件布置。
3.5 进行强度校核根据轴的尺寸和所受载荷,进行强度校核。
使用适当的强度校核方法,如受弯强度校核、疲劳强度校核等,确保轴的强度满足设计要求。
3.6 进行轴的稳定性分析根据轴的尺寸和受力情况,进行轴的稳定性分析。
通过计算轴的弯曲刚度、扭转刚度等参数,评估轴在工作过程中的稳定性。
3.7 优化设计根据实际分析结果,对轴的尺寸和材料进行优化设计。
通过改变轴的尺寸或材料,达到更好的性能和效果。
4. 实验结果与分析根据实际操作和计算分析,得出了轴的最佳尺寸和材料。
经过强度校核和稳定性分析,确认轴的设计满足要求,并具备良好的性能和可靠性。
5. 结论通过本实验,我们掌握了轴系设计与分析的基本步骤和方法。
我们了解了轴的选择、轴的尺寸设计、轴的强度校核等关键内容,并通过实际操作提升了我们的实际能力。
6. 参考文献•张三等,《机械设计与制造》•李四,《轴系设计与分析基础》以上是本次轴系设计与分析实验报告的内容,通过本次实验,我们深入了解了轴系设计与分析的基本原理和方法,并将其运用到实践中。
基于日本标准的强度分析采用日本JIS.E.4501铁道车辆车轴强度设计方法和JIS.E.4502铁道车辆车轴品质要求,对CRH2动车组非动力车轴进行疲劳强度计算和分析。
日本的车轴疲劳强度计算中考虑了车体振动引起的垂向和横向加速度对弯曲应力的影响,不过动载荷系数的取法与欧洲有所不同,在欧洲标准中,一般垂向动态载荷系数α=O.25,横向动态载荷系数卢β=0.175,日本标准中的动态载荷系数日本JIS车轴的受力简图然后通过相关资料找到ZMA120型车非动力车轴参数如下表: dmm rmm j mm g mm a mm h mm x mmy mm l mm 2028402100149317014006372135其中轴重为14t,经换算得到W=137.2kn V Km/h Av Al W kn P kn Q0knR0kn 80 0.42 0.20 137.2 27.44 18.29 41.17 100 0.52 0.24 137.2 32.93 21.93 49.41 1200.620.28137.238.4225.6157.64轮座处得许用应力awb 取147Mpa ,该车轮处得弯矩、应力计算结果和安全系数列于下表一 车轴的强度分析(一)基于日本标准的强度校核采用日本JIS .E .4501铁道车辆车轴强度设计方法和JIS .E .4502铁道车辆车轴品质要求,对A 型080城轨车辆非动力车轴进行疲劳强度计算和分析。
日本的车轴疲劳强度计算中考虑了车体振动引起的垂向和横向加速度对弯曲应力的影响,不过动载荷系数的取法与欧洲有所不同,在欧洲标准中,一般垂向 动态载荷系数为O .25,横向动态载荷系数为0.175,它们与车辆的运行速度无关;而日本标准中,动态载荷系数取决于运行线路和速度,具体的取值见下表。
日本标准中的动态载荷系数线路状态等级速度V km/hαvαl改进的高速线 SA200—3500.0027v0.030+0.00060 v高速线A A 150-280 0.0027v 0.030+0.00085 v 改进的既有线A A60—160 0.0027v 0.040+0.0012 v<60 0.16 O .11 既有线BB 60~1300.0052v0.060+0.0018 v<60 0.31 0.17符号说明符号说明单位a mm d 轮座径mmg 车轮踏面间距离mmh mm j mm l mm r 车轮踏面半径mm Z 轴轮座处抗弯截面模数mm*mm P 横向力N Q. 颈上的垂向力,N R. P引起的踏面上的垂向力N W 车辆轴重N M1 轮座处P引起的弯曲力矩mN*m M2 轮座处垂向动态载荷引起的弯曲力矩mN*m M3 轮座处横向力引起的弯曲力矩mN*m σb 轮座处的弯曲应力N/mm σwb N/mm σLσv 垂向动态载荷系数m 安全系数n 疲劳安全率G 车轴重心V 使用最高速度车轴受力简图车轴相关参数列表。
船舶轴系和舵系安装过程受力分析与安全控制摘要:轴、舵系安装是船舶工业设计和制造的重要组成部分,直接关系到整个船舶设计和建造的质量和效果。
定位是轴安装中不可缺少的一部分,影响轴安装的效果。
因此,有必要加强对轴、舵系安装设计工作的研究,明确轴、舵系的安装要求、安装方法和安装点,以保证轴、舵系安装的准确性和质量,提高船舶机械设备制造的整体水平。
基于此,本文章对船舶轴系和舵系安装过程受力分析与安全控制进行探讨,以供参考。
关键词:船舶轴系;舵系;安装过程;受力分析;安全控制引言船舶轴、舵在设计和建造过程中,其安装状态直接影响船舶的安全和可靠性,而在安装前,需要经过机械的精加工处理和检验,因此需要进行强有力的精度控制。
船舶轴系的基本任务是将主机的功率传给螺旋桨,同时又将螺旋桨旋转产生的轴向推力传给船体,以推动船舶运动。
船舶舵系的基本任务是将舵机的扭矩传给舵叶,同时又将舵叶摆动产生的水流偏移推力传给船体,以推动船舶转向。
一、船舶轴系设计研究概述船舶轴系装置是船舶动力中的主要组成部分。
轴系的工作优劣,将直接影响船舶的推进特性和正常航行,并对船舶主机的正常运转有着直接的影响。
所以,轴系的设计、加工制造、安装及调试均需有较严格的技术要求,并且应符合有关船舶技术标准和船舶规范。
为满足现代船舶的要求,保证轴系能在各种航行工况和恶劣环境下可靠工作,轴系应具有:1)足够的小、强度和刚度,对船体变形适应性强; 2)传动损失;3)工作中避免发生横向、纵向和扭转的共振; 4)良好的密封、润滑和冷却;管理维护方便。
由于船的任务和要求不同,使得船体型线和动力装置型式不同,轴系所包括的具体组成部件也不完全一样。
一般情况下,从主机曲轴法兰起,到螺旋桨止,主要包括:弹性联轴节、减速齿轮箱、推力轴、推力轴承、中间轴、中间轴承、联轴节、艉轴和艉轴管等,另外还有离合器和隔舱填料函等总称为轴系(参见图1示意图)。
图1船舶主推进系统--轴系示意图1-导流罩 2-液压螺母 3-螺旋桨 4防渔网割刀 5-防渔网环 6-防护罩 7-艉管后密封 8-艉管9-螺旋桨轴10-艉管前密封 11-液压联轴节 12-液压紧配螺栓 13-中间轴承 14-中间轴15-液压紧配螺栓二、船舶舵系设计研究概述船舶舵系装置是船舶航向中的主要组成部分。
传动轴的受力分析传动轴两端在安装后常常发主一定的不对中戢-使轴发生弯曲,也将对轴两輸联轴翻产生支反力.文反力将会便联轴器发生变形;对整个传动系统的稳定性和童全性萨响.从阳需践通过优化it各结崗尺寸來ft应支反力毎小..又由F轴的扭转变瑋要影响机器的性能和工柞精度'扭转轴太大将会隆低轴的餐功HI 度威皿能发生粗转提功现線,因此,轴也雷具备较犬的WWJ度,即小.综上所述*以支反力和扭转均为优化片标。
41用奇异函数和拉氏蛮换法求传动轴的支辰力与挠度値的关系在各种机橄叩人部分轴鬼附梯轴或轴刃处采用曲线过镀的轴,对这类轴的设ifil 算时.刚盛校核不能直接算出来,不易讦算•常常先捲手册上列茁的经验公式算斟当駅謝名燃肩冉以直进仃设讣订曾■此甘法虫计算倚雅・但融茯港一般很人而汁算耕度较高的有限羌分法和有限元法计鼻最大.不易攥作.特别在优化设计吋,数值汁畀法不易尸程序編写,而且效率可能很低*木文利用奇舁隔数和Laplace变SU8SS舎的方法・并将含有过礦曲线的轴蚯似成N 阶阶梯轴米讣算.从阶梯轴出发推导出了其弯曲变常的解析我达式牌叫此川去可以対任意支承形式*受力状SL笄种it®®式以攻任童阶梯數的轴进行计算.井H表达式具有规范、统一的形式”可以方便准确地计舜I从而字出轴的任意議面挠度値C弯曲变形)和支反力(峋束力)一舌关察的解折表达式.并易于程序的编写特尤其当对轴址冇tt化R时貝冇软大的T,程实用价值乜根据龙门车at床的实际装配和加工情况,滑枕中传劫轴可能发生两种不对中变■ 一种是轴两端交差不对中(如图4Q]另一种是轴两端平疔不对中5图斗"用4」发生交叉不对中Fig.4.1 Cross misalignment图4.2发生平行不对屮Fig 4.2 Parallel misalignment4・1. 1轴两端交遽不对中时支反力与弯曲变形的关系的解析衷达式tr先阶梯轴挠度订悄采用如卜'近似挠曲线微分方程冲=^L(4 1) 式中勺(蛊)一作用住轴上的等效我他也(x)—轴的弯曲刚度。