多元函数微分在几何中的应用
- 格式:ppt
- 大小:677.50 KB
- 文档页数:24
数二考多元函数微分学的几何应用微分学是数学中的一个重要分支,它研究的是函数的变化规律。
而多元函数微分学则是微分学的一个延伸,研究的是多个变量的函数的变化规律。
在实际应用中,多元函数微分学有着广泛的应用,尤其在几何学中,可以帮助我们揭示图形的性质和变化规律。
我们来看一个简单的例子。
假设有一个平面上的曲线,我们想要研究它的切线方程。
通过多元函数微分学,我们可以求出曲线上任意一点的切线方程。
具体的方法是,首先求出曲线的导数,然后将导数代入切线方程的一般式中,即可得到切线方程。
这样,我们就可以通过切线方程来描述曲线的变化情况了。
接下来,我们来看一个更复杂的例子。
假设有一个三维空间中的曲面,我们想要研究它的切平面方程。
通过多元函数微分学,我们可以求出曲面上任意一点的切平面方程。
具体的方法是,首先求出曲面的偏导数,然后将偏导数代入切平面方程的一般式中,即可得到切平面方程。
这样,我们就可以通过切平面方程来描述曲面的变化情况了。
除了切线方程和切平面方程,多元函数微分学还可以帮助我们研究曲线和曲面的曲率。
曲率是描述曲线弯曲程度的一个重要指标,可以帮助我们了解曲线的形状和性质。
在多元函数微分学中,曲率可以通过求曲线的二阶导数来计算。
具体的方法是,首先求出曲线的一阶导数和二阶导数,然后将导数代入曲率公式中,即可得到曲线的曲率。
通过研究曲线的曲率,我们可以揭示曲线的弯曲情况和变化规律。
同样地,多元函数微分学还可以帮助我们研究曲面的曲率。
曲面的曲率是描述曲面弯曲程度的一个重要指标,可以帮助我们了解曲面的形状和性质。
在多元函数微分学中,曲面的曲率可以通过求曲面的二阶偏导数来计算。
具体的方法是,首先求出曲面的一阶偏导数和二阶偏导数,然后将偏导数代入曲率公式中,即可得到曲面的曲率。
通过研究曲面的曲率,我们可以揭示曲面的弯曲情况和变化规律。
除了切线方程、切平面方程和曲率,多元函数微分学还可以帮助我们研究曲线和曲面的极值。
极值是描述函数在某个区间内取得最大值或最小值的点,可以帮助我们了解函数的最优解。
8.4多元复合函数的微分法在一元函数微分学中,复合函数的链式求导法则是最重要的求导法则之一,它解决了很多比较复杂的函数的求导问题.对于多元函数,也有类似的求导法则.8.4.1多元复合函数的求导法则 1.二元复合函数求导法则与一元复合函数求导相比,二元复合函数的求导问题要复杂的多.对于二元函数),(v u f z =,中间变量u 和v 都可以是x 和y 的二元函数;也可以只是某一个变量t 的函数,还可能中间变量u 和v 分别是不同个数自变量的函数,譬如u 是y x ,的函数,而v 只是x 的函数;等等。
下面讨论二元复合函数的求导法则,对二元以上的多元函数的求导法则可类似推出.定理8.4.1设函数),(v u f z =是v u ,的函数,),(),,(y x v y x u ψϕ==.若),(),,(y x y x ψϕ在点),(y x 处偏导数都存在,),(v u f z =在对应点),(v u 处可微,则复合函数)],(),,([y x y x f z ψϕ=在点),(y x 处关于y x ,的两个偏导数都存在,且yv v z y u u z y z x v v z x u u z x z ∂∂⋅∂∂+∂∂⋅∂∂=∂∂∂∂⋅∂∂+∂∂⋅∂∂=∂∂, (8-1) 我们借助于复合函数的函数结构图对复合函数求偏导数的过程进行分析.函数)],(),,([y x y x f z ψϕ=的结构图,如图8-4所示.从函数结构图可以看出,z 和x 的函数关系可以由两条路径得到.一条是经中间变量u 到达自变量x ,还有一条是经中间变量v 到达自变量x 的.从公式(1)的第一式可以看出,z 和x 的函数关系有两条路径,对应公式中就有两项,其中每一项由两个因子的乘积表示,两个因子的乘积都是函数关于中间变量的偏导数和中间变量关于自变量的偏导数的乘积构成.例8.4.1设)sin(y x e z xy+=,求x z ∂∂和yz ∂∂. 解:令y x v xy u +==,,则v e z usin = 函数结构图,如图8-5所示.x z ∂∂=u z ∂∂x u ∂∂⋅+v z ∂∂xv ∂∂⋅=sin cos uu e v y e v ⋅+ =sin()cos()xy xye x y y e x y +++,y z ∂∂=u z ∂∂y u ∂∂⋅+v z ∂∂yv ∂∂⋅=sin cos uu e v x e v ⋅+=sin()cos()xy xye x y x e x y +++. 例8.4.2设2)(2y x y x z -+=,求x z ∂∂和yz ∂∂. 解:令22,y x v y x u -=+=,则vu z =,函数结构图,如图8-5所示.x z ∂∂=u z ∂∂x u ∂∂⋅+v z ∂∂xv∂∂⋅=1ln v v vu u u -+ =2222122()()()ln()x y x yx y x y x y x y ----+++-,y z ∂∂=u z ∂∂y u ∂∂⋅+v z ∂∂yv∂∂⋅=12ln (2)v v vu y u u y -+- =22221222()()2()ln()x y x yy x y x y y x y x y ----+-+-.2.二元复合函数求导法则的推广和变形多元复合函数的中间变量可能是一个,也可能多于一个,同样,自变量的个数可能只有一个,也可能是两个或者更多.我们可以对定理1进行推广和变形,分以下几种情形讨论:(1)当函数z 有两个中间变量,而自变量只有一个,即)(),(),,(t v v t u u v u f z ===.函数结构图,如图8-6所示.因此(8-1)变形成为dtdv v z dt du u z dt dz ⋅∂∂+⋅∂∂=.因为复合结果和中间变量都是t 的一元函数,应该使用一元函数的导数记号;为了与一元函数的导数相区别,我们称复合后一元函数的导数dtdz 为全导数.当函数z 有三个中间变量,而自变量只有一个,即)(),(),(),,,(t w w t v v t u u w v u f z ====.函数结构图,如图8-7所示.因此公式(8-1)可以推广成为 dt dw w z dt dv v z dt du u z dt dz ⋅∂∂+⋅∂∂+⋅∂∂=.(2)当函数z 有一个中间变量,而自变量有两个.例如),(),,(y x u x u f z ϕ==.函数结构图,如图8-8所示.此时(8-1)变形成为.yu u f y z x f x u u f x z ∂∂⋅∂∂=∂∂∂∂+∂∂⋅∂∂=∂∂, 在上面第一个式中,xz∂∂表示在复合函数]),,([x y x f z ϕ=中,把y 看作常量,求得的z 对x 的偏导数;xf∂∂表示在复合函数],[x u f z =中,把u 看作常量,求得的z 对x 的偏导数,因此x z ∂∂和xf ∂∂表示的含义不同,在求偏导数是一定要注意,记号上不能混淆. 例如),(),(y x u u f z ϕ==,函数结构图,如图8-9所示.此时(8-1)变形成为.yu du dz y z x u du dz x z ∂∂⋅=∂∂∂∂⋅=∂∂,(3)当函数z 有两个中间变量,而自变量有三个,即),,(),,,(),,(w v u y y w v u x x y x f z ===.函数结构图,如图8-10所示。
多元函数微分学的几何应用一、多元函数微分学多元函数微分学是微积分的一个分支,研究的是多个自变量的函数的导数、微分和全微分等概念。
与一元函数微分学不同的是,多元函数在求导时需要通过偏导数来计算,而全微分可以看做多元函数在某一点上的线性近似。
多元函数微分学在实际生活中有着广泛的应用,尤其是在几何学方面。
二、几何应用1. 向量场和梯度向量场是一个函数与向量的映射关系,在几何学中经常用于描述速度场、磁场等。
其中,梯度是向量场的一个重要概念。
梯度表示在某一点上函数变化增加最快的方向。
例如,在平面上的某一点上,一个函数的梯度表示了函数值增加最快的方向及增加的速率。
2. 方向导数和梯度的应用方向导数表示函数在某一点上沿着某一给定方向上的导数。
在平面几何中,方向导数可以用来求解曲面的切平面方程。
具体来说,可以通过梯度和方向向量的点积计算出方向导数,从而得到曲面上某一点的切平面方程。
3. 曲面积分曲面积分是对曲面上的函数进行积分,类似于线积分。
在计算曲面积分时,需要用到曲面的面积元素,这里面积元素的计算需要用到微积分中的偏微分。
具体来说,可以通过将曲面分成小的面元,计算每个面元的面积和函数值,然后将它们累加起来,从而得到曲面上的积分值。
4. 极值和拐点在多元函数中,类似于一元函数中的极值和拐点的概念。
在平面几何中,可以将这些概念应用于曲线的局部特征的分析中。
通过极值和拐点的计算,可以得到曲线上的最大和最小值,以及拐点的位置和拐点的类型等信息。
总之,多元函数微分学在几何学中有着广泛的应用。
通过对向量场、梯度、方向导数、曲面积分、极值和拐点等概念的研究,可以深入分析曲线、曲面的本质特征和局部特征,从而为实际问题的求解提供了精确的数学工具。
第八章 多元函数微分法及其应用一、多元函数的基本概念1、平面点集,平面点集的内点、外点、边界点、聚点,多元函数的定义等概念2、多元函数的极限✧00(,)(,)lim (,)x y x y f x y A →=(或0lim (,)P P f x y A →=)的εδ-定义✧ 掌握判定多元函数极限不存在的方法:(1)令(,)P x y 沿y kx =趋向00(,)P x y ,若极限值与k 有关,则可断言函数极限不存在;(2)找两种不同趋近方式,若00(,)(,)lim (,)x y x y f x y →存在,但两者不相等,此时也可断言极限不存在。
✧ 多元函数的极限的运算法则(包括和差积商,连续函数的和差积商,等价无穷小替换,夹逼法则等)与一元类似:例1.用εδ-定义证明2222(,)(0,0)1lim ()sin0x y x y x y →+=+例2(03年期末考试 三、1,5分)当0,0→→x y 时,函数222222()+++-x y x y x y 的极限是否存在?证明你的结论。
例3 设222222,0(,)0,0xy x y x y f x y x y ⎧+≠⎪+=⎨⎪+=⎩ ,讨论(,)(0,0)lim (,)x y f x y →是否存在?例4(07年期末考试 一、2,3分)设2222422,0(,)0,0⎧+≠⎪+=⎨⎪+=⎩xy x y x y f x y x y ,讨论(,)(0,0)lim (,)→x y f x y 是否存在?例5.求222(,)(0,0)sin()lim x y x y x y →+3、多元函数的连续性0000(,)(,)lim(,)(,)x y x y f x y f x y →⇔=✧ 一切多元初等函数在其定义区域内都是连续的,定义区域是指包含在定义域内的区域或闭区域。
✧ 在定义区域内的连续点求极限可用“代入法”例1. 讨论函数33222222,0(,)0,0x y x y x y f x y x y ⎧++≠⎪+=⎨⎪+=⎩ 在(0,0)处的连续性。