船舶结构力学复习总结
- 格式:pdf
- 大小:791.48 KB
- 文档页数:25
船舶船体知识点总结船舶是指用于水上运输的船只,是海运工具和海上运输的主要载体。
船舶船体是船舶的主体结构,它不仅承载着所有的设备和货物,还在海上承受着巨大的浪涌和风浪冲击力,承载着全船的安全和性能。
船舶船体的结构设计和建造是一门复杂的科学,在设计和制造中需要考虑船舶的功能、载重、航行条件、海洋环境等因素,以确保船舶具有足够的航行性能、稳定性和安全性。
下面将从船舶船体的设计与结构、船体的各部分及其功能、船体的保养与维护等方面进行知识点总结。
一、船舶船体的设计与结构1. 船舶船体的设计船舶船体的设计是船舶设计的重要组成部分,它与船舶的功能、用途、载重、航行条件等有密切联系。
船舶船体的设计包括船舶的型式设计、船型线设计、结构设计和生产设计等。
船舶的型式设计是指确定船舶的基本参数,包括船长、船宽、吃水、型深、载重等。
在确定船舶的型式时,需要考虑船舶的用途、航行水域、载重量等因素,以确保船舶具有足够的航行性能。
船型线设计是指确定船舶的外形线条,在设计船型线时需要考虑船舶的流线型、稳定性、水动力性能等因素,以确保船舶具有良好的航行性能和稳定性。
结构设计是指确定船舶船体的结构形式和材料,在结构设计中需要考虑船舶的承载能力、抗风浪性能、结构强度等因素,以确保船舶具有足够的结构强度和稳定性。
生产设计是指根据结构设计确定船舶船体的制造工艺和制造工序,以确保船舶船体在建造过程中能够满足设计要求。
2. 船舶船体的结构船舶船体的结构包括船舶的船体总体结构、船体细部结构和船舶的辅助设备等。
船体总体结构是指船舶的主体结构,包括船舶的船体外形、船体内部构架和舱室等。
船体总体结构承载着船舶的所有设备和货物,具有良好的承载能力和结构强度。
船体细部结构是指船舶船体的细部构件,包括船舶的船体外板、船体的龙骨、船体的内部构件等。
船体细部结构具有良好的耐腐蚀性能和结构强度。
船舶的辅助设备是指船舶上安装的各种辅助设备,包括船舶的舵机、船舶的艏艉装置、船舶的通风设备、船舶的消防设备等。
2024年结构力学心得体会模板标题:____年结构力学心得体会目录:一、引言二、学习过程与方法总结1. 学习过程2. 学习方法三、重要知识点回顾与理解1. 刚体静力学2. 结构平衡四、应用实例1. 建筑结构设计2. 桥梁工程五、进一步学习计划六、结论参考文献一、引言结构力学是土木工程中的重要学科之一,它研究了物体受力时的行为和变形规律。
作为一名结构工程师,掌握结构力学的理论和应用是非常关键的。
本文将总结我在____年学习结构力学的心得体会,并分享我的学习过程、学习方法以及对重要知识点的理解。
二、学习过程与方法总结1. 学习过程在学习结构力学的过程中,我注重理论与实践相结合。
首先,我认真学习了教材,掌握了基本概念和原理。
然后,我利用课余时间做了大量的习题,以加深对知识点的理解。
最后,我参与了一些结构力学实验,通过实践加深了对理论的认识。
2. 学习方法在学习结构力学时,我采用了以下几种方法:a. 学习前预习:在上课前,我会提前预习教材,了解本节课的内容和重点,以便更好地跟上课堂的进度。
b. 理论与实践结合:除了课堂学习,我还参与了一些实践活动,如结构力学实验。
通过实践,我能够更加深入地理解和应用所学知识。
c. 刻意练习:我会针对不同的知识点,做一些典型例题和习题。
通过大量的练习,我能够更好地掌握和记忆所学的知识。
d. 合作学习:我会和同学们进行讨论和交流,共同解决问题。
通过与他人的合作学习,我能够开阔视野,获取不同的思路和解题方法。
三、重要知识点回顾与理解1. 刚体静力学刚体静力学是结构力学的基础,它研究物体受力时的平衡条件和力的作用规律。
通过学习刚体静力学,我深入理解了平衡条件的概念,如受力平衡和力矩平衡。
我学会了利用力的合成和分解来分析复杂的力系统,并能够应用平衡条件解决实际问题。
2. 结构平衡结构平衡是结构力学的核心内容,它研究物体在受力时的平衡状态和变形规律。
通过学习结构平衡,我了解到结构受力状态的判断方法,如受力分析和力的图示法。
船舶原理备考知识点总结一、船舶的基本概念1. 船舶的定义:船舶是用于在水上进行运输和航行的交通工具,通常由船体、动力装置、船舱以及导航和控制设备组成。
2. 船舶的分类:根据用途和船体特征,船舶可分为货船、客船、油船、拖船、渔船等各种类型。
3. 船舶的结构:船体是船舶的基本结构,通常由船首、船艏、船中、船艉等部分组成。
船体的外形和结构对船舶的性能有着重要的影响。
二、船舶的稳性1. 船舶的稳性定义:船舶的稳性是指船舶在浮力和重力的作用下保持平衡的能力。
船舶的稳性对航行安全具有重要意义。
2. 船舶的稳性要素:船舶的稳定性要素包括浮力、重力、形心、重点、载重线等。
这些要素相互作用,决定了船舶的稳定性水平。
3. 船舶的稳性计算:船舶的稳性计算是通过考虑船体的形状、载重线位置、重心位置等因素,确定船舶在不同工况下的稳性状况。
稳性计算通常使用形心高度曲线和倾覆曲线等参数来表示。
三、船舶的阻力1. 船舶的阻力概念:船舶在航行中受到水流的阻碍,产生阻力。
阻力包括水动力阻力、摩擦阻力、波浪阻力等。
2. 船舶的阻力影响因素:船舶的阻力受到船体形状、航速、水流状况、载重线位置等多种因素的影响。
船舶的阻力与船舶的动力消耗和航行速度息息相关。
3. 船舶的阻力计算:船舶的阻力计算主要通过实验和模型试验进行。
船舶的阻力计算是船舶设计和航行性能评估的重要依据。
四、船舶的推进1. 船舶的推进基本原理:船舶的推进是利用动力装置产生推力,推动船舶在水中前进。
常见的推进方式包括螺旋桨推进、水射推进、水轮推进等。
2. 船舶的推进装置:螺旋桨是最常用的船舶推进装置,它通过叶片的旋转产生推力。
水射推进和水轮推进则是在特定船舶类型和工况下使用的推进方式。
3. 船舶的推进性能评估:船舶的推进性能评估包括推进效率、推进功率、航速、加速度等指标。
这些指标反映了船舶在不同工况下的推进性能表现。
五、船舶的操纵1. 船舶的操纵原理:船舶的操纵是通过操舵装置控制船舶航向,以实现转向、停泊、靠泊等操作。
hhit-船舶结构力学-期末考试复习资料处的边界条件:故有:及有二式可解得:;于是梁的挠曲线方程为:三、(20分)用能量法求解如图所示梁的静不定性。
已知图中E 为常数,柔性系数,端部受集中弯矩m 作用,悬臂端的惯性矩是其余部分的2倍。
解:取挠曲线函数为 ,满足梁两端的位移边界条件,即x=0时,3/(12)A l EI LLmx=3L/2时,说明此挠曲线函数满足李兹法的要求,下面进行计算。
(1) 计算应变能。
此梁的应变能包括两部分,一是梁本身的弯曲应变能,二是弹性支座的应变能。
注意到梁是变断面的,故有总的应变能为(2)计算力函数。
此梁的力函数为(3) 计算总位能故梁的挠曲线方程为弹性支座处的挠度为四、(20)用位移法求解下图连续梁的静不定问题。
已知:, , , ,画出弯矩图。
解:设节点1、2、3的转角为,由题意可知。
根据平衡条件有节点1:节点2:其中:将其代入整理,联立求解得:P ql =1223l l l ==1223I I I ==/(6)l EI α=;故:;;;弯矩图:四、(20分)用力法求解下图连续梁的静不定问题。
已知:其中杆件EI为常数,分布力q2P/L,集中弯矩m=PL,画出弯矩图。
解: 本例的刚架为一次静不定结构,现将支座1处切开,加上未知弯矩M1,原来作用于节点1上的外力矩m可考虑在杆0-1上亦可考虑在杆1-2上,今考虑在杆1-2上。
于是得到两根单跨梁如上图所示。
变形连续条件为节点1转角连续,利用单跨梁的弯曲要素表,这个条件给出:解得:弯矩图:6、用位移法计算下面刚架结构的杆端弯矩为了书写方便,将钢架的各节点分别命名为0、1、2和3,如上面右图所示。
解:1、确定未知转角的数目本题0、1、2三个节点都可能发生转动,故有三个未知转角 。
解题时将以上三个节点作刚性固定。
2、计算各杆的固端弯矩M 01 = -qL212M 10 =qL212M 12 =M 13 =M 21 =M 31 =003、计算因转角引起的杆端弯矩M 01 =′4EI 01L θ0+2EI 01Lθ1M 10 =′4EI 01L θ1+2EI 01L θ0M 12 =′4EI 12L θ1+2EI 12L θ2M 21 =′4EI 12L θ2+2EI 12Lθ1θ0θ1θ2、、M 13 =′4EI 13Lθ1M 31 =′2EI 13θ14、对节点0、1、2列出弯矩平衡方程式对“0”节点:M 01M 01′+= -qL24EI 01θ0+2EI 01θ1+= 0= -qL28E L θ0+4E Lθ1+= 0对“1”节点:M 10M 10′+12M 12′+13M 13′+++=qL24EI 01θ1+2EI 01θ0+4EI 12L θ1+2EI 12L θ2+4EI 13L θ1+= 0=0=qL2124Eθ0++32E θ1+6E θ2= 021M21′+对“2”节点:4EI21θ2+2EI21θ1=12Eθ2+6Eθ1== 0 = 0即: -qL28Eθ0+4Eθ1+= 0qL2 124Eθ0++32ELθ1+6ELθ2= 012E L θ2+6ELθ1= 0θ1θ2θ0===11qL3864EqL3216EqL3432E-解得未知转角:5、计算各杆的杆端弯矩M01 = M10 =M01 +M01′M10M10 =′+= -qL24EI01θ0+2EI01θ1 += -qL28ELθ0+4ELθ1 += -qL28EL+4EL+11qL3864EqL3216E-( )=-0.083+0.102-0.0185=0qL2 124EI01θ1+2EI01θ0+=qL2 8Eθ1+4Eθ0 +=qL2 8E+4E+11qL3864EqL3216E-( )=0.083+0.051-0.037 =0.097qL2LM 13 =M 21M 3113M 13 =′ +M 21M 21′+4EI 21L θ2+2EI 21L θ1=12E L +6E ==M 31 =′2EI 13θ1 =M 12 =12M 12 =′ +12E + 6E qL3216E -( )qL3432E= -0.056+0.0139= - 0.042qL2qL3432E qL3216E -( )= 0qL3216E -( )= - 0.056qL2 = 6E qL3216E -( )= - 0.028qL2二、(16分)图1所示结构,已知作用在杆中点的弯矩M , 和EI ,l 用初参数法求单跨梁的挠曲线方程。
船舶力学知识点总结船舶力学是研究船舶在水中运动的力学分支,包括了船舶在航行、漂浮、操纵和受力等方面的物理过程。
船舶力学的研究对于设计、建造和运用船舶都有着重要意义,下面将对船舶力学的知识点进行总结。
一、船舶的基本概念和性能指标1. 船舶的基本概念船舶是指用于在水中航行的交通工具,一般包括水面船舶和潜水船舶两种类型。
水面船舶按用途可分为客货船、军舰、渔船等,潜水船舶主要包括潜水艇、潜水器等。
2. 船舶的性能指标船舶的性能指标包括了船速、载重能力、推进力、舵角、操纵性等,这些指标反映了船舶在水中运动时所具备的性能。
船舶的性能指标对于船舶的设计和运用有着重要的参考价值。
二、船舶的漂浮和稳性1. 船舶的漂浮原理船舶的漂浮是指船舶在水中浮力等于船舶的重力,这是由阿基米德原理所决定的。
根据阿基米德原理,浮体在液体中受到的浮力等于它所排挤的液体的重量。
2. 船舶的稳性船舶的稳性是指船舶在水中保持平衡的能力,主要由纵向稳性和横向稳性两部分组成。
纵向稳性是指船舶在航行中不会因为前倾或后倾而失去平衡,而横向稳性是指船舶在航行中不会发生侧翻。
三、船舶的阻力和推进1. 船舶的阻力船舶在水中航行时会受到来自水的阻力,这是由于水对船体的阻碍所产生的力。
船舶的阻力主要可以分为摩擦阻力和波浪阻力两种,其中摩擦阻力是指水对船体表面的摩擦力,而波浪阻力是指船舶在航行中产生的波浪所带来的阻力。
2. 船舶的推进船舶的推进是指船舶在水中航行时所受到的推进力,这是通过船舶的推进装置所产生的。
船舶的推进装置可以分为螺旋桨、水道推进器、水喷射推进器等多种形式,而推进力的大小则取决于推进装置的功率和效率。
四、船舶的操纵和控制1. 船舶的操纵性船舶的操纵性是指船舶在水中航行时所具备的操纵能力,这包括了船舶的转向、加速和减速等动作。
船舶的操纵性对于船舶的航行安全和效率有着重要的影响。
2. 船舶的控制船舶的控制是指船舶在航行中通过操纵装置对船舶的速度、方向等进行控制,这通常通过舵、推进装置等来实现。
重庆市考研船舶与海洋工程复习资料船舶结构力学重难点梳理船舶结构力学是船舶与海洋工程领域中的一门重要课程,它研究船舶结构的受力、变形和破坏等问题。
对于考研学子来说,船舶结构力学是一个重要的复习科目。
本文将梳理重庆市考研船舶与海洋工程复习资料中船舶结构力学的重难点,帮助考生更好地备考。
一、船体受力分析船体受力分析是船舶结构力学的基础,也是考研中经常涉及的一个重点。
在船体受力分析中,需要了解船体的静力特性和动力特性,以及船体在浮动状态下所承受的静荷载和动荷载。
在备考过程中,可以结合相关习题进行练习,提高对船体受力分析的理解。
二、寿命分析与结构设计船舶的寿命分析与结构设计是船舶结构力学的重点和难点之一。
它涉及船舶结构的疲劳分析、强度计算和结构优化设计等内容。
在备考过程中,可以通过学习相关理论知识,掌握船舶结构的疲劳损伤机理和疲劳寿命计算方法,以及结构的强度计算和结构的疲劳寿命提高方法。
三、塑性力学与结构失稳塑性力学与结构失稳是船舶结构力学的另一个重要内容。
它研究船舶结构在超过弹性限度时的变形和破坏行为。
在备考中,可以通过学习相关理论和分析方法,了解船舶结构在受到大荷载作用时的塑性变形和失稳现象,并能够进行相应的分析和计算。
四、船舶振动与噪声分析船舶振动与噪声是船舶结构力学的另一个重要内容,也是船舶与海洋工程中的一个热点问题。
它涉及船舶的结构振动分析、噪声控制和船体的舒适性设计等方面。
在备考过程中,可以通过学习相关理论和分析方法,理解船舶的振动特性和噪声产生机理,以及相应的控制方法和设计要求。
五、船舶结构检测与修理船舶结构检测与修理是船舶结构力学的实际应用部分。
它涉及到船舶结构的定期检测、维修和修复等工作。
在备考中,可以通过学习相关理论和实际案例,了解船舶结构的检测方法和修理技术,以及相应的船级社规定和修船工艺。
在复习船舶结构力学的过程中,需要掌握相关理论知识,并能够灵活运用到解决实际问题中。
同时,还要通过大量的习题练习和真题模拟,巩固和加深对知识点的理解。
船舶结构知识点总结船舶是水上运输工具,其结构设计和制造必须满足航海安全和航行性能要求。
船舶结构是指船舶的构造和建造,包括船体结构、甲板、舱室、船体内部设备等。
在船舶的设计与建造中,船舶结构是一个非常重要的环节,它直接决定了船舶的各项性能指标,影响着船舶的运输效率和安全性。
在船舶结构中,最为重要的是船体结构。
船体结构是船舶上最基本的结构,包括船体外围的壳体结构、船舶内部布置的结构、船艏船尾的设计等。
船体结构的设计必须考虑到船舶的使用条件、荷载条件、航行条件等因素,保证其具有足够的强度和刚度,同时还要兼顾船舶的轻量化设计和造船成本的控制。
在船体结构设计中,要考虑到船舶在不同航行条件下对波浪的阻力和冲击力,以及船舶在航行中所受到的不同方向的荷载作用。
因此,船体结构必须具有足够的强度和刚度来承受这些荷载的作用,从而确保船舶在航行中的安全性和稳定性。
另外,船舶的甲板结构和舱室结构也是船舶结构中的重要部分。
船舶的甲板结构主要用于载货、装卸货物、以及船员的行走和活动,因此其设计必须考虑到载荷、耐磨和防滑等要求。
船舱结构则是用于存储货物、设备和生活用品等,因此其设计必须考虑到货物的安全固定和储存条件等方面的要求。
除了以上这些基本的船舶结构,船舶内部设备也是船舶结构中的重要组成部分。
船舶内部设备包括船舶的动力设备、电气设备、通讯设备、控制设备等。
这些设备的设计和布置必须满足船舶的功能要求,使得船舶能够正常运行和保证船舶上的人员和设备的安全。
在船舶结构设计中,还需要考虑到新材料和新技术的应用。
随着船舶制造技术的不断发展和进步,船舶的结构材料和建造工艺也在不断更新和改进。
新材料如高强度钢、铝合金、复合材料等的应用,可以有效提高船舶的结构强度和轻量化设计水平。
新技术如数值模拟、虚拟设计、智能制造等的应用,可以提高船舶设计和建造的效率和质量。
总之,船舶结构是船舶设计与建造中的重要环节,它直接影响着船舶的使用性能和安全性。
第一章:绪论1由于船舶经常在航行状态下工作,它所受到的外力是相当复杂的。
这些外力包括船的各种载重(静载荷)、水压力、冲击力、以及运动所产生的惯性力(动载荷)等。
为了保证船舶在各种受力下都能正常工作,船舶具有一定的强度。
所谓具有一定的强度是指船体结构在正常使用的过程中和一定的年限内具有不破坏或不发生过大变形的能力。
2船体强度包括中拱状态、总纵强度、局部强度、扭转强度问题、应力集中问题、低周期疲劳。
3把船舶整体当做空心薄壁梁计算出来的强度就成为船体的总纵强度。
局部强度是指船体的横向构件(如横梁、肋骨、及肋板等)一集船体的局部构建(如船底板、底纵衍等)在局部载荷作用下的强度。
4船体强度所研究的问题通常包括外力,结构在外力作用下的响应,及内力与变形,以及许用应力的确定等一系列问题。
船舶结构力学只研究船体结构的静力响应,及内力与变形,以及受压结构的稳定性问题,因此,船舶结构力学的首要任务是阐明结构力学的基本原理与方法,即阐明经典的方法、位移法及能量原理。
5船舶设计与制造是一个综合性很强的行业。
学习本课程不要仅仅满足于会计算船体结构中一些典型构件(如连续梁、钢架、板架、板)还应学会解决一般工程结构的计算问题。
6船体结构是由板和骨架等构件组成的空间复杂结构,在进行结构计算之前需要对实际的船体结构加以简化。
简化后的结构图形称为实际结构的理想化图形或计算图形(又称计算模型或力学模型等)7结构的计算图形是根据实际结构的受力特征,构建之间的相互影响,计算精度的要求以及所采用的计算方法,计算工具等因素确定的。
因此,对于同一个实际结构,基于不同的考虑就会得出不同的计算图形,对于同一个实际结构,其计算图形不是唯一的,一成不变的。
8首先是船体结构中的板,板是船体的纵、横骨架相连接的,且通常被纵、横骨架划分成许多矩形的板格。
9其次是船体结构中的骨架,船体结构中的骨架无外乎是横向构件—横梁、肋骨、肋板和纵向构件—纵桁、纵骨等,它们大都是细长的型钢或组合型材,故称为“杆件”或简称为“杆”。
船舶结构力学第一篇:船舶结构力学船舶结构力学一、基本概念部分1、坐标系船舶结构力学与工程力学的坐标系比较如下图:yz0y 船舶结构力学的坐标系xz工程力学的坐标系0x2、符号规则船船结构力学与工程力学的符号规则有相同点和不同点,弯矩四要素的符号基本不同,主要是指弯矩、剪力和挠度的符号规则不同,而转角的符号一致,即是以顺针方向的转角为正角。
船舶结构力学的符号规则如下图所示。
MN工程力学的符号规则NMMNN船舶结构力学力法的符号规则MMNNM船舶结构力学位移法的符号规则3、约束与约束力对物体的运动预加限制的其他物体称为约束。
约束施加于被约束物体的力称为约束力或约束反力,支座的约束力也叫支反力。
4、支座的类型及其边界条件支座有四类:简支端(包括固定支座与滚动支座)、刚性固定端、弹性支座与弹性固定端。
各类支座的图示及其边界条件如下图:1)简支端2)刚性固定端边界条件:v = 0,v″ = 0边界条件:v = 0,v′ = 03)弹性支座边界条件:v =-AEIv′′(′支座左端)v = AEIv′′′(支座右端)(A为支座的柔性系数)′′′4)弹性固定端边界条件:v =′αEIv′′(左v =-′αEIv′′(右端)端)(α为固定端的柔性系数)5、什么是静定梁?什么是超静定梁?如何求解超静定梁?梁的未知反力与静平衡方程个数相同时,此梁为静定梁。
反之,如果梁的未知反力多于梁的静平衡方程数目时,此时的梁称为超静定梁。
超静定梁可用力法求解。
6、什么是梁的弯曲四要素,查弯曲要素表要注意哪些事项?梁的剪力、弯矩、转角和挠度称为梁的弯曲四要素。
查弯曲要素表要注意,四个要素的符号,在位移法中查梁的固端弯矩时要注意把梁的左端弯矩值加一个负号。
7、简述两类力法基本方程的内容力法方程有两类:一是“去支座法”。
是以支座反力为未知量,根据变形条件所列的方程。
二是“断面法”。
以支座断面弯矩为未知量,根据变形连续性条件所列的方程。
船舶结构期末总结引言:作为船舶结构工程师,我在这个学期学到了许多关于船舶结构的知识和技能。
在这篇总结中,我将对我在这个学期期间所学到的内容进行总结和回顾,并就船舶结构工程师的职责和要求进行探讨。
一、船舶结构基础知识在这个学期的课程中,我们学习了船舶的基本结构类型和组成部分,包括船体、船底、甲板、舱口等。
我们了解了船体的各个组成部分的名称和功能,以及它们之间的相互作用和联系。
我们还学习了船舶结构的基本术语和标准,如船舶结构设计规范、船舶结构材料等。
二、船舶结构设计和计算在船舶结构设计和计算方面,我们学习了各种设计方法和计算原理。
我们学习了船舶结构的设计原则和规范要求,如船舶结构的强度设计、船舶结构的稳定性设计等。
我们还学习了船舶结构的各种计算方法和工具,例如有限元分析、结构优化等。
通过这些学习,我们能够对船舶结构进行设计和计算,并确保其满足设计要求和规范。
三、船舶结构材料和焊接技术船舶结构材料是船舶结构设计中非常重要的一部分。
在这个学期的课程中,我们学习了各种船舶结构材料的性能和应用,如钢材、铝合金等。
我们了解了船舶结构材料的强度和刚度特性,以及其在船舶结构中的适用范围。
此外,我们还学习了船舶结构的焊接技术,包括焊接工艺、焊接材料和焊接质量控制等。
这些知识为我们在船舶结构设计和施工中选择适当的材料和焊接方法提供了指导。
四、船舶结构的检验和维护船舶结构的检验和维护是船舶运营的重要环节。
在这个学期的课程中,我们学习了各种船舶结构的检验方法和技术,如船体的超声波检测、船底的厚度测量等。
我们了解了船舶结构的常见缺陷和损坏形式,以及其对船舶安全和可靠性的影响。
我们还学习了船舶结构的维护方法和程序,如船舶结构的防腐和涂装等。
通过这些学习,我们能够对船舶结构进行定期检查和维护,确保其正常运行。
五、船舶结构工程师的职责和要求作为船舶结构工程师,我们需要具备一定的技术知识和技能。
我们需要掌握船舶结构的设计原则和规范要求,熟悉船舶结构的计算和分析方法,了解船舶结构材料和焊接技术,以及船舶结构的检验和维护方法。
结构力学总结(汇编5篇)结构力学总结第1篇了解结构力学:理论力学:侧重讨论刚体机械运动的基本规律。
材料力学:侧重讨论单个杆件的强度、刚度和稳定性的计算。
结构力学:侧重讨论杆件结构的强度、刚度、稳定性计算和动力反映,以及结构的构成规律。
1 讨论结构的构成规律、合理形式及结构计算简图的合理选择。
2 讨论结构内力和变形的计算方法,为结构设计的强度计算和刚度验算奠定基础。
3 讨论结构的稳定性以及在动力荷载作用下的结构反应。
依据支座对结构的管束作用来看,平面杆件结构的支座可简化为下列五种:活动铰支座、固定铰支座、固定支座、定向支座、弹性支座(抗移动弹性支座和抗转动弹性支座)结构力学总结第2篇1、矩阵位移法:局部坐标下单元刚度矩阵:值有几个,4i,2i,6i/l,12i/l/l,EA/l,当u,fx相遇时,是EA/l;当M和theta相遇时,是4i和2i,M和theta在同一杆端时为4,不同杆端为2;当M和v相遇或Fy和theta相遇时,为6i/l;当Fy和v相遇时是12i/l/l。
符号商定:第”虎“行”虎“列为负,(对角线元素除外,由于”虎“虎”得正)。
局部坐标有单刚,五值一0阵里藏。
大小记忆有决窍,心中有数不用忙。
轴向相遇EA/l,M,theta,4 2 享,6i/l对转剪,两切12 l方上。
符号记忆很便利,负值虎行虎列上,对角非负是特例,余值非负是正常。
x 向右,y向下,从x到y是顺时针,坐标变换时,角度alpha也是顺时针,反之亦然。
你向右,我向下,从右到下顺时针,坐标转换方向同。
从单刚矩阵到结构总体矩阵(从百草园到三味书屋):结构结点位移与相应位置单元杆端位移相同,结构结点固端弯矩与相应位置全部杆端内力之和相等(由杆端内力叠加生成),简称“位移相同,内力叠成”。
等效结点荷载:“敌人的敌人就是伙伴” 各单元固端内力先转换到整体坐标系,然后每一结点固端内力就是此结点全部杆端内力之和,结点固端内力反向就是等效结点荷载。