前两个指标可以分别求出:ζ≈0.707,ωn≈9.0;代入带宽公式,可
求得ωb≈9.0;综合考虑响应速度和带宽要求,取ωn=10。于是,
闭环主导极点为s1,2=-7.07±j7.07,取非主导极点为s3=-10ωn=100。
第6章 线性定常系统的综合
(3)确定状态反馈矩阵K。状态反馈系统的特征多项式为
第6章 线性定常系统的综合
定理6.6-受控系统(A,B,C)通过状态反馈实现解耦控制的
环极点任意配置的充要条件是该受控系统状态完全可观。
证 根据对偶原理,如果受控系统Σ0(A,B,C)可观,则对偶系
统Σ0(AT,BT,CT)必然可控,因而可以任意配置(AT-CTHT)的特征
值。而(AT-CTHT)的特征值与(A-HC)的特征值是相同的,故当
且仅当Σ0(A,B,C)可观时,可以任意配置(A-HC)的特征值。
减小ζ,这就会使系统最大超调 Mp 增大。可见只靠调整增益
K 无法同时使ζ和ωn 都取最佳值。这从根轨迹来看,由于可调
参数只有 K,故系统特征根,即闭环极点只能在系统的根轨迹
这条线上,而无法在根轨迹以外的s 平面的其他点上实现。
第6章 线性定常系统的综合
方法二:状态反馈法。
第6章 线性定常系统的综合
图6-9 模拟结构图
第6章 线性定常系统的综合
第6章 线性定常系统的综合
第6章 线性定常系统的综合
图6-10 加入状态反馈后的模拟结构图
第6章 线性定常系统的综合
6.2.2 输出反馈极点配置
输出反馈有两种方式
(1)采用从输出到ሶ 反馈,如图6-3所示。
定理6.4 对受控系统采用从输出到ሶ 的线性反馈实现闭
图6-4 控制系统结构图