第3节红外光谱与分子结构详解
- 格式:ppt
- 大小:1.39 MB
- 文档页数:39
第三节红外光谱(I nf r ared Spectra, IR)红外光谱确实是测定有机物在用中红外区域波长的光(4000cm-1 ~ 400cm-1 ,μm~25 μm)照射时的吸收情形。
通过IR测定,能够得知一个化合物中存在哪些官能团。
还能够象鉴定指纹和照片那样,通过IR来辨别化合物。
特点:辨别化合物的特点键及其官能团,能提供大量的关于化合物的结构信息。
样品用量少、易回收,气、液、固态样品均适用、灵敏度高.谱图以波长(μm)或波数为(cm-1 )横坐标,表示吸收峰的位置。
波长和波数二者可互换: n (cm-1 )=104/ (μm)以透光度T%为纵坐标而形成。
表示吸收强度。
T↓,说明吸收的越好,故曲线低谷表示是一个好的吸收带。
一、大体概念在真实分子中, 原子处于不断的运动当中。
这种运动可分为两大类:一是振动, 包括键的伸缩振动和弯曲振动;二是转动, 即原子沿着键轴作相对的转动。
红外光谱确实是由分子吸收红外光后,引发振动能级的跃迁而取得的。
红外光谱引发的是分子的振动和转动能级的跃迁,又称为振转光谱。
在真实分子中, 原子处于不断的运动当中。
这种运动可分为两大类:一是振动, 包括键的伸缩振动和弯曲振动;二是转动, 即原子沿着键轴作相对的转动。
红外光谱确实是由分子吸收红外光后,引发振动能级的跃迁而取得的。
红外光谱引发的是分子的振动和转动能级的跃迁,又称为振转光谱。
振动方程式k:力常数,与化学键的强度有关(键长越短,键能越高,k越大)m1和m2别离为化学键所连的两个原子的质量,单位为克即:化学键的振动频率(红外吸收峰的频率)与键强度成正比,与成键原子质量成反比。
吸收峰的峰位:化学键的力常数k越大,原子的折合质量越小,振动频率越大。
键的力常数k越大,红外吸收频率越大。
如:炔键/2150 cm-1,C=C /1650 cm-1,C -C /1200cm-1。
•组成化学键的原子质量越小,红外吸收频率越大。
•如:C-H/~3000 cm-1,C-C/1200 cm-1,C-O/1100 cm-1,C-Cl /800 cm-1,C-Br/550 cm-1。