动力学问题的有限元法
- 格式:ppt
- 大小:635.50 KB
- 文档页数:36
有限元第9讲动力学问题有限单元法动力学问题是指研究物体在运动中的受力和受力作用下的运动状态,常见的应用是结构工程学中的振动分析。
有限单元法是解决结构工程学中动力学问题的常用方法之一。
本文将介绍动力学问题和有限单元法的基本概念,并介绍其应用。
动力学问题的定义动力学是研究质点或刚体运动情况的分支学科,在结构工程学中是指结构在做振动时所受的力和运动状态。
动力学问题可以分为两种类型:稳态动力学问题和非稳态动力学问题。
稳态动力学问题是指结构在振动状态下所受的恒定力,而非稳态动力学问题则是指结构所受的变化的力,例如冲击力或地震力。
动力学问题的求解包括两个方面:一是确定受力情况;二是求解结构的运动状态。
确定受力情况通常需要通过实验或计算确定,求解结构运动状态则可以通过有限单元法来解决。
在结构工程学中,动力学问题的应用非常广泛。
例如,建筑物抗震设计需要对建筑物在地震作用下的反应进行分析,桥梁工程需要对桥梁在行车作用或风力作用下的振动响应进行分析。
有限单元法的基本概念有限单元法是一种将结构离散成若干小单元的数值分析方法,将结构分割成细小的单元,每个单元内部假设为均匀且连续的,通过对单元本身的运动状态进行求解,进而推知整个结构的运动状态。
有限元法用于解决的问题包括静力学问题、动力学问题、热力学问题和流体问题等。
有限单元法求解动力学问题的步骤主要包括如下几个步骤:1.离散化:将连续结构离散化成有限的小单元,每个单元内部运动状态通过定义一定数量的节点来确定。
2.建立单元的动力学方程:根据单元的形状和材料性质,建立单元的动力学方程,并计算单元的振动特性,例如频率和模态。
3.组装单元的方程:将单个单元的方程组装成整个结构的方程。
4.边界条件的处理:利用结构的边界条件(例如支撑、铰支等),将结构自由度减少到实际问题所需要的自由度。
5.求解结构的运动状态:通过求解整个结构的方程,得到结构的运动状态。
6.后处理:根据求解结果,进行结果的可视化和分析。
6.2结构动力有限元法理论与模型一、基本原理在实际问题的求解中,应用最广的是基于位移的有限元素法。
此法的基本思想是把本来为连续的工程结构分割成在结点上相联的单元组合体。
取这些结点的位移为基本未知量,并假定每个单元中的位移用单元位移函数来描述,这实质上是假定了单元的模态。
在此基础上,利用能量变分原理进行单元分析的全结构分析,得到全结构的振动平衡方程,从而把连续体的动力学问题化为多自由度系统的振动问题。
有限元动力分析的基本过程是首先将工程结构离散化,通过选择合理的单元确定出分析模型,在此基础上选择位移函数,进行单元分析,确定单元的刚度、质量、阻尼、载荷矩阵,再经过坐标变换,通过能量变分原理,进行全结构分析,建立系统的振动平衡方程。
最后运用有限元数值方法进行方程的求解。
结构动力有限元法采用的单元位移函数与静力分析相同,基本原理和求解过程也与静力分析相同,不同之处仅在分析模型的确定与运动方程的建立方面。
二、动态分析模型的确定由于结构动态分析中除考虑弹性力外,还要考虑惯性力和阻尼力,其运动方程是常微分方程组,所以动态分析的复杂程度高,计算工作量大,有限元分析模型要尽量精炼、简单。
1.模型确定的基本原则•分析模型应与分析的目的相适应。
动力分析的目的各不相同,有的是为了提供固有特性计算动态响应或供控制系统用;有的是为了舱内提供振动环境。
不同的目的,通常要求不同的模态数与计算精度。
显然,用于估算基本固有频率的模型应当比计算冲击响应的模型简单。
用于设计计算的模型应当比用于校核计算的模型简单。
•分析模型要与选用的计算工具与计算条件相适应。
计算机软件种类日益丰富,选择分析模型要与所用程序、所用计算机容量相适应。
如对于容量大的计算机,可选用较为复杂的有限元模型,而对于容量小的计算机则在能反映结构动态性能的前提下尽量简化模型,使求解规模尽量小。
对于大模型,可选用子结构模型,采用模态综合方法求解。
应注意, 不一定模型愈精细精度就愈高。
有限元法的工程领域应用
有限元法(Finite Element Method,简称FEM)是一种工程领域常用的数值计算方法,广泛应用于结构力学、固体力学、流体力学等领域。
以下是一些有限元法在工程领域常见的应用:
1. 结构分析:有限元法可用于分析各种结构的受力性能,如建筑物、桥梁、飞机、汽车等。
通过将结构离散成有限数量的单元,可以计算出每个单元的应力、应变以及整个结构的位移、变形等信息。
2. 热传导分析:有限元法可用于模拟材料或结构的热传导过程。
通过对材料的热传导系数、边界条件等进行建模,可以预测温度分布、热流量等相关参数。
3. 流体力学分析:有限元法在流体力学领域的应用非常广泛,例如空气动力学、水动力学等。
通过建立流体的速度场、压力场等参数的数学模型,可以分析流体在不同条件下的运动特性。
4. 电磁场分析:有限元法可以应用于计算电磁场的分布和特性,如电磁感应、电磁波传播等。
通过建立电磁场的数学模型,可以预测电场、磁场强度以及电磁力等。
5. 振动分析:有限元法可用于模拟结构的振动特性,如自由振动、强迫振动等。
通过建立结构的质量、刚度和阻尼等参数的数学模型,可以计算出结构在不同频率下的振动响应。
6. 优化设计:有限元法可以与优化算法结合,应用于工程设计中的结构优化。
通过对结构的材料、几何形状等进行参数化建模,并设置目标函数和约束条件,可以通过有限元分析来寻找最佳设计方案。
以上只是有限元法在工程领域的一些应用,实际上有限元法在各个领域都有广泛的应用,为工程师提供了一种精确、高效的数值计算方法,用于解决各种实际工程问题。
刚体动力学是研究刚体运动的力学学科。
刚体是指形状和大小在运动过程中保持不变的物体,刚体动力学研究刚体在受力作用下的运动规律和动力学特性。
刚体动力学主要包括以下几个方面:
运动学:研究刚体的位移、速度和加速度等与时间的关系,描述刚体的运动状态。
动力学方程:根据牛顿第二定律,建立刚体的动力学方程,描述刚体受到的力和加速度之间的关系。
转动运动:研究刚体绕固定轴进行转动的规律,包括转动惯量、角速度、角加速度等的计算和分析。
能量与动量守恒:研究刚体运动过程中的能量守恒和动量守恒定律,用于分析刚体的碰撞、旋转和平移等情况。
有限元方法(Finite Element Method,简称FEM)是一种数值计算方法,广泛应用于工程和科学领域,包括力学、结构分析、流体力学等。
有限元方法将连续的物体或结构分割成有限数量的小单元,通过求解这些小单元的力学方程,得到整个物体或结构的力学行为。
在刚体动力学中,有限元方法可以用于建立刚体的数学模型,通过将刚体分割成有限数量的单元,利用数值计算方法求解刚体的运动和力学响应。
这种方法可以有效地模拟复杂的刚体运动和受力情况,帮助分析和优化刚体系统的设计和性能。
有限元方法在刚体动力学中的应用包括刚体结构的动力学分析、碰撞和撞击的模拟、机械系统的优化等。
它提供了一种灵活、高效的数值计算工具,用于解决刚体动力学问题和工程实践中的设计和分析任务。
第六章 动力问题的有限元法6.1 概述前面几章所研究的问题都属于静力问题,其特点是施加到结构上的外载荷不会使结构产生加速度,且外载荷的大小和方向不随时间变化,因而结构所产生的位移和应力也不随时间变化。
本章将要研究结构分析中另一类重要问题的有限元解法,即动力问题的有限元解法。
动力学问题的特点是,载荷是随时间变化的,因而结构所产生的位移和应力是时间的函数,结构会产生速度和加速度。
由于结构本身的弹性和惯性,结构在动力载荷的作用下,往往呈现出振动的运动形态。
结构振动是工程中一个很普遍很重要的问题。
有些振动对我们有利,例如,振动打桩,振动选料,有些振动对我们有害,例如,机床的振动,仪器与仪表的振动,桥梁、水坝及高层建筑在地震作用下的振动等。
因此,我们必须对振动体本身的振动特性以及它对外部激振力的响应有一个明确的认识,才能更好地利用它有利的一面,而避免它有害的一面,设计出更好的机械和结构。
振动问题主要解决两方面的问题。
1. 寻求结构的固有频率和主振型,从而了解结构的固有振动特性,以便更好地利用或减少振动。
2. 分析结构的动力响应特性,以计算结构振动时动应力和动位移的大小及其变化规律。
6.2 结构的振动方程结构的振动方程可用多种方法建立,这里我们使用达朗伯原理(动静法),仿照前几章建立静力有限元方程的方法,来建立动力问题的有限元方程。
在静力问题中用有限元法建立的平衡方程是}{}]{[F K =δ在振动问题中,对结构的各节点应用达郎伯原理所建立的振动方程仍然具有与上式相同的形式,只不过节点位移是动位移,节点载荷是动载荷,它们都是时间的函数。
上面的方程成为)}({)}(]{[t Q t K =δ (6.1)上式中{})(t δ为节点的动位移,它是时间的函数,)}(]{[t K δ是t 时刻的节点位移产生的弹性恢复力,它与该时刻的节点外力{})(t Q 构成动态平衡。
在动态情况下,结构承受的载荷(集中载荷 ,分布载荷 )可随时间而变化,是时间的函数。
有限元方法有限元方法(Finite Element Method,简称FEM)是一种基于物理数学原理和工程力学理论的数值计算方法,它广泛应用于工程领域中结构分析、流体力学和热传导等问题的求解。
本文将为读者介绍有限元方法的原理、应用和发展,并探讨其在工程实践中的重要性。
有限元方法的核心思想是将一个连续的物理问题离散化,通过将其分解为许多小的有限单元,利用数值计算的方法来求解整个问题。
因此,所使用的数学模型将物理问题转化成一个由大量独立节点和元素组成的离散系统,并通过求解节点上的未知量(通常是位移或其他物理量)来得到问题的数值解。
有限元方法的工作流程主要包括以下几个步骤:建立物理模型、离散化、确定边界条件、建立刚度矩阵和荷载向量、组装和求解代数方程组、后处理结果。
首先,将真实的物理问题抽象成一个数学模型,包括几何形状、材料性质和加载条件等。
然后,将物理模型离散化为许多小的有限单元,通常是三角形或四边形。
接下来,根据边界条件确定节点的约束和加载条件。
然后,根据离散化后的模型建立刚度矩阵和荷载向量,用于描述各个单元之间的相互作用关系和力的传递。
随后,将每个单元的刚度矩阵和荷载向量组装成整个系统的刚度矩阵和荷载向量。
最后,通过求解代数方程组,得到节点上的位移或其他物理量的数值解,并进行后处理分析,如应力、应变和位移等。
有限元方法在工程实践中具有重要的意义。
首先,它可以帮助工程师和科学家研究和理解各种复杂的物理现象和工程问题。
其次,通过有限元分析,可以在设计阶段对工程结构进行性能预测和优化,提高产品质量和工程效率。
此外,有限元方法还能为工程实践提供快速、准确和经济的解决方案,节约成本和时间。
近年来,随着计算机技术和数值算法的不断发展,有限元方法在计算规模、精度和可视化方面取得了重大突破。
在结构分析领域,有限元方法已经成为工程设计和分析的重要工具。
同时,在流体力学和热传导等领域,也有广泛的应用。
有限元方法的发展使得工程师和科学家能够更好地理解和解决复杂的工程问题。
基于有限元方法的结构动力学分析随着现代科技的发展,结构动力学分析成为工程领域中不可或缺的重要环节。
结构动力学分析旨在研究结构在外界荷载作用下的动态响应,以评估其安全性和可靠性。
有限元方法作为一种常用的数值分析方法,在结构动力学分析中具有广泛的应用。
本文将深入探讨基于有限元方法的结构动力学分析的原理和应用。
一、有限元方法简介有限元方法是一种通过将复杂连续体分割成若干有限个简单元素,然后在每个单元上建立适当的数学模型,进而建立总体的数学模型和求解方法的数值分析方法。
有限元方法在数学模型中引入适当的近似,以求解真实问题的近似解。
其基本思想是将连续体离散化成若干个有限个形状简单、性质相同的基本单元,再根据相邻两个基本单元之间的相容条件,将基本单元联系在一起,组成复杂的结构体系。
二、结构动力学分析方法1. 模态分析方法模态分析是结构动力学中常用的分析方法之一。
它通过求解结构的特征值和特征向量,得到结构在固有频率下的振型和振动模态,从而揭示结构动力特性。
模态分析在设计中起到了重要的作用,能够帮助工程师判断结构的固有频率和振型是否满足要求。
2. 静力分析方法静力分析是结构动力学分析的基础,它用于求解结构在静力荷载作用下的应力和位移。
通过静力分析,可以评估结构的强度和稳定性,进而进行设计和优化。
3. 动力响应分析方法动力响应分析是结构动力学分析的核心内容,主要研究结构在外界动力荷载作用下的响应情况。
这种分析方法可以帮助工程师评估结构的动力性能,如位移、加速度和应力等。
三、有限元方法在结构动力学中的应用有限元方法在结构动力学分析中的应用广泛,可以模拟各种结构的动态响应。
例如,有限元方法可以用于分析建筑物在地震作用下的响应,以评估结构的抗震性能。
此外,有限元方法还可以用于模拟机械设备、桥梁和航天器等工程结构在振动荷载下的响应。
在使用有限元方法进行结构动力学分析时,需要注意选择适当的数学模型和边界条件,并合理选择有限元单元的类型和尺寸。
基于有限元方法的振动系统动力学分析振动是物体在外部作用下发生周期性的自由运动,广泛存在于自然界和人工工程中。
对于工程领域来说,振动是一种常见而且重要的现象,需要进行充分研究和掌握。
因为工业领域中的精密机械设备、航空航天器、桥梁、建筑等都要受到振动的影响,因此了解和掌握振动分析成为了一项必要的工作。
在振动分析中,有限元方法是一种重要的数值计算技术,能够用来计算系统在特定工况下的自由振动、强迫振动和动态特性等。
有限元方法的基本思想是将物体整体离散成若干元,然后针对每个元的受力状态对其进行计算。
因为在物理学和工程领域中,大部分振动问题都可以抽象成弹性振动问题,因此有限元方法也用得较为广泛。
下面我们将从振动系统模型建立,有限元方法的原理和实现以及动力学分析等方面进行阐述,以期为工程领域的借鉴提供一定的帮助。
一、振动系统模型建立首先,我们需要理解振动系统的原理和发展规律,然后再将其抽象成一种数学模型。
在工程领域常见的振动系统有机械弹簧阻尼振动系统、电路RLC振动系统等,这里我们以机械弹簧阻尼振动系统为例。
1.1 建立振动系统模型机械弹簧阻尼振动系统的简化模型由三个主要元素组成:质点、弹簧和阻尼器。
其中,质点质量为m,其自由度为x,弹簧的刚度为k,弹簧自由度为u,阻尼器的阻尼系数为c。
将质点与弹簧、阻尼器建立作用关系如下:1. 质点的受力情况:F = m*x''(t) (1)其中,x''(t)表示自由度x对时间t的二阶微分。
2. 弹簧的变形条件:u = x1 - x2 (2)其中,x1、x2为弹簧两端对应的自由度,利用胡克定律可以得到:F = k*u (3)3. 阻尼器的作用:F = -c*x'(t) (4)其中,x'(t)表示自由度x对时间t的一阶微分。
此时,质点、弹簧、阻尼器三者之间的作用力平衡,即有F = m*x''(t) = -k*x(t) - c*x'(t) (5)使用微分方程的方法可以得到质点加速度x''(t)关于时间t的方程,即:m*x''(t) + c*x'(t) + k*x(t) = f(t) (6)其中,f(t)为外界作用力。
有限元法的原理及应用1. 引言有限元法是一种数值计算方法,广泛应用于工程和科学领域,用于解决复杂的物理问题。
本文将介绍有限元法的基本原理和其在不同领域的应用。
2. 原理有限元法基于数学原理和工程实践,将复杂的连续体分割为许多小的有限元,然后使用离散化的方法对每个有限元进行数值计算。
具体原理如下:2.1 有限元离散化有限元法将连续问题离散化为离散的有限元问题。
首先,将连续域划分为有限个互不重叠的有限元。
每个有限元由一个或多个节点和连接节点的单元组成。
节点是问题的离散点,而单元是问题的局部区域。
2.2 描述方程在每个有限元内,使用形函数来近似描述问题的解。
形函数是定义在某个节点上的函数,它可以以节点为中心表示整个有限元的解。
然后,在每个有限元内,建立描述问题的偏微分方程,通常是通过泛函求解所得。
2.3 组装方程组将每个有限元的形函数和描述方程组装成整个问题的方程组。
通过施加边界条件和合理选择形函数的类型和数量,可以得到与原问题相对应的离散化方程组。
2.4 求解方程组将离散化的方程组转化为代数方程组,并应用数值方法求解。
通常采用矩阵运算等技术,利用计算机进行求解。
3. 应用有限元法在多个领域有重要的应用,以下列举了一些常见的应用:3.1 结构力学有限元法在结构力学领域广泛应用,用于分析和优化结构的强度、稳定性和刚度。
通过建立合适的有限元模型,可以计算结构的应力、应变和变形等重要参数。
有限元法在建筑、航空航天和汽车等工程领域具有广泛应用。
3.2 流体力学有限元法在流体力学领域用于模拟流动的行为,如气体和液体的流动、湍流和传热等。
通过将流体领域离散为小的有限元,可以计算流体的速度、压力和温度分布等参数。
有限元法在船舶设计、空气动力学和燃烧等领域得到了广泛应用。
3.3 热传导有限元法可应用于热传导问题,用于分析材料内部的温度分布和热流。
通过建立材料的有限元模型,可以计算材料的温度变化、热传导和热辐射等参数。
有限元法在结构力学分析中的应用有限元法是一种经典的结构力学分析方法。
在结构力学领域中,有限元法可以用来解决许多静力学和动力学问题。
本文将探讨有限元法在结构力学分析中的应用。
一、有限元法的基本原理有限元法是一种数值分析方法,可以用来解决大型结构的力学问题。
它的基本原理是将结构分割成一个个的单元,每个单元内的力学问题可以用简单的数学公式来描述。
然后将所有单元的力学问题集成到一起,形成一个大的数学模型。
通过数学计算,可以获得结构的应力、应变、变形等力学参数。
有限元法的优点在于它可以解决复杂结构的力学问题。
例如,有限元法可以用来分析汽车、航空器、建筑物等结构中的应力、应变、变形和振动等问题。
此外,有限元法具有高精度、高效率和高灵活性等特点,可以快速、准确地分析各种结构的力学性能。
二、有限元法在结构力学中的应用有限元法在结构力学中的应用非常广泛。
下面我们来具体看一下有限元法在结构力学分析中的应用案例。
1、建筑物结构的力学分析建筑物是大型结构中的一个重要领域。
有限元法可以用来分析各种建筑物的力学性能,例如建筑物的强度、振动、承载能力等。
通过有限元法可以模拟建筑物在地震、风力等环境下的响应,确定建筑物的结构安全性。
2、航空器的强度分析航空器飞行过程中面临各种力学环境,例如重力、空气阻力等。
有限元法可以用来分析航空器结构在高速、高空环境下的应力和变形情况。
从而确定航空器的强度和安全性。
3、机器设备的振动分析机器设备在运行过程中会产生振动,有可能对设备的安全和稳定性带来影响。
有限元法可以用来分析机器设备的振动情况,在设计过程中优化设备结构,避免发生振动破坏的危险。
总之,有限元法在结构力学分析中的应用非常广泛。
有限元法的基本原理简单,但是要想将其用于具体的问题需要进行复杂的计算。
因此,有限元法在结构力学分析中的应用需要具有一定的专业知识和技能。