二次函数的图像及画法
- 格式:doc
- 大小:24.00 KB
- 文档页数:3
探索二次函数的图象与性质知识点一、二次函数2x y =的图象的画法(1)列表:先取原点(0,0),然后在原点两侧对称地取4个点,由于关于y 轴对称的两个点的横坐标互为 ,纵坐标 ,所以只计算y 轴右侧两个点的纵坐标,左侧两个点的纵坐标对应写出即可,为方便计算,x 一般取整数。
(2)描点:先将y 轴右侧的两个点描出来,然后由对称关系找到y 轴左侧的两个对称点。
(3)连线:按照从左到右的顺序将这5个点用光滑的曲线连接起来,画图象不应画到两端为止,而应当化成两个方向延伸的形状。
二、二次函数2x y =与2x y -=的图象和性质1.二次函数2x y =的图象是一条抛物线,它的开口方向 ,关于y 轴对称,对称轴与抛物线的交点是抛物线的顶点,它是图象的最 点,坐标为(0,0)2.二次函数2x y -=的图象是一条抛物线,它的开口方向 ,关于y 轴对称,对称轴与抛物线的交点是抛物线的顶点,它是图象的最 点,坐标为(0,0)3.图象和性质三、二次函数)0(2≠=a ax y 图象的画法(1)列表:先取原点(0,0),然后在原点两侧对称地取几个点,由于关于y 轴对称的两个点的横坐标互为相反数,纵坐标相等,所以只计算y 轴右侧两个点的纵坐标,左侧两个点的纵坐标对应写出即可,为方便计算,x 一般取整数。
(2)描点:先将y 轴右侧的两个点描出来,然后由对称关系找到y 轴左侧的两个对称点。
(3)连线:按照从左到右的顺序将这5个点用光滑的曲线连接起来,画图象不应画到两端为止,而应当化成两个方向延伸的形状。
注意:①用描点法作图的图象只是整个图象的一部分,是近似的,由于x 可以取一切实数,所以图象是向两个方向无限延伸的。
②要用光滑的曲线连接各点,不要画的太尖或太平。
四、二次函数)0(2≠=a ax y 图象的性质注:a 的绝对值决定抛物线的形状和开口大小:a 相同,抛物线的形状和开口大小 ;a 越大,抛物线开口 。
五、二次函数)(02≠+=a k ax y 的图象与性质二次函数)(02≠+=a k ax y 的图象是一条抛物线,图象可由抛物线)(02≠=a ax y 向上(或向下)平移而得到.当k >0时,抛物线)(02≠=a ax y 向上平移__________个单位得到)(02≠+=a k ax y 的图象. 当k <0时,抛物线)(02≠=a ax y 向下平移__________个单位得到)(02≠+=a k ax y 的图象.拓展:(1)k 决定抛物线)(02≠+=a k ax y 顶点在y 轴上的位置:①当k >0时,顶点在y 轴的__________上;②当k=0时,顶点是__________,此时抛物线是____________________; ③当k <0时,顶点在y 轴的__________上.(2)抛物线)(02≠+=a k ax y 的对称轴是__________,对称轴是y 轴的抛物线的关系式是_____________.六、二次函数)()(0,2≠-=a h x a y 的图象和性质二次函数)()(0,2≠-=a h x a y 的图象是一条抛物线,图象可由抛物线)(02≠=a ax y 向左(或向右)平移而得到.当h >0时,抛物线)(02≠=a ax y 向右平移__________个单位得到)()(0,2≠-=a h x a y 的图象. 当h <0时,抛物线)(02≠=a ax y 向左平移__________个单位得到)()(0,2≠-=a h x a y 的图象.拓展:抛物线)()(0,2≠-=a h x a y 的顶点在__________上,顶点在x 轴上的抛物线的关系式是_____________.题型一 二次函数)0(2≠=a ax y 的性质比较函数值大小【例1】例1.已知1-<a ,点),1(),,(),,1(321y a y a y a +-都在2x y =的图像上,则( ) A.321y y y << B .231y y y << C .123y y y << D .312y y y <<【例2】下列各点:(-1,2),(-1,-2),(-2,-4),(-2,4),其中在二次函数y =-2x 2的图象上的是 . 【例3】已知点),3(),,1(),,3(321y C y B y A --在抛物线232x y =上,则( ) A .321y y y << B .321y y y >> C .231y y y <= D .312y y y =< 【过关练习】1.已知A (m ,a )和B (n ,a )两点都在抛物线2x y =上,则m ,n 之间的关系正确的是( ) A.m =n B .m +n =0 C .m +n >0 D .m +n <02.已知函数25x y -=的图象上有三个点),(),,)(,(332211y x y x y x ,若0321>>>x x x 则321,,y y y 的大小关系为 。
第08讲二次函数定义、图像与性质(7大考点)考点考向一.二次函数的定义(1)二次函数的定义:一般地,形如y=ax2+bx+c(a、b、c是常数,a≠0)的函数,叫做二次函数.其中x、y是变量,a、b、c是常量,a是二次项系数,b是一次项系数,c是常数项.y═ax2+bx+c(a、b、c是常数,a≠0)也叫做二次函数的一般形式.判断函数是否是二次函数,首先是要看它的右边是否为整式,若是整式且仍能化简的要先将其化简,然后再根据二次函数的定义作出判断,要抓住二次项系数不为0这个关键条件.(2)二次函数的取值范围:一般情况下,二次函数中自变量的取值范围是全体实数,对实际问题,自变量的取值范围还需使实际问题有意义.二.二次函数的图象(1)二次函数y=ax2(a≠0)的图象的画法:①列表:先取原点(0,0),然后以原点为中心对称地选取x值,求出函数值,列表.②描点:在平面直角坐标系中描出表中的各点.③连线:用平滑的曲线按顺序连接各点.④在画抛物线时,取的点越密集,描出的图象就越精确,但取点多计算量就大,故一般在顶点的两侧各取三四个点即可.连线成图象时,要按自变量从小到大(或从大到小)的顺序用平滑的曲线连接起来.画抛物线y=ax2(a≠0)的图象时,还可以根据它的对称性,先用描点法描出抛物线的一侧,再利用对称性画另一侧.(2)二次函数y=ax2+bx+c(a≠0)的图象二次函数y=ax2+bx+c(a≠0)的图象看作由二次函数y=ax2的图象向右或向左平移||个单位,再向上或向下平移||个单位得到的.三.二次函数的性质二次函数y=ax2+bx+c(a≠0)的顶点坐标是(﹣,),对称轴直线x =﹣,二次函数y=ax2+bx+c (a≠0)的图象具有如下性质:①当a>0时,抛物线y=ax2+bx+c(a≠0)的开口向上,x <﹣时,y随x的增大而减小;x >﹣时,y随x的增大而增大;x=﹣时,y取得最小值,即顶点是抛物线的最低点.②当a<0时,抛物线y=ax2+bx+c(a≠0)的开口向下,x<﹣时,y随x的增大而增大;x>﹣时,y随x的增大而减小;x=﹣时,y取得最大值,即顶点是抛物线的最高点.③抛物线y=ax2+bx+c(a≠0)的图象可由抛物线y=ax2的图象向右或向左平移|﹣|个单位,再向上或向下平移||个单位得到的.四.二次函数图象与系数的关系二次函数y=ax2+bx+c(a≠0)①二次项系数a决定抛物线的开口方向和大小.当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;|a|还可以决定开口大小,|a|越大开口就越小.②一次项系数b和二次项系数a共同决定对称轴的位置.当a与b同号时(即ab>0),对称轴在y轴左侧;当a与b异号时(即ab<0),对称轴在y轴右侧.(简称:左同右异)③.常数项c决定抛物线与y轴交点.抛物线与y轴交于(0,c).④抛物线与x轴交点个数.△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac <0时,抛物线与x轴没有交点.五.二次函数图象上点的坐标特征二次函数y=ax2+bx+c(a≠0)的图象是抛物线,顶点坐标是(﹣,).①抛物线是关于对称轴x=﹣成轴对称,所以抛物线上的点关于对称轴对称,且都满足函数函数关系式.顶点是抛物线的最高点或最低点.②抛物线与y轴交点的纵坐标是函数解析中的c值.③抛物线与x轴的两个交点关于对称轴对称,设两个交点分别是(x1,0),(x2,0),则其对称轴为x=.六.二次函数图象与几何变换由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.七.二次函数的最值(1)当a>0时,抛物线在对称轴左侧,y随x的增大而减少;在对称轴右侧,y随x的增大而增大,因为图象有最低点,所以函数有最小值,当x =时,y =.(2)当a<0时,抛物线在对称轴左侧,y随x的增大而增大;在对称轴右侧,y随x的增大而减少,因为图象有最高点,所以函数有最大值,当x =时,y =.(3)确定一个二次函数的最值,首先看自变量的取值范围,当自变量取全体实数时,其最值为抛物线顶点坐标的纵坐标;当自变量取某个范围时,要分别求出顶点和函数端点处的函数值,比较这些函数值,从而获得最值.考点精讲一.二次函数的定义(共5小题)1.(2021秋•淮阴区期末)函数y=x2m﹣1+x﹣3是二次函数,则m =.2.(2022秋•启东市校级月考)函数是关于x的二次函数,求m的值.3.(2022秋•启东市校级月考)下列函数中,一定是二次函数的是()A.y=x(﹣x+1)B.y=ax2+bx+cC.y=2x+3D.y=(x﹣1)2﹣x24.(2022秋•通州区校级月考)已知y=(a﹣3)﹣2是二次函数,求a.5.(2022•宿豫区开学)已知函数y=m(m+2)x2+mx+m+1.(1)当m为何值时,此函数是一次函数?(2)当m为何值时,此函数是二次函数?二.二次函数的图象(共1小题)6.(2022秋•海安市月考)如图是二次函数y1=ax2+bx+c(a≠0)和一次函数y2=mx+n(m≠0)的图象,当y2>y1,x的取值范围是.三.二次函数的性质(共6小题)7.(2022秋•通州区校级月考)抛物线y=﹣2(x﹣1)2+2的对称轴是()A.直线x=﹣1B.直线x=1C.直线x=﹣2D.直线x=28.(2022秋•通州区校级月考)抛物线y=3(x﹣1)2﹣4的顶点坐标是()A.(1,4)B.(1,﹣4)C.(﹣1,4)D.(﹣1,﹣4)9.(2022秋•启东市校级月考)已知二次函数y=ax2+bx+c的图象如图所示,则一次函数y=bx+c的图象和反比例函数y=的图象在同一坐标系中大致是()A.B.C.D.10.(2022•苏州二模)已知二次函数y=a(x﹣2)2+2a(x﹣2)(a为常数,a<0),则该函数图象的顶点位于()A.第一象限B.第二象限C.第三象限D.第四象限11.(2021秋•灌南县期末)在平面直角坐标系中,下列二次函数的图象开口向上的是()A.y=x2B.y=﹣x2+2x+1C.y=﹣2x2+x D.y=﹣0.5x2+x12.(2021秋•邗江区期末)已知函数y=x2﹣2kx+k2+1.(1)求证:不论k取何值,函数y>0;(2)若函数图象与y轴的交点坐标为(0,10),求函数图象的顶点坐标.四.二次函数图象与系数的关系(共6小题)13.(2022•南京一模)二次函数y=﹣x2+bx+c的图象如图所示,下列说法正确的是()A.b<0,c>0B.b>0,c>0C.b>0,c<0D.b<0,c<014.(2022•天宁区校级一模)设直线x=1是函数y=ax2+bx+c(a,b,c是实数,且a<0)的图象的对称轴,()A.若m>1,则(m﹣1)a+b>0B.若m>1,则(m﹣1)a+b<0C.若m<1,则(m+1)a+b>0D.若m<1,则(m+1)a+b<015.(2022•仪征市二模)设直线x=1是函数y=ax2+bx+c(a,b,c是实数,且a<0)的图象的对称轴,若(m+1)a+b>0,则m的取值范围是.16.(2022秋•通州区校级月考)已知函数y=ax2+bx+c(a≠0)的图象如图,给出下列4个结论:①abc>0;②b2>4ac;③4a+2b+c>0;④2a+b=0.其中正确的有()个.A.1B.2C.3D.417.(2022•灌南县一模)已知二次函数y=﹣x2+2mx+c,当x>0时,y随x的增大而减小,则实数m的取值范围是.18.(2021秋•南京期末)已知函数y1=x+1和y2=x2+3x+c(c为常数).(1)若两个函数图象只有一个公共点,求c的值;(2)点A在函数y1的图象上,点B在函数y2的图象上,A,B两点的横坐标都为m,若A,B两点的距离为3,直接写出满足条件的m值的个数及其对应的c的取值范围.五.二次函数图象上点的坐标特征(共8小题)19.(2022秋•启东市校级月考)已知点A(2,3)在函数y=ax2﹣x+1的图象上,则a等于.20.(2021秋•淮阴区期末)已知二次函数y=x2+bx+c的图象经过点(﹣2,5)和(1,﹣4),求b、c的值.21.(2022•武进区校级一模)已知点(2,y1)与(3,y2)在函数的图象上,则y1、y2的大小关系为.22.(2022•徐州)若二次函数y=x2﹣2x﹣3的图象上有且只有三个点到x轴的距离等于m,则m的值为.23.(2021秋•盐都区期末)如图,在正方形ABCD中,已知:点A,点B在抛物线y=2x2上,点C,点D 在x轴上.(1)求点A的坐标;(2)连接BD交抛物线于点P,求点P的坐标.24.(2022•溧阳市模拟)抛物线y=x2上有三个点A、B、C,其横坐标分别为m、m+1、m+3,则△ABC的面积为()A.1B.2C.3D.425.(2022•常熟市模拟)在平面直角坐标系中,若点P的横坐标与纵坐标的和为零,则称点P为“零和点”.已知二次函数y=x2+3x+m的图象上有且只有一个“零和点”,则下列结论正确的是()A.m=B.m=C.m=1D.m=426.(2022秋•通州区校级月考)抛物线y=(x﹣3)2﹣4与y轴的交点坐标是.六.二次函数图象与几何变换(共8小题)27.(2022•天宁区模拟)将抛物线y=﹣3x2﹣1向左平移2个单位长度,再向下平移2个单位长度,所得到的抛物线为()A.y=﹣3(x+2)2+1B.y=﹣3(x﹣2)2﹣3C.y=﹣3(x+2)2﹣3D.y=﹣3(x﹣2)2+128.(2022秋•如皋市校级月考)将抛物线y=(x﹣3)2﹣4先向右平移1个单位长度,再向上平移2个单位长度,得到的抛物线的函数表达式为()A.y=(x﹣4)2﹣6B.y=(x﹣1)2﹣3C.y=(x﹣2)2﹣2D.y=(x﹣4)2﹣2 29.(2022•钟楼区校级模拟)将抛物线y=x2+2x﹣3关于y轴对称,所得到的抛物线解析式为.30.(2022秋•启东市校级月考)在同一平面直角坐标系中,将函数y=x2+1的图象向左平移3个单位长度,再向下平移2单位,得到的图象的顶点坐标是.31.(2022•东台市模拟)如图,抛物线y=﹣x2+4x+1与y轴交于点P,其顶点是A,点P'的坐标是(3,﹣2),将该抛物线沿PP'方向平移,使点P平移到点P',则平移过程中该抛物线上P、A两点间的部分所扫过的面积是.32.(2022•宿豫区开学)已知二次函数y=2(x﹣1)2+1的图象为抛物线C.(1)抛物线C顶点坐标为;(2)将抛物线C先向左平移1个单位长度,再向上平移2个单位长度,得到抛物线C1,请判断抛物线C1是否经过点P(2,3),并说明理由;(3)当﹣2≤x≤3时,求该二次函数的函数值y的取值范围.33.(2022•泗洪县一模)把二次函数y=x2+bx+c的图象向下平移1个单位长度,再向左平移5个单位长度,所得的抛物线顶点坐标为(﹣3,2),求原抛物线相应的函数表达式.34.(2021秋•仪征市期末)已知二次函数y=2x2﹣4x+3的图象为抛物线C.(1)抛物线C顶点坐标为;(2)将抛物线C先向左平移1个单位长度,再向上平移2个单位长度,得到抛物线C1,请判断抛物线C1是否经过点P(2,3),并说明理由;(3)当﹣2≤x≤3时,求该二次函数的函数值y的取值范围.七.二次函数的最值(共6小题)35.(2022•高新区二模)在平面直角坐标系中,若点P的横坐标和纵坐标相等,则称点P为漂亮点.已知二次函数y=ax2+6x﹣(a≠0)的图象上有且只有一个漂亮点.且当﹣1≤x≤m时,二次函数y=ax2+6x ﹣5(a≠0)的最小值为﹣12,最大值为4,则m取值范围是.36.(2022•姑苏区校级一模)如图,在直角坐标系中,O为坐标原点,矩形ABCO,B点坐标为(4,2),A、C分别在y轴、x轴上;若D点坐标为(1,0),连结AD,点E、点F分别从A点、B点出发,在AB上相向而行,速度均为1个单位/每秒,当E、F两点相遇时,两点停止运动;过E点作EG∥AD交x轴于H点,交y轴于G点,连结FG、FH,在运动过程中,△FGH的最大面积为.37.(2022•南京一模)若x+y=5,则xy+1的最大值为.38.(2022•鼓楼区一模)若二次函数y=ax2﹣bx+2有最大值6,则y=﹣a(x+1)2+b(x+1)+2的最小值为.39.(2022•高邮市模拟)如图,已知点P、Q分别是矩形ABCD中AB、CD边上的动点(不与点A、B、C、D重合),PE∥BQ交AQ于点E,连接PQ.AB=8,BC=6,设△PEQ的面积为S.(1)当点P运动到AP=2时,无论点Q运动到CD边的何处,S=;(2)在点P、Q的运动过程中,①若S =,求AP的长;②求S的最大值.40.(2022•宿豫区开学)如图,在Rt△ABC中,∠B=90°,AB=6cm,BC=10cm,点P从点A开始沿AB 边向点B移动,速度为1cm/s;点Q从点B开始沿BC边向点C移动,速度为2cm/s,点P、Q分别从点A、B同时出发,当其中一点到达终点后,另一点也随之停止运动.(1)几秒时,PQ的长度为3cm?(2)几秒时,△PBQ的面积为8cm2?(3)当t(0<t<5)为何值时,四边形APQC的面积最小?并求这个最小值.巩固提升一.选择题(共13小题)1.(2022•武进区一模)二次函数y=2(x+1)2+3的顶点坐标是()A.(﹣1,﹣3)B.(﹣1,3)C.(1,﹣3)D.(1,3)2.(2022秋•启东市校级月考)下列各式中,y是关于x的二次函数的是()A.y=4x+2B.y=(x﹣1)2﹣x2C.y=3x2+5﹣4x D.y=3.(2022•钟楼区校级模拟)以下对二次函数y=4x2的图象与性质的描述中,不正确的是()A.开口向上B.对称轴是y轴C.图像经过点(﹣1,﹣4)D.x>0时,y随x的增大而增大4.(2022秋•通州区校级月考)已知两点A(﹣5,y1),B(1,y2)均在抛物线y=ax2+bx+c(a≠0)上,点C(x0,y0)是该抛物线的顶点,若y0≥y2>y l,则x0的取值范围是()A.x0>﹣2B.x0<﹣2C.﹣5<x0<1D.﹣2<x0<15.(2022•吴中区模拟)抛物线y=2(x+3)(x﹣1)的对称轴是()A.x=﹣3B.x=1C.x=3D.x=﹣16.(2022•宿豫区校级开学)已知函数y=ax2+bx+4(a<0),2a﹣b=0,在此函数图象上有A(﹣,y1)、B(﹣,y2)、C(,y3)三点,则y1、y2、y3的大小关系为()A.y1<y2<y3B.y3<y2<y1C.y3<y1<y2D.y2<y3<y17.(2022秋•启东市校级月考)已知二次函数y=ax2﹣2ax+2(a>0),A(x1,y1)、B(x2,y2)是其图象上的两点,且x1<x2,|x1﹣1|≠|x2﹣1|,则下列式子正确的是()A.(x1+x2﹣2)(y1﹣y2)<0B.(x1+x2﹣2)(y1﹣y2)>0C.(x1+x2+2)(y1﹣y2)>0D.(x1+x2+2)(y1﹣y2)<08.(2022秋•启东市校级月考)对称轴为直线x=1的抛物线y=ax2+bx+c(a、b、c为常数,且a≠0)如图所示,某同学得出了以下结论:①abc<0;②b2>4ac;③4a+2b+c>0;④a+b≤m(am+b)(m为任意实数);⑤当x>1时,y随x的增大而增大,其中结论正确的个数为()A.2B.3C.4D.59.(2022•工业园区校级二模)在平面直角坐标系,xOy中,点(1,m)和点(3,n)在抛物线y=ax2+bx (a>0)上,已知点(﹣1,y1),(2,y2),(4,y3)在该抛物线上.若mn<0,则y1,y2,y3的大小为()A.y1<y2<y3B.y2<y1<y3C.y3<y1<y2D.y1<y3<y210.(2022秋•通州区校级月考)设A(﹣2,y1),B(1,y2),C(2,y3)是抛物线y=x2﹣2x+c上的三点,y1,y2,y3的大小关系为()A.y1>y2>y3B.y1>y3>y2C.y3>y2>y1D.y3>y1>y211.(2022秋•如皋市校级月考)若A(m+1,y1)、B(m,y2),C(m﹣2,y3)为抛物线y=ax2﹣4ax+2(a <0)上三点,且总有y2>y3>y1,则m的取值范围是()A.m>2B.C.D.m>312.(2022•宿豫区开学)已知二次函数y=2x2﹣4x﹣1在0≤x≤a时,y取得的最大值为15,则a的值为()A.1B.2C.3D.413.(2022•虎丘区校级模拟)设M为抛物线y=(x﹣1)2的顶点,点A、B为该抛物线上的两个动点,且MA⊥MB.连接点A、B,过M作MC⊥AB于点C,则点C到y轴距离的最大值()A.B.C.D.2二.填空题(共9小题)14.(2022秋•通州区校级月考)已知二次函数的解析式为:y=x2+2x﹣3,则当x时,y随x增大而增大.15.(2022秋•通州区校级月考)抛物线y=﹣3x2+4x﹣3开口方向是.16.(2022•昆山市校级一模)定义:[a,b,c]为二次函数y=ax2+bx+c(a≠0)的特征数.下面给出特征数为[m,l﹣m,2﹣m]的二次函数的一些结论:①当m=1时,函数图象的对称轴是y轴;②当m=2时,函数图象过原点;③当m>0时,函数有最小值:④若m<0,则当x>时,y随x的增大而减小.其中所有正确结论的序号是.17.(2021秋•灌南县期末)关于x的函数y=(m+2)是二次函数,则m的值是.18.(2022秋•通州区校级月考)已知二次函数y=ax2+bx+c的图象如图所示,则当0≤x≤3时,函数值y 的取值范围是.19.(2022秋•启东市校级月考)对于两个实数,规定min{a,b}表示a,b中的较小值,当a≥b时,min{a,b}=b,当a<b时,min{a,b}=a,例如:min{﹣1,3}=﹣1.则函数y=min{x2+2x+2,﹣x2+2}的最大值是.20.(2022•相城区校级自主招生)设max{x,y}表示x,y两个数中的最大值.例如“max{1,3}=3,max{﹣2,0,}=”.则关于x的函数y=max{2x,﹣x﹣2,﹣x2}的最小值为.21.(2022秋•通州区校级月考)已知二次函数y=﹣x2+2x,当x<a时,y随x的增大而增大,则实数a的取值范围是.22.(2022秋•通州区校级月考)二次函数y=(x+1)2﹣5,当m≤x≤n,且mn<0时,y的最小值是2m,最大值是2n,则m﹣n=.三.解答题(共3小题)23.(2022•鼓楼区二模)已知二次函数y=x2﹣2mx+3(m是常数).(1)若m=1,①该二次函数图象的顶点坐标为;②当0≤x≤4时,该二次函数的最小值为;③当2≤x≤5时,该二次函数的最小值为.(2)当﹣1≤x≤3时,该二次函数的最小值为1,求常数m的值.24.(2022•宿豫区开学)已知点A(2,﹣3)是二次函数y=x2+(2m﹣1)x﹣2m图象上的点.(1)求二次函数图象的顶点坐标;(2)当﹣1≤x≤4时,求函数的最大值与最小值的差;(3)当t≤x≤t+3时,若函数的最大值与最小值的差为4,求t的值.25.(2022秋•通州区校级月考)在平面直角坐标系中,已知抛物线G:y=x2﹣2(k﹣1)x+k(k为常数).(1)若抛物线G经过点(2,k),求k的值;(2)若抛物线G经过点(k+1,y1),(1,y2),且y1>y2.求出k的取值范围;(3)若将抛物线G向右平移1个单位长度,所得图象的顶点为(m,n),当k≥0时,求n﹣m的最大值.。
二次函数的图像与性质一、二次函数的根本形式1. 二次函数根本形式:2=的性质:y ax2. 2=+的性质:y ax c上加下减。
3. ()2=-的性质:y a x h左加右减。
4. ()2y a x h k =-+的性质:二、二次函数图象的平移1. 平移步骤:方法一:⑴ 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,;⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位2. 平移规律在原有函数的根底上“h 值正右移,负左移;k 值正上移,负下移〞. 概括成八个字“左加右减,上加下减〞. 方法二:⑴c bx ax y ++=2沿y 轴平移:向上〔下〕平移m 个单位,c bx ax y ++=2变成m c bx ax y +++=2〔或m c bx ax y -++=2〕⑵c bx ax y ++=2沿轴平移:向左〔右〕平移m 个单位,c bx ax y ++=2变成c m x b m x a y ++++=)()(2〔或c m x b m x a y +-+-=)()(2〕三、二次函数()2y a x h k =-+与2y ax bx c =++的比拟从解析式上看,()2y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即22424b ac b y a x a a -⎛⎫=++ ⎪⎝⎭,其中2424b ac b h k a a -=-=,. 四、二次函数2y ax bx c =++图象的画法五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c ,、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,〔假设与x 轴没有交点,那么取两组关于对称轴对称的点〕.画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点.五、二次函数2y ax bx c =++的性质1.当0a >时,抛物线开口向上,对称轴为2bx a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2b x a <-时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大;当2bx a=-时,y 有最小值244ac b a-.2. 当0a <时,抛物线开口向下,对称轴为2bx a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2b x a <-时,y 随x 的增大而增大;当2b x a >-时,y 随x 的增大而减小;当2bx a=-时,y 有最大值244ac b a-.六、二次函数解析式的表示方法1. 一般式:2y ax bx c =++〔a ,b ,c 为常数,0a ≠〕;2. 顶点式:2()y a x h k =-+〔a ,h ,k 为常数,0a ≠〕;3. 两根式:12()()y a x x x x =--〔0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标〕. 注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.七、二次函数的图象与各项系数之间的关系1.二次项系数a二次函数2y ax bx c =++中,a 作为二次项系数,显然0a ≠.⑴ 当0a >时,抛物线开口向上,a 的值越大,开口越小,反之a 的值越小,开口越大; ⑵ 当0a <时,抛物线开口向下,a 的值越小,开口越小,反之a 的值越大,开口越大.总结起来,a 决定了抛物线开口的大小和方向,a 的正负决定开口方向,a 的大小决定开口的大小. 2. 一次项系数b在二次项系数a 确定的前提下,b 决定了抛物线的对称轴. ⑴ 在0a >的前提下,当0b >时,02ba-<,即抛物线的对称轴在y 轴左侧; 当0b =时,02ba-=,即抛物线的对称轴就是y 轴; 当0b <时,02ba->,即抛物线对称轴在y 轴的右侧.⑵ 在0a <的前提下,结论刚好与上述相反,即 当0b >时,02ba->,即抛物线的对称轴在y 轴右侧; 当0b =时,02ba-=,即抛物线的对称轴就是y 轴; 当0b <时,02ba-<,即抛物线对称轴在y 轴的左侧. 总结起来,在a 确定的前提下,b 决定了抛物线对称轴的位置.ab 的符号的判定:对称轴abx 2-=在y 轴左边那么0>ab ,在y 轴的右侧那么0<ab ,概括的说就是“左同右异〞总结:3. 常数项c⑴ 当0c >时,抛物线与y 轴的交点在x 轴上方,即抛物线与y 轴交点的纵坐标为正; ⑵ 当0c =时,抛物线与y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为0; ⑶ 当0c <时,抛物线与y 轴的交点在x 轴下方,即抛物线与y 轴交点的纵坐标为负. 总结起来,c 决定了抛物线与y 轴交点的位置.总之,只要a b c ,,都确定,那么这条抛物线就是唯一确定的.二次函数解析式确实定:根据条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:1. 抛物线上三点的坐标,一般选用一般式;2. 抛物线顶点或对称轴或最大〔小〕值,一般选用顶点式;3. 抛物线与x 轴的两个交点的横坐标,一般选用两根式;4. 抛物线上纵坐标一样的两点,常选用顶点式.八、二次函数图象的对称二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达 1. 关于x 轴对称2y ax bx c =++关于x 轴对称后,得到的解析式是2y ax bx c =---;()2y a x h k =-+关于x 轴对称后,得到的解析式是()2y a x h k =---;2. 关于y 轴对称2y ax bx c =++关于y 轴对称后,得到的解析式是2y ax bx c =-+;()2y a x h k =-+关于y 轴对称后,得到的解析式是()2y a x h k =++;3. 关于原点对称2y ax bx c =++关于原点对称后,得到的解析式是2y ax bx c =-+-; ()2y a x h k =-+关于原点对称后,得到的解析式是()2y a x h k =-+-;4. 关于顶点对称〔即:抛物线绕顶点旋转180°〕2y ax bx c =++关于顶点对称后,得到的解析式是222b y ax bx c a=--+-;()2y a x h k =-+关于顶点对称后,得到的解析式是()2y a x h k =--+.5. 关于点()m n ,对称 ()2y a x h k =-+关于点()m n ,对称后,得到的解析式是()222y a x h m n k =-+-+-根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a 永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原那么,选择适宜的形式,习惯上是先确定原抛物线〔或表达式的抛物线〕的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.二次函数图像参考:十一、【例题精讲】一、一元二次函数的图象的画法【例1】求作函数64212++=x x y 的图象 【解】 )128(21642122++=++=x x x x y2-4)(214]-4)[(21 2222+=+=x x以4-=x 为中间值,取x 的一些值,列表如下:【例2】求作函数342+--=x x y 的图象。
二次函数知识点总结及典型例题一、二次函数得概念与图像1、二次函数得概念一般地,如果,那么y叫做x 得二次函数。
叫做二次函数得一般式。
2、二次函数得图像二次函数得图像就是一条关于对称得曲线,这条曲线叫抛物线。
抛物线得主要特征:①有开口方向;②有对称轴;③有顶点。
3、二次函数图像得画法---五点法:二、二次函数得解析式二次函数得解析式有三种形式:(1)一般式:(2)顶点式:(3)当抛物线与x轴有交点时,即对应二次好方程有实根与存在时,根据二次三项式得分解因式,二次函数可转化为两根式。
如果没有交点,则不能这样表示。
三、抛物线中,得作用(1)决定开口方向及开口大小,这与中得完全一样、(2)与共同决定抛物线对称轴得位置、由于抛物线得对称轴就是直线,故:①时,对称轴为轴所在直线;②(即、同号)时,对称轴在轴左侧;③(即、异号)时,对称轴在轴右侧、(3)得大小决定抛物线与轴交点得位置、当时,,∴抛物线与轴有且只有一个交点(0,):①,抛物线经过原点; ②,与轴交于正半轴;③,与轴交于负半轴、以上三点中,当结论与条件互换时,仍成立、如抛物线得对称轴在轴右侧,则、四、二次函数得性质1、二次函数得性质一元二次方程得解就是其对应得二次函数得图像与x轴得交点坐标。
因此一元二次方程中得,在二次函数中表示图像与x轴就是否有交点。
当>0时,图像与x轴有两个交点;当=0时,图像与x轴有一个交点;当<0时,图像与x轴没有交点。
补充:函数平移规律:左加右减、上加下减六、二次函数得最值如果自变量得取值范围就是全体实数,那么函数在顶点处取得最大值(或最小值),即当时,。
如果自变量得取值范围就是,那么,首先要瞧就是否在自变量取值范围内,若在此范围内,则当x=时,;若不在此范围内,则需要考虑函数在范围内得增减性,如果在此范围内,y随x得增大而增大,则当时,,当时,;如果在此范围内,y随x得增大而减小,则当时,,当时,。
典型例题1、已知函数,则使y=k成立得x值恰好有三个,则k得值为( )A.0B.1C.2D.32、如图为抛物线得图像,A、B、C为抛物线与坐标轴得交点,且OA=OC=1,则下列关系中正确得就是( )A.a+b=-1B. a-b=-1C. b<2aD. ac<03、二次函数得图象如图所示,则反比例函数与一次函数在同一坐标系中得大致图象就是( )、4、 如图,已知二次函数得图象经过点(-1,0),(1,-2),当随得增大而增大时,得取值范围就是 .5、 在平面直角坐标系中,将抛物线绕着它与y 轴得交点旋转180°,所得抛物线得解析式就是( ).A. B.C. D.6、 已知二次函数得图像如图,其对称轴,给出下列结果①②③④⑤,则正确得结论就是( )A ①②③④B ②④⑤C ②③④D ①④⑤ 7.x … -2 -1 0 1 2 … y…4664…从上表可知,下列说法中正确得就是 .(①抛物线与轴得一个交点为(3,0); ②函数得最大值为6;③抛物线得对称轴就是; ④在对称轴左侧,随增大而增大.8、 如图,在平面直角坐标系中,O 就是坐标原点,点A 得坐标就是(-2,4),过点A 作AB ⊥y 轴,垂足为B ,连结OA . (1)求△OAB 得面积; (2)若抛物线经过点A . ①求c 得值;②将抛物线向下平移m 个单位,使平移后得到得抛物线顶点落在△OAB 得内部(不包括△OA B 得边界),求m 得取值范围(直接写出答案即可).9.已知二次函数y =14 x 2+ 32x 得图像如图.(1,-2)-1(1)求它得对称轴与x 轴交点D 得坐标;(2)将该抛物线沿它得对称轴向上平移,设平移后得抛物线与x 轴、y 轴得交点分别为A 、B 、C 三点,若∠ACB =90°,求此时抛物线得解析式;(3)设(2)中平移后得抛物线得顶点为M ,以AB 为直径,D 为圆心作⊙D ,试判断直线CM 与⊙D 得位置关系,并说明理由.10、 如图,在平面直角坐标系xOy 中,AB 在x 轴上,AB =10,以AB 为直径得⊙O′与y 轴正半轴交于点C ,连接BC ,AC 、CD 就是⊙O′得切线,AD ⊥CD 于点D ,tan ∠CAD =,抛物线过A ,B ,C 三点、(1)求证:∠CAD =∠CAB ; (2)①求抛物线得解析式;②判定抛物线得顶点E 就是否在直线CD 上,并说明理由;(3)在抛物线上就是否存在一点P ,使四边形PBCA 就是直角梯形、若存在,直接写出点P得坐标(不写求解过程);若不存在,请说明理由、11、 如图所示,在平面直角坐标系中,四边形ABCD 就是直角梯形,BC ∥AD ,∠BAD = 90°,BC 与y 轴相交于点M ,且M 就是BC 得中点,A 、B 、D 三点得坐标分别就是A (-1,0),B ( -1,2),D ( 3,0),连接DM ,并把线段DM 沿DA 方向平移到ON ,若抛物线y =ax 2+bx +c 经过点D 、M 、N .(1)求抛物线得解析式(2)抛物线上就是否存在点P .使得P A = PC .若存在,求出点P 得坐标;若不存在.请说明理由。
二次函数是九年级上学期第三章的内容,包括二次函数的概念及其图像.基本要求是理解二次函数的概念,会用描点法画二次函数的图像,会用二次函数的解析式来表达相应的抛物线,并掌握二次函数2y ax=的图像平移得到二次函数2y ax c=+、()2y a x m=+和()2y a x m k=++的图像的规律.重点是二次函数的图像的特征及画法.1、二次函数一般地,解析式形如2y ax bx c=++(其中a、b、c是常数,且0a≠)的函数叫做二次函数.二次函数2y ax bx c=++的定义域为一切实数.而在具体问题中,函数的定义域根据实际意义来确定.二次函数的概念及图像内容分析知识结构模块一:二次函数的概念知识精讲2 / 18【例1】 下列函数解析式中,一定为二次函数的是( ) A .31y x =-B .2y ax bx c =++C .221s t =+D .21y x x=+【例2】 二次函数23y x =--中,二次项系数为______,一次项系数为______,常数项为______.【例3】 二次函数2321y x x =--,当1x =-时,y = ______;当x = ______时,y = 0.【例4】 当m ______时,函数()()22423y m x m x =-+-+是二次函数.【例5】 用一根80 cm 的铁丝,把它弯成一个矩形框,求它的最大面积.请设变量,并列出函数解析式:______________________________________________________.【例6】 已知二次函数2y x bx c =++,当x = 0时,y = 1;当x = 2时,1y =-.求当3x =-时y 的值.例题解析ABCDE【例7】 二次函数2y ax bx c =++(0a ≠)的图像经过点(1,1),则1a b ++的值是( ) A .3- B .1-C .2D .3【例8】 如图,在Rt ABC ∆中,90BAC ∠=︒,AB = AC = 2,D 是BC 上异于B 、C 的一个动点,过点D 作45ADE ∠=︒,DE 交AC 于点E .设BD = x ,AE = y ,求y 关于x 的函数关系式,并写出自变量x 的取值范围.4 / 181、 2y x =的图像在平面直角坐标系xOy 中,按照下列步骤画二次函数2y x =的图像. (1)列表:取自变量x 的一些值,计算相应的函数值y ,如下表所示: x… -2 112- -1 12- 0 121 1122 … 2y x =…4124 114 014 11244…(2)描点:分别以所取的x 的值和相应的函数值y 作为点的横坐标和纵坐标,描出这些坐标所对应的各点,如图1所示.(3)连线:用光滑的曲线把所描出的这些点顺次联结起来,得到函数2y x =的图像,如图2所示.二次函数2y x =的图像是一条曲线,分别向左上方和右上方无限伸展.它属于一类特殊的曲线,这类曲线称为抛物线.二次函数2y x =的图像就称为抛物线2y x =. 2、 二次函数2y ax =的图像抛物线2y ax =(0a ≠)的对称轴是y 轴,即直线x = 0;顶点是原点.当0a >时,抛物线开口向上,顶点为最低点;当0a <时,抛物线开口向下,顶点为最高点.模块二:特殊二次函数的图像知识精讲12 3 4 12 3 4 xy xyOO1212-2 -1 -2 -1 图1图23、 二次函数2y ax c =+的图像一般地,二次函数2y ax c =+的图像是抛物线,称为抛物线2y ax c =+,它可以通过将抛物线2y ax =向上(0c >时)或向下(0c <时)平移c 个单位得到.抛物线2y ax c =+(其中a 、c 是常数,且0a ≠)的对称轴是y 轴,即直线x = 0;顶点坐标是(0,c ).抛物线的开口方向由a 所取值的符号决定,当0a >时,开口向上,顶点是抛物线的最低点;当0a <时,开口向下,顶点是抛物线的最高点. 4、 二次函数()2y a x m =+的图像一般地,二次函数()2y a x m =+的图像是抛物线,称为抛物线()2y a x m =+,它可以通过将抛物线2y ax =向左(0m >时)或向右(0m <时)平移m 个单位得到.抛物线()2y a x m =+(其中a 、m 是常数,且0a ≠)的对称轴是过点(-m ,0)且平行(或重合)于y 轴的直线,即直线x = -m ;顶点坐标是(-m ,0).当0a >时,开口向上,顶点是抛物线的最低点;当0a <时,开口向下,顶点是抛物线的最高点. 5、 二次函数()2y a x m k =++的图像二次函数()2y a x m k =++(其中a 、m 、k 是常数,且0a ≠)的图像即抛物线()2y a x m k =++,可以通过将抛物线2y ax =进行两次平移得到.这两次平移可以是:先向左(0m >时)或向右(0m <时)平移m 个单位,再向上(0k >时)或向下(0k <时)平移k 个单位.利用图形平移的性质,可知:抛物线()2y a x m k =++(其中a 、m 、k 是常数,且0a ≠)的对称轴是经过点(m -,0)且平行于y 轴的直线,即直线x =m -;抛物线的顶点坐标是(m -,k ).抛物线的开口方向由a 所取值的符号决定,当0a >时,开口向上,顶点是抛物线的最低点;当0a <时,开口向下,顶点是抛物线的最高点.6 / 18【例9】 二次函数213y x =-的图像是______,开口方向______,顶点坐标为______.【例10】 抛物线2y ax c =+的顶点坐标为______,对称轴为______.【例11】 抛物线22y x =,22y x =-,221y x =+共有的性质是( ) A .开口向上 B .对称轴都是y 轴 C .都有最高点 D .顶点都是原点【例12】 抛物线()21y a x =-有最高点,则a 的取值范围为______,最高点的坐标为______.【例13】 抛物线()2213y x =-++的顶点坐标是( ) A .(1,3) B .(1,3-) C .(1-,3) D .(1-,3-)【例14】 抛物线()21y x =-+上有三点A (1x ,1y ),B (2x ,2y ),C (3x ,3y ),且110x -<<,230x x <<,则比较1y ,2y ,3y 的大小为____________.例题解析【例15】 将抛物线2y ax =向左平移后所得新抛物线的顶点横坐标为2-,且新抛物线经过点(1,3),则a 的值为______.【例16】 将抛物线25y x =向左平移2个单位,再向下平移3个单位,得到的抛物线是( ) A .()2523y x =++ B .()2523y x =+- C .()2523y x =-+D .()2523y x =--【例17】 若直线3y x m =+经过第一、三、四象限,则抛物线()21y x m =-+的顶点必在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限【例18】 抛物线上有两点(3,8-)和(5-,8-)则它的对称轴是( ) A .直线1x =- B .直线1x = C .直线2x = D .直线3x =【例19】 把抛物线()22y x m =+向上平移n 个单位,使新得到的抛物线2y ax bx c =++通过点(2,5)与(1,1),求a ,b ,c ,m ,n 的值.【例20】 如图,抛物线2y ax =上的点B 、C 与x 轴上的两点A (6-,0)、D (2,0)构成A B CDO xyE平行四边形,BC与y轴相交于点E(0,6),求系数a的值.8/ 181、 二次函数2y ax bx c =++的图像二次函数2y ax bx c =++的图像称为抛物线2y ax bx c =++,这个函数的解析式就是这条抛物线的表达式.任意一个二次函数2y ax bx c =++(其中a 、b 、c 是常数,且0a ≠)都可以运用配方法,把它的解析式化为()2y a x m k =++的形式.对2y ax bx c =++配方得:22424b ac b y a x a a -⎛⎫=++⎪⎝⎭. 由此可知:抛物线2y ax bx c =++(其中a 、b 、c 是常数,且0a ≠)的对称轴是直线2bx a=-,顶点坐标是(2ba-,244ac b a -).当0a >时,抛物线2y ax bx c =++开口向上,顶点是抛物线的最低点,抛物线在对称轴(即直线2bx a=-)左侧的部分是下降的,在对称轴右侧的部分是上升的; 当0a <时,抛物线2y ax bx c =++开口向下,顶点是抛物线的最高点,抛物线在对称轴(即直线2bx a=-)左侧的部分是上升的,在对称轴右侧的部分是下降的. 2、 二次函数2y ax bx c =++的图像与x 轴的交点的个数判断二次函数2y ax bx c =++的图像与x 轴交点的个数,即为判断一元二次方程20ax bx c ++=的解的个数,这样就可以利用一元二次方程根的判别式24b ac ∆=-来进行解题.模块三:二次函数y = ax 2+ bx + c 的图像知识精讲10 / 18xyO1【例21】 说出函数2288y x x =-+-的图像的开口方向,对称轴,顶点坐标,这个函数有最大值还是最小值?是多少?【例22】 二次函数2y ax bx c =++的图像如上右图所示,则abc ,24b ac -,2a b +,a b c ++,a b c -+这五个式子中,值为正数的有( )A .2个B .3个C .4个D .5个【例23】 将抛物线213662y x x =-++先向上平移2个单位长度,再向右平移3个单位长度后,得到的抛物线的解析式是__________________________.【例24】 已知二次函数25y x bx =-++,它的图像经过点(2,3-). (1)求这个函数关系式及它的图像的顶点坐标;(2)当x 为何值是,函数y 随着x 的增大而增大?当x 为何值时,函数y 随着x 的增大而减小?【例25】 若直线y = x + 2与抛物线22y x x =+有交点,则它的坐标是______.【例26】 已知二次函数223y x x =--,当03x ≤≤时,y 的最大值是______,最小值是______.例题解析A BOxyy【例27】 已知抛物线22y x x a =-+的顶点A 在直线3y x =-+上,直线3y x =-+与x 轴的交点为B 点,点O 为直角坐标系的原点.(1)求点B 的坐标与a 的值; (2)求AOB ∆的面积.【例28】 已知抛物线()229y x a x =-++的顶点在坐标轴上,求a 的值.【例29】 若对于任何实数x ,二次函数()2123y m x mx m =-+++的图像全在x 轴上方,求m的取值范围为.【例30】 如图,抛物线24y x x =-与x 轴交于O 、A 两点,P 为抛物线上一点,过点P 的直线y x m =+与对称轴交于点Q .(1)这条抛物线的对称轴是______,直线PQ 与x 轴所夹的锐角的度数是______;(2)若两个三角形的面积满足13POQ PAQ S S ∆∆=,求m 的值;(3)当点P 在x 轴下方的抛物线上时,过点C (2,2)的直线AC 与直线PQ 交于点D ,求:○1PD + DQ 的最大值;○2PD DQ 的最大值.12/ 18【习题1】 下列函数中,不是二次函数的是( ) A .212y x =- B .()2214y x =+- C .()()1142y x x =-+D .()2221y x x =--+【习题2】 抛物线()223y x =-的顶点在( ) A .第一象限 B .第二象限 C .x 轴上 D .y 轴上【习题3】 已知抛物线243y x x =++,请回答以下问题:(1)它的开口方向______,对称轴是直线_______,顶点坐标为______; (2)图像与x 轴的交点为______,与y 轴的交点为______.【习题4】 有下列4个函数关系式:○1正方形的面积S 与边长x 的关系;○2圆的面积S 与圆周长l 的关系;○3已知周长为l 的矩形中,面积S 与一边长x 的关系;○4已知面积为S 的矩形中,周长l 与一边长x 的关系.其中二次函数有( )A .1个B .2个C .3个D .4个【习题5】 抛物线22y ax bx =++经过点(2-,3),则36b a -=______.【习题6】 已知函数()()221mmy m x m x -=+++,(m 为常数).随堂检测14 / 18xy(A ) B CDO (1)当m 为何值时,这个函数是二次函数? (2)当m 为何值时,这个函数是一次函数?【习题7】 把抛物线()222y x =-+向左平移4个单位,再向下平移3个单位,求平移后抛物线的函数解析式,并指出它的开口方向,顶点坐标和对称轴.【习题8】 已知抛物线23y ax bx =++的对称轴是直线x = 1. (1)求证:2a + b =0;(2)若关于x 的方程280ax bx +-=的一个根为4,求方程的另一个根.【习题9】 如图,已知矩形ABCD 的宽CD = 1,点C 在y 轴右侧沿抛物线2610y x x =-+滑动,滑动过程中保持CD // x 轴.当点D 在y 轴上时,AB 正好在x 轴上.(1)求矩形的长BC ;(2)当矩形在滑动过程中被x 轴分成两部分的面积之比为1 : 4时,求点C 的坐标.【习题10】 如图,二次函数1L :223y ax ax a =-++(a > 0)和二次函数2L :()211y a x =-++xyAE F N MO (a > 0)的图像的顶点分别为M 、N ,与y 轴分别交于点E 、F .(1)函数223y ax ax a =-++(a > 0)的最小值为______;当二次函数1L 、2L 的y 值同时随着x 的增大而减小时,x 的取值范围是_________________;(2)当EF = MN ,求a 的值,并判断四边形ENFM 的形状(直接写出,不必证明); (3)若二次函数2L 的图像与x 轴的右交点为A (m ,0),当AMN ∆为等腰三角形时,求方程()2110a x -++=的解.16 / 18【作业1】 对于任意实数x ,二次函数2y ax =的值总是非正数,则a 的取值范围是( ) A .0a > B .0a < C .0a ≥ D .0a ≤【作业2】 抛物线2243y x x =--,当x ______时,函数值y 随x 的增大而减小;当x ______时,函数值y 随x 的增大而增大;当x ______时,函数取最______值为______.【作业3】 抛物线234y x x =--+与坐标轴的交点个数是( ) A .0 B .1 C .2 D .3【作业4】 给任意实数n ,得到不同的抛物线2y x n =+,当n = 0,1或1-时,关于这些抛物线有以下结论:○1开口方向不同;○2对称轴不同;○3都有最低点;○4可以通过一个抛物线平移得到另一个,其中判断正确的个数是( )A .1个B .2个C .3个D .4个【作业5】 已知函数()2113m y m x x +=-+,当m ______时,它是二次函数.【作业6】 抛物线()2612y x =+-可由抛物线262y x =-向______平移______个单位得到.课后作业xyxyOOA BA BCD Em n【作业7】 二次函数()22y x m =-+的图像顶点在______轴上,对称轴直线x = 1,则函数解析式为______.【作业8】 已知抛物线()()2y x m x m =---,其中m 是常数. (1)求证:不论m 为何值,该抛物线与x 轴一定有两个公共点;(2)若该抛物线的对称轴为直线52x =.○1求该抛物线的函数解析式; ○2该抛物线沿y 轴向上平移多少个单位长度后,得到的抛物线与x 轴只有一个公共点?【作业9】 如图1,一次函数y kx b =+的图像与二次函数2y x =的图像相交于A 、B 两点,点A 、B 的横坐标分别为m 、n (m < 0,n > 0).(1)当1m =-,n = 4时,k =______,b =______;当2m =-,n = 3时,k =______,b =______.(2)用含m 、n 的代数式分别表示k 与b . (3)利用(2)的结论,解答下面问题:如图2,直线AB 与x 轴、y 轴分别交于点C 、D ,点A 关于y 的对称点为E ,连接AO 、OE 、ED .○1当3m =-,n > 3时,求AOD AOEDS S ∆∆四边形的值(用含n 的代数式表示)○2当四边形AOED 为菱形时,m 与n 满足的关系为_________________;当四边形AOED 为正方形时,m =______,n =______.18 / 18ABCDO xy【作业10】 如图,两条抛物线的解析式分别是211y ax ax =--+,221y ax ax =---(其中a为常数).(1)请写出三条与上述抛物线有关的不同类型的结论;(2)当12a =时,设211y ax ax =--+与x 轴分别交于M 、N 两点(M 在N 的左边),221y ax ax =---与x 轴分别交于E 、F 两点(E 在F 的左边),观察M 、N 、E 、F 四点坐标,请写出一个你所得到的正确的结论,并说明理由;(3)设上述两条抛物线相交于A 、B 两点,直线l 、1l 、2l 都垂直于x 轴,1l 、2l 分别经过A 、B 两点,l 在1l 、2l 之间,且l 与两条抛物线分别交于C 、D 两点,求线段CD 的最大值.。
二次函数的图像及画法
在平面直角坐标系中作出二次函数y=x的平方的图像,可以看出,二次函数的图像是一条永无止境的抛物线。
如果所画图形准确无误,那么二次函数将是由一般式平移得到的。
二次函数y=ax 的图像的画法
用描点法画二次函数y=ax 的图像时,应在顶点的左、右两侧对称地选取自变量x的值,然后计算出对应的y值,这样的对应值选取越密集,描出的图像越准确。
用描点法画出二次函数y=x 的图像,它是一条关于y轴对称的曲线,这样的曲线叫做抛物线。
因为抛物线y=x 关于y轴对称,所以y轴是这条抛物线的对称轴,对称轴与抛物线的交点是抛物线的顶点,从图上看,抛物线y=x2的顶点是图象的最低点.因为抛物线y=x2有最低点.所以函数y =x2有最小值,它的最小值就是最低点的纵坐标。
基本图像
当a0时,y=ax 的图像
当a0时,y=ax 的图像
二次函数y=ax ;,y=a(x-h) ;,y=a(x-h) +k,y=ax +bx+c(各式中,a0)的图象形状相同,只是位置不同,它们的顶点坐标及对称
轴如下表:
解析式
y=ax ;
y=ax +K
y=a(x-h) ;
y=a(x-h) +k
y=ax +bx+c
顶点坐标
(0,0)
(0,K)
(h,0)
(h,k)
(-b/2a,4ac-b /4a)
对称轴
x=0
x=0
x=h
x=h
x=-b/2a
当h0时,y=a(x-h) ;的图象可由抛物线y=ax ;向右平行移动h个单位得到,
当h0时,则向左平行移动|h|个单位得到.
当h0,k0时,将抛物线y=ax ;向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h) +k的图象;
当h0,k0时,将抛物线y=ax ;向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x-h) -k的图象;
当h0,k0时,将抛物线向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x+h)sup2;+k的图象;
当h0,k0时,将抛物线向左平行移动|h|个单位,再向下移动|k|个单位可得到y=a(x-h)sup2;+k的图象;在向上或向下.向左或向右平移抛物线时,可以简记为上加下减,左加右减。
因此,研究抛物线y=ax +bx+c(a0)的图象,通过配方,将一般式化为y=a(x-h) ;+k的形式,可确定其顶点坐标、对称轴,抛物线的大体位置就很清楚了.这给画图象提供了方便.。