高中数学第二章圆锥曲线与方程2.2.1椭圆及其标准方程(2)学案新人教A版选修2-1
- 格式:pdf
- 大小:138.42 KB
- 文档页数:11
2.2 双曲线(1)A 级 基础巩固一、选择题1.已知M (-2,0)、N (2,0),|PM |-|PN |=4,则动点P 的轨迹是导学号 03624438( C )A .双曲线B .双曲线左支C .一条射线D .双曲线右支[解析]∵|PM |-|PN |=|MN |=4,∴动点P 的轨迹是一条射线. 2.双曲线3x 2-4y 2=-12的焦点坐标为导学号 03624439( D ) A .(±5,0) B .(0,±5) C .(±7,0)D .(0,±7)[解析] 双曲线3x 2-4y 2=-12化为标准方程为y 23-x 24=1,∴a 2=3,b 2=4,c 2=a 2+b 2=7,∴c =7,又∵焦点在y 轴上,故选D .3.已知方程x 21+k -y 21-k =1表示双曲线,则k 的取值X 围是导学号 03624440( A )A .-1<k <1B .k >0C .k ≥0D .k >1或k <-1[解析] 由题意得(1+k )(1-k )>0,∴(k -1)(k +1)<0,∴-1<k <1.4.(2016·某某某某高二检测)已知双曲线2mx 2-my =4的一个焦点为(0,6),则m 的值为导学号 03624441( B )A .1B .-1C .73D .-73[解析] 将双曲线方程化为x 22m-y 24m=1.因为一个焦点是(0,6),所以焦点在y 轴上,所以c =6,a 2=-4m ,b 2=-2m ,所以a 2+b 2=-4m -2m =-6k=c 2=6.所以m =-1.5.双曲线x 210-y 22=1的焦距为导学号 03624442( D )A .3 2B .4 2C .3 3D .4 3[解析] 由双曲线的标准方程,知a 2=10,b 2=2,则c 2=a 2+b 2=10+2=12,因此2c =43,故选D .6.(2015·某某理)若双曲线E :x 29-y 216=1的左、右焦点分别为F 1、F 2,点P 在双曲线E 上,且|PF 1|=3,则|PF 2|等于导学号 03624443( B )A .11B .9C .5D .3[解析] 由题,|||PF 1|-|PF 2|=2a =6, 即||3-|PF 2|=2a =6,解得|PF 2|=9. 二、填空题7.已知双曲线C :x 29-y 216=1的左、右焦点分别为F 1、F 2,P 为C 右支上的一点,且|PF 2|=|F 1F 2|,则△PF 1F 2的面积等于__48__.导学号 03624444[解析] 依题意得|PF 2|=|F 1F 2|=10,由双曲线的定义得|PF 1|-|PF 2|=6,∴|PF 1|=16.∴S △PF 1F 2=12×16×102-1622=48.8.已知双曲线x 225-y 29=1的两个焦点分别为F 1、F 2,若双曲线上的点P 到点F 1的距离为12,则点P 到点F 2的距离为__2或22__.导学号 03624445[解析] 设F 1为左焦点,F 2为右焦点,当点P 在双曲线左支上时,|PF 2|-|PF 1|=10,|PF 2|=22;当点P 在双曲线右支上时, |PF 1|-|PF 2|=10,|PF 2|=2. 三、解答题9.求满足下列条件的双曲线的标准方程.导学号 03624446 (1)焦点在x 轴上,c =6且经过点(-5,2); (2)过P (3,154)和Q (-163,5)两点.[解析] (1)设双曲线方程为x 2a 2-y 2b2=1(a >0,b >0),由题意得⎩⎪⎨⎪⎧25a 2-4b2=1a 2+b 2=6,解之得a 2=5,b 2=1, 故所求双曲线方程为x 25-y 2=1.(2)设双曲线方程为Ax 2+By 2=1(AB <0),由题意得 ⎩⎪⎨⎪⎧9A +22516B =12569A +25B =1,解之得⎩⎪⎨⎪⎧A =-116B =19.∴所求双曲线方程为y 29-x 216=1.B 级 素养提升一、选择题1.已知双曲线中心在原点,一个焦点为F 1(-5,0),点P 在该双曲线上,线段PF 1的中点坐标为(0,2),则双曲线的方程是导学号 03624447( B )A .x 24-y 2=1B .x 2-y 24=1C .x 22-y 23=1D .x 23-y 22=1[解析] 由条件知P (5,4)在双曲线x 2a 2-y 2b2=1上,∴5a 2-16b2=1,又a2+b 2=5,∴⎩⎪⎨⎪⎧a 2=1b 2=4,故选B .2.(2017·全国Ⅰ文,5)已知F 是双曲线C :x 2-y 23=1的右焦点,P 是C 上一点,且PF与x 轴垂直,点A 的坐标是(1,3),则△APF 的面积为导学号 03624448( D )A .13B .12C .23D .32[解析] 因为F 是双曲线C :x 2-y 23=1的右焦点,所以F (2,0).因为PF ⊥x 轴,所以可设P 的坐标为(2,y P ). 因为P 是C 上一点,所以4-y 2P3=1,解得y P =±3,所以P (2,±3),|PF |=3.又因为A (1,3),所以点A 到直线PF 的距离为1, 所以S △APF =12×|PF |×1=12×3×1=32.故选D .3.已知m 、n 为两个不相等的非零实数,则方程mx -y +n =0与nx 2+my 2=mn 所表示的曲线可能是导学号 03624449( C )[解析] 把直线方程和曲线方程分别化为y =mx +n ,x 2m +y 2n=1.根据图形中直线的位置,判定斜率m 和截距n 的正负,从而断定曲线的形状.4.已知双曲线的左、右焦点分别为F 1、F 2,过F 1的直线与双曲线的左支交于A 、B 两点,线段AB 的长为5,若2a =8,那么△ABF 2的周长是导学号 03624450( D )A .16B .18C .21D .26[解析] |AF 2|-|AF 1|=2a =8,|BF 2|-|BF 1|=2a =8, ∴|AF 2|+|BF 2|-(|AF 1|+|BF 1|)=16, ∴|AF 2|+|BF 2|=16+5=21,∴△ABF 2的周长为|AF 2|+|BF 2|+|AB |=21+5=26. 5.若方程x 2m -1+y 2m 2-4=3表示焦点在y 轴上的双曲线,则m 的取值X 围是导学号 03624451( C )A .(-∞,1)B .(2,+∞)C .(-∞,-2)D .(-2,1)[解析] 由题意,方程可化为y 2m 2-4-x 21-m=3,∴⎩⎪⎨⎪⎧m 2-4>01-m >0,解得m <-2.故选C .二、填空题6.(2016·某某某某高二检测)设双曲线与椭圆x 227+y 236=1有共同的焦点,且与椭圆相交,有一个交点的坐标为(15,4),则此双曲线的方程为y 24-x 25=1 .导学号 03624452[解析] 解法一:椭圆x 227+y 236=1的焦点坐标是(0,±3),根据双曲线的定义,知2a=|152+12-152+72|=4,故a =2.又b 2=c 2-a 2=5,故所求双曲线的方程为y 24-x 25=1. 解法二:椭圆x 227+y 236=1的焦点坐标是(0,±3).设双曲线方程为y 2a 2-x 2b2=1(a >0,b >0),则a 2+b 2=9,16a 2-15b 2=1,解得a 2=4,b 2=5.故所求双曲线的方程为y 24-x 25=1.解法三:设双曲线方程为x 227-λ+y 236-λ=1(27<λ<36),由于双曲线过点(15,4),故1527-λ+1636-λ=1,解得λ1=32,λ2=0(舍去).故所求双曲线方程为y 24-x 25=1. 7.已知F 1、F 2为双曲线C :x 2-y 2=1的左、右焦点,点P 在C 上,∠F 1PF 2=60°,则|PF 1|·|PF 2|等于__4__.导学号 03624453[解析] 在△PF 1F 2中,|F 1F 2|2=|PF 1|2+|PF 2|2-2|PF 1|·|PF 2|·cos60°=(|PF 1|-|PF 2|)2+|PF 1|·|PF 2|, 即(22)2=22+|PF 1|·|PF 2|, 解得|PF 1|·|PF 2|=4. 三、解答题8.已知双曲线方程为2x 2-y 2=k ,焦距为6,求k 的值.导学号 03624454 [解析] 由题意知c =3,若焦点在x 轴上,则方程可化为x 2k 2-y 2k =1,∴k 2+k =32,即k =6.若焦点在y 轴上,则方程可化为y 2-k -x 2-k2=1.∴-k +(-k2)=32,即k =-6.综上,k 的值为6或-6.C 级 能力提高1.双曲线8kx 2-ky 2=8的一个焦点坐标为(0,3),则k 的值为__-1__.导学号 03624455[解析] 将双曲线的方程化为x 21k-y 28k=1,因为双曲线的一个焦点坐标是(0,3), 所以焦点在y 轴上,且c =3. 所以a 2=-8k ,b 2=-1k.所以-8k -1k=9,解得k =-1.2.当0°≤α≤180°时,方程x 2cos α+y 2sin α=1表示的曲线如何变化?导学号 03624456[解析] (1)当α=0°时,方程为x 2=1,它表示两条平行直线x =±1. (2)当0°<α<90°时,方程为x 21cos α+y 21sin α=1. ①当0°<α<45°时,0<1cos α<1sin α,它表示焦点在y 轴上的椭圆.②当α=45°时,它表示圆x 2+y 2= 2.③当45<α<90°时,1cos α>1sin α>0,它表示焦点在x 轴上的椭圆.(3)当α=90°时,方程为y 2=1,它表示两条平行直线y =±1. (4)当90°<α<180°时,方程为y 21sin α-x 21-cos α=1,它表示焦点在y 轴上的双曲线.(5)当α=180°时,方程为x 2=-1,它不表示任何曲线.。
2.2.1 双曲线及其标准方程[学生用书P105(单独成册)])[A 根底达标]1.平面内两定点A (-5,0),B (5,0),动点M 满足|MA |-|MB |=6,那么点M 的轨迹方程是( )A.x 216-y 29=1 B .x 216-y 29=1(x ≥4)C.x 29-y 216=1 D .x 29-y 216=1(x ≥3)解析:选D.由|MA |-|MB |=6,且6<|AB |=10,得a =3,c =5,b 2=c 2-a 2=16. 故其轨迹为以A ,B 为焦点的双曲线的右支. 所以方程为x 29-y 216=1(x ≥3).2.双曲线方程为x 2-2y 2=1,那么它的右焦点坐标为( ) A.⎝ ⎛⎭⎪⎫22,0 B .⎝⎛⎭⎪⎫52,0 C.⎝⎛⎭⎪⎫62,0 D .(3,0)解析:选C.将双曲线方程化成标准方程为x 21-y 212=1, 所以a 2=1,b 2=12,所以c =a 2+b 2=62,故右焦点坐标为⎝⎛⎭⎪⎫62,0. 3.以椭圆x 23+y 24=1的焦点为顶点,以这个椭圆的长轴的端点为焦点的双曲线的方程是( )A.x 23-y 2=1 B .y 2-x 23=1C.x 23-y 24=1 D .y 23-x 24=1解析:选B.由题意知,双曲线的焦点在y 轴上,且a =1,c =2,所以b 2=3,所以双曲线的方程为y 2-x 23=1.4.(2021·绍兴高二检测)双曲线Γ:x 2λ-y 29=1上有一点M 到Γ的右焦点F 1(34,0)的距离为18,那么点M 到Γ的左焦点F 2的距离是( )A .8B .28C .12D .8或28解析:选D.因为双曲线Γ:x 2λ-y 29=1的右焦点F 1(34,0),所以λ=34-9=25,所以双曲线Γ:x 225-y 29,可知||MF 1|-|MF 2||=2a =10,又|MF 1|=18,那么|MF 2|D.5.(2021·邯郸高二检测)设F 1,F 2是双曲线x 24-y 2=1的左、右焦点,点P 在双曲线上,当△F 1PF 2的面积为1时,PF 1→·PF 2→的值为( )A .0B .1 C.12D .2解析:选A.易知F 1(-5,0),F 2(5,0). 不妨设P (x 0,y 0)(x 0,y 0>0), 由12×2c ×y 0=1,得y 0=55, 所以P ⎝ ⎛⎭⎪⎫2305,55,所以PF 1→=⎝ ⎛⎭⎪⎫-5-2305,-55,PF 2→=⎝⎛⎭⎪⎫5-2305,-55,所以PF 1→·PF 2→=0.6.椭圆x 24+y 2a 2=1与双曲线x 2a -y 22=1有一样的焦点,那么a 的值是________.解析:依题意得⎩⎪⎨⎪⎧a >0,0<a 2<4,4-a 2=a +2,解得a =1.答案:17.在平面直角坐标系xOy 中,双曲线x 24-y 212=1上一点M 的横坐标为3,那么点M 到此双曲线的右焦点的距离为________.解析:双曲线右焦点为(4,0), 将x =3代入x 24-y 212=1,得y =±15.所以点M 的坐标为(3,15)或(3,-15),所以点M 到双曲线右焦点的距离为〔4-3〕2+〔±15〕2=4.答案:48.双曲线x 2-y 2=1,点F 1,F 2为其两个焦点,点P 为双曲线上一点,假设PF 1⊥PF 2,那么|PF 1|+|PF 2|的值为____________.解析:不妨设点P 在双曲线的右支上,因为PF 1⊥PF 2, 所以|F 1F 2|2=|PF 1|2+|PF 2|2=(22)2, 又|PF 1|-|PF 2|=2, 所以(|PF 1|-|PF 2|)2=4, 可得2|PF 1|·|PF 2|=4,那么(|PF 1|+|PF 2|)2=|PF 1|2+|PF 2|2+2|PF 1|·|PF 2|=12,所以|PF 1|+|PF 2|=2 3. 答案:2 39.焦点在x 轴上的双曲线过点P (42,-3),且点Q (0,5)与两焦点的连线互相垂直,求此双曲线的标准方程.解:因为双曲线的焦点在x 轴上,所以设双曲线的标准方程为x 2a 2-y 2b2=1(a >0,b >0),F 1(-c ,0),F 2(c ,0).因为双曲线过点P (42,-3),所以32a 2-9b2=1.①又因为点Q (0,5)与两焦点的连线互相垂直, 所以QF 1→·QF 2→=0,即-c 2+25=0. 解得c 2=25.② 又c 2=a 2+b 2,③所以由①②③可解得a 2=16或a 2=50(舍去). 所以b 2=9,所以所求的双曲线的标准方程是x 216-y 29=1.10.如图,假设F 1,F 2是双曲线x 29-y 216=1的两个焦点.(1)假设双曲线上一点M 到它的一个焦点的距离等于16,求点M 到另一个焦点的距离;(2)假设P 是双曲线左支上的点,且|PF 1|·|PF 2|=32,试求△F 1PF 2的面积.解:(1)由双曲线的定义得||MF 1|-|MF 2||=2a =6,又双曲线上一点M 到它的一个焦点的距离等于16,假设点M 到另一个焦点的距离等于x ,那么|16-x |=6,解得x =10或x =22. 由于c -a =5-3=2,10>2,22>2,故点M 到另一个焦点的距离为10或22.(2)将||PF 2|-|PF 1||=2a =6两边平方得|PF 1|2+|PF 2|2-2|PF 1|·|PF 2|=36, 所以|PF 1|2+|PF 2|2=36+2|PF 1|·|PF 2|=36+2×32=100. 在△F 1PF 2中,由余弦定理得cos ∠F 1PF 2= |PF 1|2+|PF 2|2-|F 1F 2|22|PF 1|·|PF 2|=100-1002|PF 1|·|PF 2|=0,所以∠F 1PF 2=90°,所以S △F 1PF 2=12×32=16.[B 能力提升]11.(2021·保定检测)双曲线x 2m -y 27=1,直线l 过其左焦点F 1,交双曲线左支于A ,B 两点,且|AB |=4,F 2为双曲线的右焦点,△ABF 2的周长为20,那么m 的值为( )A .8B .9C .16D .20解析:选B.由,|AB |+|AF 2|+|BF 2|=20.又|AB |=4,那么|AF 2|+|BF 2|,2a =|AF 2|-|AF 1|=|BF 2|-|BF 1|,所以4a =|AF 2|+|BF 2|-(|AF 1|+|BF 1|)=16-4=12,即a =3,所以m =a 2=9.12.(2021·西安高二检测)如图,双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,点M 与双曲线C 的焦点不重合,点M 关于F 1,F 2的对称点分别为点A ,B ,线段MN 的中点Q 在双曲线的右支上,假设|AN |-|BN |=12,那么a =( )A .3B .4C .5D .6解析:选A.连接QF 1,QF 2.因为线段MN 的中点为Q ,点F 2为MB 的中点,所以|QF 2|=12|BN |,同理可得|QF 1|=12|AN |.因为点Q 在双曲线C 的右支上,所以|QF 1|-|QF 2|=2a ,所以12(|AN |-|BN |)=2a ,所以12×12=2a ,解得a A.13.求与椭圆x 2+4y 2=8有公共焦点的双曲线的方程,使得以此双曲线与椭圆的四个交点为顶点的四边形的面积最大.解:椭圆的方程可化为x 28+y 22=1,①所以c 2=8-2=6.因为椭圆与双曲线有公共焦点,所以在双曲线中,a 2+b 2=c 2=6,即b 2=6-a 2.设双曲线的方程为x 2a 2-y 26-a2=1(0<a 2<6).②由①②解得⎩⎪⎨⎪⎧x 2=4a 23,y 2=6-a 23.由椭圆与双曲线的对称性可知四个交点构成一个矩形, 其面积S =4|xy |=4·4a 23·6-a 23=83 a 2〔6-a 2〕≤83·a 2+〔6-a 2〕2=8, 当且仅当a 2=6-a 2,即a 2=3,b 2=6-3=3时,取等号. 所以双曲线的方程是x 23-y 23=1. 14.(选做题)双曲线过点(3,-2)且与椭圆4x 2+9y 2=36有一样的焦点. (1)求双曲线的标准方程;(2)假设点M 在双曲线上,F 1,F 2为左、右焦点,且|MF 1|+|MF 2|=63,试判断△MF 1F 2的形状.解:(1)椭圆方程可化为x 29+y 24=1,焦点在x 轴上,且c =9-4=5,故可设双曲线方程为x 2a 2-y 2b2=1(a >0,b >0).依题意得⎩⎪⎨⎪⎧9a 2-4b 2=1,a 2+b 2=5,解得a 2=3,b 2=2,所以双曲线的标准方程为x 23-y 22=1.(2)不妨设点M 在双曲线的右支上,那么有|MF 1|-|MF 2|=23,因为|MF 1|+|MF 2|=63,所以|MF 1|=43,|MF 2|=2 3.又|F 1F 2|=25,因此在△MF 1F 2中,边MF 1最长,而cos ∠MF 2F 1=|MF 2|2+|F 1F 2|2-|MF 1|22|MF 2|·|F 1F 2|<0,所以∠MF 2F 1为钝角,故△MF 1F 2为钝角三角形.。
P F 2F 1课题:2.2.1椭圆及其标准方程(1) 第 课时 总序第 个教案课型: 新授课 编写时时间: 年 月 日 执行时间: 年 月 日教学目标:◆ 知识与技能目标理解椭圆的概念,掌握椭圆的定义、会用椭圆的定义解决实际问题;理解椭圆标准方程的推导过程及化简无理方程的常用的方法;了解求椭圆的动点的伴随点的轨迹方程的一般方法.◆ 过程与方法目标通过作图展示与操作,必须让学生认同:圆、椭圆、双曲线和抛物线都是圆锥曲线,是因它们都是平面与圆锥曲面相截而得其名;已知几何图形建立直角坐标系的两个原则,及引入参量22b a c =-的意义,培养学生用对称的美学思维来体现数学的和谐美。
◆ 情感、态度与价值观目标会把几何问题化归成代数问题来分析,反过来会把代数问题转化为几何问题来思考,培养学生的数形结合的思想方法;培养学生的会从特殊性问题引申到一般性来研究,培养学生的辩证思维能力.批 注教学重点:理解椭圆的概念,掌握椭圆的定义、会用椭圆的定义解决实际问题。
教学难点:理解椭圆标准方程的推导过程及化简无理方程的常用的方法。
教学用具: 多媒体,三角板 教学方法: 推导,分析教学过程: 一、课前准备(预习教材P 38~ P 40)复习1:过两点(0,1),(2,0)的直线方程 .复习2:方程22(3)(1)4x y -++= 表示以 为圆心, 为半径的 .二、新课导学 ※ 学习探究取一条定长的细绳,把它的两端都固定在图板的同一个点处,套上铅笔,拉紧绳子,移动笔尖,这时笔尖画出的轨迹是一个 .如果把细绳的两端拉开一段距离,分别固定在图板的两个点处,套上铅笔,拉紧绳子,移动笔尖,画出的轨迹是什么曲线?思考:移动的笔尖(动点)满足的几何条件是什么?经过观察后思考:在移动笔尖的过程中,细绳的 保持不变,即笔尖 等于常数.新知1: 我们把平面内与两个定点12,F F 的距离之和等于常数(大于12F F )的点的轨迹叫做椭圆,这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距 .反思:若将常数记为2a ,为什么122a F F >? 当122a F F =时,其轨迹为 ;当122a F F <时,其轨迹为 .试试:已知1(4,0)F -,2(4,0)F ,到1F ,2F 两点的距离之和等于8的点的轨迹是 .小结:应用椭圆的定义注意两点:①分清动点和定点;②看是否满足常数122a F F >. 新知2:焦点在x 轴上的椭圆的标准方程 ()222210x y a b a b +=>> 其中222b ac =- 若焦点在y 轴上,两个焦点坐标 ,则椭圆的标准方程是 .※ 典型例题例1 写出适合下列条件的椭圆的标准方程: ⑴4,1a b ==,焦点在x 轴上;⑵4,15a c ==,焦点在y 轴上;⑶10,25a b c +==.变式:方程214x ym+=表示焦点在x 轴上的椭圆,则实数m 的范围 .小结:椭圆标准方程中:222a b c =+ ;a b > .例2 已知椭圆两个焦点的坐标分别是()2,0-,(2,0),并且经过点53,22⎛⎫- ⎪⎝⎭,求它的标准方程 .变式:椭圆过点 ()2,0-,(2,0),(0,3),求它的标准方程.小结:由椭圆的定义出发,得椭圆标准方程 .※ 动手试试练1. 已知ABC ∆的顶点B 、C 在椭圆2213x y +=上,顶点A 是椭圆的一个焦点,且椭圆的另外一个焦点在BC 边上,则ABC ∆的周长是( ).彗星太阳A .23B .6C .43D .12练2 .方程219x ym-=表示焦点在y 轴上的椭圆,求实数m 的范围.三、总结提升 ※ 学习小结 1. 椭圆的定义: 2. 椭圆的标准方程:※ 知识拓展1997年初,中国科学院紫金山天文台发布了一条消息,从1997年2月中旬起,海尔·波普彗星将逐渐接近地球,过4月以后,又将渐渐离去,并预测3000年后,它还将光临地球上空1997年2月至3月间,许多人目睹了这一天文现象天文学家是如何计算出彗星出现的准确时间呢?原来,海尔·波普彗星运行的轨道是一个椭圆,通过观察它运行中的一些有关数据,可以推算出它的运行轨道的方程,从而算出它运行周期及轨道的的周长.学习评价※ 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分:1.平面内一动点M 到两定点1F 、2F 距离之和为常数2a ,则点M 的轨迹为( ).A .椭圆B .圆C .无轨迹D .椭圆或线段或无轨迹2.如果方程222x ky +=表示焦点在y 轴上的椭圆,那么实数k 的取值范围是( ).A .(0,)+∞B .(0,2)C .(1,)+∞D .(0,1)3.如果椭圆22110036x y +=上一点P 到焦点1F 的距离等于6,那么点P 到另一个焦点2F 的距离是( ).A .4B .14C .12D .84.椭圆两焦点间的距离为16,且椭圆上某一点到两焦点的距离分别等于9和15,则椭圆的标准方程 是 .5.如果点(,)M x y 在运动过程中,总满足关系式2222(3)(3)10x y x y ++++-=,点M 的轨迹是 ,它的方程是 .课后作业1. 写出适合下列条件的椭圆的标准方程:⑴焦点在x 轴上,焦距等于4,并且经过点()3,26P -; ⑵焦点坐标分别为()()0,4,0,4-,5a =;⑶10,4a c a c+=-=.2. 椭圆2214x yn+=的焦距为2,求n的值.教学后记:。
第2章圆锥曲线与方程2.1 圆锥曲线二、预习指导1.预习目标(1)认识用平面截圆锥面得到的各种曲线;(2)掌握椭圆、双曲线、抛物线的定义;(3)会根据不同的已知条件,利用圆锥曲线的定义判断动点的轨迹.2.预习提纲(1)查找有关轨迹的概念,回答下列问题:①平面内到线段两端点距离相等的点的轨迹是____________;②平面内到定点的距离等于定长的点的轨迹是____________;③空间中到定点的距离等于定长的点的轨迹是____________.(2)阅读教材选修4-1的71页到78页,教材选修2-1的25页到27页写下列空格:①一个平面截一个圆锥面,改变平面的位置,可得到如下图形____________,____________,____________,____________,____________;②平面内到两个定点F1,F2的距离_____等于常数(__________)的点的轨迹叫做椭圆,两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的__________;③平面内到两个定点F1,F2的距离____________等于常数(______________)的点的轨迹叫做双曲线,两个定点叫做双曲线的焦点,两焦点间的距离叫做双曲线的焦距;④平面内到一个定点F和一条定直线l(________________)的距离________的点的轨迹叫做抛物线,定点F叫做抛物线的焦点,定直线l叫做抛物线的_________.(3)阅读课本例1,动手实践借助细绳画椭圆,结合课本27页习题2.1第3题,动手实践借助拉链画双曲线,并说明理由,以此加深对椭圆、双曲线定义的认识.3.典型例题例1 动点P(x,y)与两个定点A(-2,0)、B(2,0)构成的三角形周长为10.(1)试证:动点P在一个椭圆上运动;(2)写出这个椭圆的焦点坐标.分析:找动点P满足的条件,利用圆锥曲线的定义.解:(1)由题意得:PA+PB+AB=10,AB=4,故PA+PB=6>4.由椭圆的定义得:动点P在以A(-2,0)、B(2,0)为焦点的椭圆上运动.(2)由(1)得:这个椭圆的两个焦点坐标为A(-2,0)、B(2,0).点评:在圆锥曲线(椭圆、双曲线、抛物线)的定义中,条件都有特定的限制,如在具体问题中不加以判断,会造成错解.如本题中PA+PB=6>4是十分必要的.在椭圆的定义中,PF1+PF2等于常数,常数大于F1F2的判断是必不可少的.若常数等于F 1F 2,则轨迹是线段F 1F 2;若常数小于F 1F 2,则不表示任何图形.在双曲线的定义中,注意两个限制:一是常数小于F 1F 2,二是差的绝对值,两者缺一不可.若PF 1-PF 2是正常数且常数小于F 1F 2,则点的轨迹是双曲线以F 2为焦点的一支;若PF 2-PF 1是正常数且常数小于F 1F 2,则点的轨迹是双曲线以F 1为焦点的一支;若|PF 1-PF 2|是常数且等于F 1F 2,则点的轨迹是两条射线;若PF 1-PF 2是常数且等于F 1F 2,则点的轨迹是以F 2为端点与F 1F 2同向的射线;若PF 2-PF 1是常数且等于F 1F 2,则点的轨迹是以F 1为端点与F 1F 2反向的射线. 在抛物线的定义中,当点F 在直线l 上时,则点P 的轨迹是过点F 与直线l 垂直的直线.例2 已知圆()221:31C x y ++=和圆()222:39C x y -+=,动圆M 同时与圆C 1及圆C 2相外切,试问动圆圆心M 在怎样的曲线上运动?分析:两圆外切,则圆心距等于半径之和.解: 设动圆的半径为R ,则由动圆M 同时与圆C 1及圆C 2相外切得:1213MC R MC R =+⎧⎨=+⎩ 消去R 得:MC 2-MC 1=2,故可知动点M 到两定点C 1,C 2的距离之差是常数2.由双曲线的定义得:动圆圆心M 在双曲线的一支(左边的一支)上运动.点评:本题由于动点M 到两定点C 1,C 2的距离之差是常数,而不是差的绝对值为常数,因此其轨迹只能是双曲线的一支.这一点在应用过程中要特别注意.4.自我检测(1)已知点A (1,0)、B (-1,0),动点P 满足:PA +PB =4,则动点P 的轨迹是__ .(2)已知点A (-2,0)、B (2,0),动点M 满足:|MA -MB |=2,则动点M 的轨迹是 ____ ,其两个焦点分别为 .(3)已知定点A (1,0)和定直线l :x = -3,若点N 到定点A 与到定直线l 的距离相等,则点N 的轨迹是 ,其焦点为 ,准线为 .(4)已知点A (-2,0)、B (2,0),动点M 满足:|MA -MB |=4,则动点M 的轨迹是 _.(5)在△ABC 中,B (0,-3),C (0,3),且AB ,BC ,AC 成等差数列,试证:点A 在以B 、C 为焦点的椭圆上运动.三、课后巩固练习A 组1.用合适的选项填写下列轨迹 ( 要求只填写序号 )①直线;②圆;③椭圆;④双曲线;⑤双曲线的一支;⑥抛物线;⑦线段(1)动点P 到两定点F 1(-4,0)、F 2(4,0)的距离和是8,则动点P 的轨迹为_______; (2)已知椭圆的焦点为F 1、F 2,P 是椭圆上的一个动点,如果延长F 1P 到Q ,使得PQ =PF 2,那么动点Q 的轨迹是_________;(3)动点P 到直线x +4=0的距离减去它到M (2,0)的距离之差等于2,则动点P 的轨迹是___________;(4)经过定圆外一定点,并且与定圆外切的动圆圆心的轨迹是__________.2.已知O (0,0)、A0)为平面内两个定点,动点P 满足:PO +PA =2,求动点P 的轨迹.3.在△ABC 中,a ,b ,c 分别是内角A ,B ,C 的对边,且b ,a ,c 成等差数列,b ≥c .已知顶点B 、C 的坐标为B (-1,0),C (-1,0).试证:点A 在以B 、C 为焦点的左半椭圆上运动.4.在△ABC 中,A 为动点,(,0)(,0)(0)22a a B C a ->、为定点,且满足:1s i n s i n s i n 2C B A -=,试问动点A 在怎样的曲线上运动?B 组5.圆O 1与圆O 2的半径分别为1和2,O 1O 2=4,动圆与圆O 1内切而与圆O 2外切,则动圆圆心的轨迹是_____________________.6.已知定点A (-3,3)和定直线l :x =-3,若点N 到定点A 与到定直线l 的距离相等,则点N 的轨迹是 .7.已知圆的方程为22100x y +=,点A 的坐标为(-6,0),M 是圆O 上的任意一点,AM 的垂直平分线交OM 于点P ,试证明:点P 在以A 、O 为焦点的椭圆上运动.C 组8.已知A(0,7)、B(0,-7)、C(12,2),以C 为一个焦点作过A 、B 的椭圆,记椭圆的另一个焦点为F ,证明:点F 在以A(0,7)、B(0,-7)为焦点的双曲线的一支上运动.9.已知两个同心圆,其半径分别为R ,r (R >r ),AB 为小圆的一条定直径,求证:以大圆切线为准线,且过A 、B 两点的抛物线的焦点F 在以A 、B 为焦点的椭圆上.10.若一个动点P (x ,y )到定点F 1(-1,0),F 2(1,0)距离之和为定值m (m ≥0),试讨论点P 的轨迹.题号我们身边的圆锥曲线圆锥曲线的发现确实是一个伟大的发现.在笛卡尔直角坐标系中,这些曲线的方程是二次方程,所以圆锥曲线又叫做二次曲线.对于二次曲线的价值大概还没有人会估计得过高.在我们的实际生活中处处都有圆锥曲线.例如,我们的地球绕太阳运行的轨道是椭圆,太阳系的其他行星的运行轨道都是椭圆.这个事实是由开普勒第一定律确定的,之所以沿着椭圆轨道运动,是因为每一个行星在每一个瞬间都有不超过某一个值的速度.事实证明,假如这个速度过大了,运动就会沿着抛物线或双曲线轨道运行.相对于一个静止的物体,并按照万有引力定律受它吸引的物体运动,不可能有任何其他的轨道.因此,二次曲线实际上是以我们的宇宙为基础的.又如,如果让抛物线绕其轴旋转,就得到一个叫做旋转抛物面的曲面.在抛物面的轴上,有一个具有美妙性质的焦点,任何一条通过该点的直线由抛物面上反射出来之后,在指向上都平行于抛物面的轴.而这意味着如果把探照灯做成抛物面的形状,并且把灯泡放在焦点上,那么从抛物面上反射回来的所有光线就形成一束平行光束.这显然是一个很大的优点,因为正是这样一束光线在空间中,甚至于在离光源距离相当大的情况下,很少扩散.当然,实际上我们得不到理想的平行光束,因为灯泡不是一个点,但对于实用的目的来说,只要接近于这样的光束就够了.天文望远镜上的反射镜也是利用抛物面的形状制作的.它的作用刚好和探照灯的作用相反:探照灯的反射镜把光线反射到空间,天文望远镜的反射面则把来自宇宙的光线聚焦到自己的焦点上.只要用放大镜组瞄准这个焦点就行了,这样,我们就会得到聚焦到其光线的那个星球的信息,这比肉眼观察所能提供的信息要多得多.那条不穿过双曲线的对称轴叫做双曲线的虚轴.如果使双曲线绕这条轴旋转,那么,形成的曲面(这样的曲面称为单叶双曲面)也有许多实际用处.单叶双曲面是直纹曲面.上面有两组母直线族,各组内母线彼此不相交,而与另一组母线永远相交.正是这种性质在技术中得到了应用.例如,用直立木杆造水塔,如果把这些杆垂直地放置,那就只能得到一个很不牢固的建筑物,他会因为非常小的负荷而损坏.如果立杆时,使他们构成一个单叶双曲面(就是两组母线族),并使他们的交点处连接在一起,就会得到一个非常轻巧而又非常坚固的建筑物.许多化工厂或热电厂的冷却塔就是利用了这个原理.在尝试解决古代名题的过程中,所发现的各种美妙曲线远不限于螺线,蚌线和圆锥曲线.可是,不管找到了多少美妙的曲线,他们还是解决不了古代名题.要知道,正像我们还记得的那样,要求不只是解出这些名题,而是除了直尺和圆规外,不准利用其他任何工具.而仅仅利用这两种工具能否解决其中任何一个问题呢?这个问题该如何回答呢?如果这个答案存在的话,对这个问题给与肯定的回答,原则上显得比给与否定的回答更容易,只不过需要尝试才能找到这个答案.经过或多或少接连不断的寻找,这种题解通常可以找到.在题解不存在的情况下,事情则难办的多.这时,只停留在普通的几何直观上,几乎不可能得到所需要的答案.在这种情况下,可以对问题进行精确的代数分析,以便归结为完成某些代数方程的不可能性证明解答这个问题的不可能性.这样,就要求助于代数!2.1 圆锥曲线自我检测(1)以A,B为焦点的椭圆 (2) 以A,B为焦点的双曲线,A(-2,0)、B(2,0) (3)抛物线,A(1,0) ,l:x= -3 (4) 以A,B为端点的两条射线(5)因为AB,BC,AC成等差数列,所以AB+AC =2BC=12>BC,因此点A在以B、C为焦点的椭圆上运动.课后巩固练习A组1.(1)⑦;(2)②;(3)⑥;(4)⑤ 2.以O,A为焦点的椭圆3.证明略 4.点A在以B,C为焦点的双曲线的右支上B组5.以O1,O2为焦点的双曲线的一支 6.过点A且垂直于l的直线7.8.证明略C组9.证明略10.当m<2时,轨迹不存在;当m=2是,轨迹是以F1F2为端点的线段;当m>2时,轨迹是以F1F2为焦点的椭圆。