题型一
导数与函数的单调性
例1 (2018盐城高三模拟)若对任意实数k,b都有函数y=f(x)+kx+b的图象与直 线y=kx+b相切,则称函数f(x)为“恒切函数”.设函数g(x)=aex-x-pa,a,p∈R.
(1)讨论函数g(x)的单调性;
(2)已知函数g(x)为“恒切函数”. ①求实数p的取值范围;
因为h(x)在(0,+∞)上存在单调递减区间,
1 所以当x∈(0,+∞)时, -ax-2<0有解, x 1 2 即存在x∈(0,+∞),使得a> . 2 - x x 1 2 设G(x)= - (x∈(0,+∞)),所以只要a>G(x)min即可. x2 x
1 -1,所以当x∈(0,+∞)时,G(x) =-1, 而G(x)= min 1 x
x g'(x) g(x) (-∞,1) + ↗ 1 0 极大值 (1,+∞) ↘
1 1 故g(x)max=g(1)= ,所以b> . e e
( x 1)(ae x x) 1 (2)f(x)的定义域为(0,+∞),其导函数为f '(x)= ,当a= 时, f '(x)= 2 x e ( x 1)(e x1 x) 2 , x 1 x x-1 由(1)知 ≤ , 即 e -x≥0,当且仅当x=1时取等号, x e e
1 1 2 1 ( x0 1) + =- x0(x0+2)=- , 4 4 4 1 3 3 3 3 2 1 2, 上递增,r(-2)=0,r = 函数r(x)=- (x+1) + 在 ,故0<m< .综上所 4 4 16 2 2 16 3 述,0≤m< . 16