(完整版)离散型随机变量及其分布列测试题
- 格式:doc
- 大小:451.51 KB
- 文档页数:7
高二理科数学测试题(9-28)1.每次试验的成功率为(01)p p <<,重复进行10次试验,其中前7次都未成功后3次都成功的概率为( )()A 33710(1)C p p - ()B 33310(1)C p p - ()C 37(1)p p - ()D 73(1)p p - 2.投篮测试中,每人投3次,至少投中2次才能通过测试,已知某同学每次投篮投中的概率为0、6,且各次投篮就是否投中相互独立,则该同学通过测试的概率为( )(A)0、648 (B)0、432 (C)0、36(D)0、3123.甲、乙两队参加乒乓球团体比赛,甲队与乙队实力之比为3:2,比赛时均能正常发挥技术水平,则在5局3胜制中,甲打完4局才胜的概率为( )()A 23332()55C ⋅ ()B 22332()()53C ()C 33432()()55C ()D 33421()()33C4.某地区气象台统计,该地区下雨的概率就是154,刮三级以上风的概率为152,既刮风又下雨的概率为101,则在下雨天里,刮风的概率为( )A 、2258B 、21 C 、83D 、435.从4名男生与2名女生中任选3人参加演讲比赛,设随机变量ξ表示所选3人中女生的人数,则P (ξ≤1)等于( ).A 、15B 、25C 、35D 、456.一袋中有5个白球,3个红球,现从袋中往外取球,每次任取一个记下颜色后放回,直到红球出现10次时停止,设停止时共取了ξ次球,则==)12(ξP ( )A 、2101012)85()83(⋅CB 、83)85()83(29911⨯C C 、29911)83()85(⋅CD 、 29911)85()83(⋅C7.袋中有5个球,3个白球,2个黑球,现每次取一个,无放回地抽取两次,第二次抽到白球的概率为( )A 、53 B 、43 C 、21 D 、1038.6位同学参加百米短跑初赛,赛场有6条跑道,已知甲同学排在第一跑道,则乙同学排在第二跑道的概率( )A.52 B 、51 C 、92 D 、 739.一个袋中有9张标有1,2,3,…,9的票,从中依次取两张,则在第一张就是奇数的条件下第二张也就是奇数的概率( )A 、52 B 、51 C 、21 D 、 7310、位于坐标原点的一个质点P 按下述规则移动:质点每次移动一个单位;移动的方向为向上或向右,并且向上向右的概率都就是21,质点P 移动5次后位于点(2,3)的概率就是( )A 、3)21(B 、525)21(C C 、335)21(CD 、53525)21(C C11、若样本数据1x ,2x ,⋅⋅⋅,10x 的标准差为8,则数据121x -,221x -,⋅⋅⋅,1021x -的标准差为( )(A)8 (B)15 (C)16 (D)3212、设某项试验的成功率就是失败率的2倍,用随机变量ξ描述一次试验的成功次数,则)0(=ξP 等于( )A 、0B 、 21C 、 31D 、32解答题13.种植某种树苗,成活率为90%,现在种植这种树苗5棵,试求: ⑴全部成活的概率; ⑵全部死亡的概率; ⑶恰好成活3棵的概率; ⑷至少成活4棵的概率14.某高中共派出足球、排球、篮球三个球队参加市学校运动会,它们获得冠军的概率分别为12,13,23、(1)求该高中获得冠军个数X 的分布列;(2)若球队获得冠军,则给其所在学校加5分,否则加2分,求该高中得分η的分布列.15、实力相等的甲、乙两队参加乒乓球团体比赛,规定5局3胜制(即5局内谁先赢3局就算胜出并停止比赛).(1)试分别求甲打完3局、4局、5局才能取胜的概率; (2)求按比赛规则甲获胜的概率.16、某商场举行有奖促销活动,顾客购买一定金额商品后即可抽奖,每次抽奖都从装有4个红球、6个白球的甲箱与装有5个红球、5个白球的乙箱中,各随机摸出1个球,在摸出的2个球中,若都就是红球,则获一等奖;若只有1个红球,则获二等奖;若没有红球,则不获奖、(1)求顾客抽奖1次能获奖的概率;(2)若某顾客有3次抽奖机会,记该顾客在3次抽奖中获一等奖的次数为X ,求X 的分布列、1--5:CAACD 6-12: BABCB CC13. ⑴5550.90.59049C =; ⑵5550.10.00001C =;⑶()3325530.90.10.0729P C =⋅=; ⑷()()55450.91854P P P =+=14.解 (1)∵X 的可能取值为0,1,2,3,取相应值的概率分别为 ∴X 的分布列为(2)∵得分η=5X +∵X 的可能取值为0,1,2,3、∴η的可能取值为6,9,12,15,取相应值的概率分别为 P (η=6)=P (X =0)=19,P (η=9)=P (X =1)=718, P (η=12)=P (X =2)=718,P (η=15)=P (X =3)=19、∴得分η的分布列为15.解:甲、乙两队实力相等,所以每局比赛甲获胜的概率为2,乙获胜的概率为12. 记事件A =“甲打完3局才能取胜”,记事件B =“甲打完4局才能取胜”, 记事件C =“甲打完5局才能取胜”.①甲打完3局取胜,相当于进行3次独立重复试验,且每局比赛甲均取胜∴甲打完3局取胜的概率为33311()()28P A C ==. ②甲打完4局才能取胜,相当于进行4次独立重复试验,且甲第4局比赛取胜,前3局为2胜1负∴甲打完4局才能取胜的概率为2231113()()22216P B C =⨯⨯⨯=. ③甲打完5局才能取胜,相当于进行5次独立重复试验,且甲第5局比赛取胜,前4局恰好2胜2负∴甲打完5局才能取胜的概率为22241113()()()22216P C C =⨯⨯⨯=. (2)事件D =“按比赛规则甲获胜”,则D A B C =++, 又因为事件A 、B 、C 彼此互斥,故1331()()()()()816162P D P A B C P A P B P C =++=++=++=. 16、(1):107。
离散型随机变量及其分布列一、离散型随机变量随着试验结果变化而变化的变量称为随机变量,常用字母X 、Y 、ξ、η …表示.所有取值可以一一列出的随机变量称为离散型随机变量.二、离散型随机变量的分布列一般地,若离散型随机变量X 可能取的不同值为x 1,x 2, …x i ,…,x n ,X 取每一个值x i (i =1,2, … ,n)的概率P(X =x i )=p i ,则表称为离散型随机变量X 的概率分布列,简称为X 的分布列.有时为了表达简单,1.i P ≥0,i =1,2,…,n ; 211n i i p ==∑.四、常见离散型随机变量的分布列p =P(X =1)为成功概率.2.超几何分布列一般地,在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则事件{X =k}发生的概率为(),0,1,2,k n k M N M n C C P X k k m C --=== .其中m =min{M ,n},且n≤N ,M≤N ,n ,M ,N ∈N*.称分布列例1:设随机变量X A.1 B.1 C.23 D.12X ,那么X =4表示的随机试验结果是( )A .2颗都是4点B .1颗是1点,另一颗是3点C .2颗都是2点D .1颗是1点,另1颗是3点,或者2颗都是2点解:X =4表示的随机试验结果是1颗1点,另1颗3点或者两颗都是2点.例3:若随机变量X 的分布列P (x =i )=i 2a(i =1、2、3),则P (x =2)= ( ) A.1 B.1 C.1 D.1 =0.3,那么n =________.2个白球的袋中随机取出2个球,设其中有X 个红球,则随机变量X 的概率分布解:P (X =0)=1C 25=110,P (X =1)=C 3C 2C 25=35,P (X =2)=C 3C 25=310. 1.对随机变量的理解(1)随机变量具有如下特点:其一,在试验之前不能断言随机变量取什么值,即具有随机性;其二,在大量重复试验中能按一定统计规律取实数值的变量,即存在统计规律性.(2)由离散型随机变量分布列的概念可知,离散型随机变量的各个可能值表示的事件是彼此互斥的.因此, 离散型随机变量在某一范围内取值的概率等于它取这个范围内各个值的概率之和.2.分布列正误的检验方法对于离散型随机变量的分布列,要注意利用它的两条性质检验所列分布列是否正确,如果求出的离散型随机变量的分布列不满足这两条性质,就说明计算过程中存在错误;反之,也不能说明所得分布列一定是正确的.但要掌握利用这两条性质判断计算过程是否存在错误的方法.例6:设X则q 等于 A .1 B .1±2 C .1-2 D .1+2则k 的值为 A.12B .1C .2D .3若P (ξ2<x )=1112,则实数x 的取值范围是__________.i i =1,2…. 2.P 1+P 2+…+P n =1.其主要作用是用来判断离散型随机变量的分布列的正确性,或者用来计算随机变量取某些值的概率. 例9:某饮料公司招聘了一名员工,现对其进行一项测试,以便确定工资级别.公司准备了两种不同的饮料共8杯,其颜色完全相同,并且其中4杯为A 饮料,另外4杯为B 饮料,公司要求此员工一一品尝后,从8杯饮料中选出4杯A 饮料.若4杯都选对,则月工资定为3 500元;若4杯选对3杯,则月工资定为2 800元;否则月工资定为2 100元.令X 表示此人选对A 饮料的杯数.假设此人对A 和B 两种饮料没有鉴别能力.求X 的分布列.解:X 的所有可能取值为:0,1,2,3,4,P (X =i )=C i 4C 4-i 4C 4(i =0,1,2,3,4),即例10:1个红球每次胜、负、平的概率相等.已知当这4场比赛结束后,该班胜场多于负场.(1)求该班级胜场多于负场的所有可能的个数和;解:由题意知η可取3,2,1,0即当η=3时,ξ=0.η=2时,ξ=1.η=1时,ξ=2.η=0时,ξ=3.∴η的分布列为η 3 2 1 0P 542 1021 514 121例13:第:31组委会在某学院招募了12名男志愿者和18名女志愿者,将这30名志愿者的身高编成如下茎如图(单位:cm): 若身高在175 cm 以上(包括175 cm)定义为“高个子”,身高在175 cm 以下定义为“非高个子”,且只有“女高个子”才能担任“礼仪小姐”.(1)如果用分层抽样的方法从“高个子”和“非高个子”中抽取5人,再从这5人中选2人,那么至少有1人是“高个子”的概率是多少?(2)若从所有“高个子”中选3名志愿者,用ξ表示所选志愿者中能担任“礼仪解:(1)根据茎叶图,有“高个子”12人,“非高个子”18人,用分层抽样的方法,每个人被抽中的概率是530=16,所以抽中的“高个子”有12×16=2人,“非高个子”有18×16=3人.用事件A 表示“至少有1名‘高个子’被选中”,则它的对立事件A 表示“没有1名‘高个子’被选中”,则P (A )=1-P (A )=1-C 23C 25=1-310=710.因此,至少有1人是“高个子”的概率是710. (2)依题意,ξ的可能取值为0,1,2,3,则P (ξ=0)=C 38C 312=1455,P (ξ=1)=C 14C 28C 312=2855,P (ξ=2)=C 24C 18C 312=1255,P (ξ=3)=C 34C 312=155.因此,ξ的分布列为 ξ 0 1 2 3P 1455 2855 1255 155胜A 、乙胜B 、丙胜C 的概率分别为0.6,0.5,0.5.假设各盘比赛结果相互独立.(1)求红队至少两名队员获胜的概率;(2)用ξ表示红队队员获胜的总盘数,求ξ的分布列和数学期望E(ξ).解:(1)设甲胜A 的事件为D ,乙胜B 的事件为E ,丙胜C 的事件为F ,则D 、E 、F 分别表示甲不胜A 、乙不胜B 、丙不胜C 的事件.因为P (D )=0.6,P (E )=0.5,P (F )=0.5,由对立事件的概率公式知P (D )=0.4,P (E )=0.5,P (F )=0.5红队至少两人获胜的事件有:DE F ,D E F ,D EF ,DEF .由于以上四个事件两两互斥且各盘比赛的结果相互独立,因此红队至少两人获胜的概率为P =P (DE F )+P (D E F )+P (D EF )+P (DEF )=0.6×0.5×0.5+0.6×0.5×0.5+0.4×0.5×0.5+0.6×0.5×0.5=0.55.(2)由题意知ξ可能的取值为0,1,2,3.又由(1)知F 、E 、D 是两两互斥事件,且各盘比赛的结果相互独立, 因此p (ξ=0)=P (DEF )=0.4×0.5×0.5=0.1,P (ξ=1)=P (DE F )+P (DEF )+P (D EF )=0.4×0.5×0.5+0.4×0.5×0.5+0.6×0.5×0.5=0.35,P (ξ=3)=P (DEF )=0.6×0.5×0.5=0.15.由对立事件的概率公式得 P (ξ=2)=1-P (ξ=0)-P (ξ=1)-P (ξ=3)=0.4.所以ξ的分布列为:ξ0 1 2 3 P 0.1 0.35 0.4 0.15 因此E (ξ)=0×0.1+1×0.35+2×0.4+3×0.15=1.6.。
离散型变量强化1.每次试验的成功率为(01)p p <<,重复进行10次试验,其中前7次都未成功后3次都成功的概率为( )()A 33710(1)C p p - ()B 33310(1)C p p - ()C 37(1)p p - ()D 73(1)p p - 2.投篮测试中,每人投3次,至少投中2次才能通过测试,已知某同学每次投篮投中的概率为,且各次投篮是否投中相互独立,则该同学通过测试的概率为( )(A ) (B ) (C ) (D )3.甲、乙两队参加乒乓球团体比赛,甲队与乙队实力之比为3:2,比赛时均能正常发挥技术水平,则在5局3胜制中,甲打完4局才胜的概率为( )()A 23332()55C ⋅ ()B 22332()()53C ()C 33432()()55C ()D 33421()()33C 4.某地区气象台统计,该地区下雨的概率是154,刮三级以上风的概率为152,既刮风又下雨的概率为101,则在下雨天里,刮风的概率为( )A.2258 B.21 C.83 D.43 5.从4名男生和2名女生中任选3人参加演讲比赛,设随机变量ξ表示所选3人中女生的人数,则P (ξ≤1)等于( ).6.一袋中有5个白球,3个红球,现从袋中往外取球,每次任取一个记下颜色后放回,直到红球出现10次时停止,设停止时共取了ξ次球,则==)12(ξP ( ) A.2101012)85()83(⋅C B.83)85()83(29911⨯C C.29911)83()85(⋅C D. 29911)85()83(⋅C 7.袋中有5个球,3个白球,2个黑球,现每次取一个,无放回地抽取两次,第二次抽到白球的概率为( ) A.53 B.43 C.21 D. 1038.6位同学参加百米短跑初赛,赛场有6条跑道,已知甲同学排在第一跑道,则乙同学排在第二跑道的概率( ) A 52 B.51 C.92 D. 73 9.一个袋中有9张标有1,2,3,…,9的票,从中依次取两张,则在第一张是奇数的条件下第二张也是奇数的概率( ) A.52 B.51 C.21 D. 7310.位于坐标原点的一个质点P 按下述规则移动:质点每次移动一个单位;移动的方向为向上或向右,并且向上向右的概率都是21,质点P 移动5次后位于点(2,3)的概率是( )A.3)21( B.525)21(C C.335)21(C D.53525)21(C C 11.若样本数据1x ,2x ,⋅⋅⋅,10x 的标准差为8,则数据121x -,221x -,⋅⋅⋅,1021x -的标准差为( )(A )8 (B )15 (C )16 (D )3212.设某项试验的成功率是失败率的2倍,用随机变量ξ描述一次试验的成功次数,则)0(=ξP 等于( ) B. 21 C. 31 D.32 解答题13.种植某种树苗,成活率为90%,现在种植这种树苗5棵,试求:⑴全部成活的概率; ⑵全部死亡的概率;⑶恰好成活3棵的概率; ⑷至少成活4棵的概率14.某高中共派出足球、排球、篮球三个球队参加市学校运动会,它们获得冠军的概率分别为12,13,23.(1)求该高中获得冠军个数X 的分布列;(2)若球队获得冠军,则给其所在学校加5分,否则加2分,求该高中得分η的分布列.15.实力相等的甲、乙两队参加乒乓球团体比赛,规定5局3胜制(即5局内谁先赢3局就算胜出并停止比赛). 试分别求甲打完3局、4局、5局才能取胜的概率;(2)求按比赛规则甲获胜的概率.16.某商场举行有奖促销活动,顾客购买一定金额商品后即可抽奖,每次抽奖都从装有4个红球、6个白球的甲箱和装有5个红球、5个白球的乙箱中,各随机摸出1个球,在摸出的2个球中,若都是红球,则获一等奖;若只有1个红球,则获二等奖;若没有红球,则不获奖.(1)求顾客抽奖1次能获奖的概率;(2)若某顾客有3次抽奖机会,记该顾客在3次抽奖中获一等奖的次数为X ,求X 的分布列.。
离散型随机变量及其分布列一、离散型随机变量随着试验结果变化而变化的变量称为随机变量,常用字母X 、Y 、ξ、η…表示.所有取值可以一一列出的随机变量称为离散型随机变量.二、离散型随机变量的分布列一般地,若离散型随机变量X 可能取的不同值为x 1,x 2,…x i ,…,x n ,X 取每一个值x i (i =1,2,…,n)的概率P(X =x i )=p i ,则表称为离散型随机变量X 的概率分布列,简称为X 的分布列.有时为了表达简单,也用等式P(X =x i )=pi ,i =1,2,…,n 表示X 的分布列.X x 1x 2…x i …x nPp 1P 2…p i …p n三、离散型随机变量分布列的性质:1.i P ≥0,i =1,2,…,n ;211ni i p ==∑.四、常见离散型随机变量的分布列1.两点分布X 01P 1-p p如果随机变量X 的分布列为两点分布列,就称X 服从两点分布,而称p =P(X =1)为成功概率.2.超几何分布列一般地,在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则事件{X =k}发生的概率为(),0,1,2,k n k M N MnNC C P X k k m C --=== .其中m =min{M ,n},且n≤N ,M≤N ,n ,M ,N ∈N*.称分布列X 01…mP00n M N Mn NC C C --11n M N Mn NC C C --…m n m M N Mn NC C C --为超几何分布列.如果随机变量X 的分布列为超几何分布列,则称随机变量X 服从超几何分布.例1:设随机变量X 的分布列如下:则p 为()X 1234P 161316pA.16B.13C.23D.12解:由16+13+16+p =1,∴p =13.2.抛掷2颗骰子,所得点数之和记为X ,那么X =4表示的随机试验结果是()A .2颗都是4点B .1颗是1点,另一颗是3点C .2颗都是2点D .1颗是1点,另1颗是3点,或者2颗都是2点解:X =4表示的随机试验结果是1颗1点,另1颗3点或者两颗都是2点.例3:若随机变量X 的分布列P (x =i )=i2a(i =1、2、3),则P (x =2)=()A.19B.16C.13D.14解:由12a +22a +32a =62a =1,得a =3.∴P (x =2)=22×3=13.=0.3,那么n =________.解:1n×3=0.3,∴n =10.例5:从装有3个红球,2个白球的袋中随机取出2个球,设其中有X 个红球,则随机变量X 的概率分布为X 012P解:P (X =0)=1C 25=110,P (X =1)=C 13C 12C 25=35,P (X =2)=C 23C 25=310.1.对随机变量的理解(1)随机变量具有如下特点:其一,在试验之前不能断言随机变量取什么值,即具有随机性;其二,在大量重复试验中能按一定统计规律取实数值的变量,即存在统计规律性.(2)由离散型随机变量分布列的概念可知,离散型随机变量的各个可能值表示的事件是彼此互斥的.因此,离散型随机变量在某一范围内取值的概率等于它取这个范围内各个值的概率之和.2.分布列正误的检验方法对于离散型随机变量的分布列,要注意利用它的两条性质检验所列分布列是否正确,如果求出的离散型随机变量的分布列不满足这两条性质,就说明计算过程中存在错误;反之,也不能说明所得分布列一定是正确的.但要掌握利用这两条性质判断计算过程是否存在错误的方法.例6:设X 是一个离散型随机变量,其分布列为:X -101P 121-2q q 2则q 等于()A .1B .1±22C .1-22D .1+22解:由分布列的性质知1-2q ≥0,q 2≥0,12+1-2q +q 2=1,∴q =1-22.ξ123…nP k n k n k n …k n则k 的值为()A.12B .1C .2D .3解:由k n +k n +…+kn=1,∴k =1.ξ-2-10123P112312412112212112若P (ξ2<x )=1112,则实数x 的取值范围是__________.解:由P (ξ2<x )=1112且结合分布列得4<x ≤9.i i =1,2….2.P 1+P 2+…+P n =1.其主要作用是用来判断离散型随机变量的分布列的正确性,或者用来计算随机变量取某些值的概率.例9:某饮料公司招聘了一名员工,现对其进行一项测试,以便确定工资级别.公司准备了两种不同的饮料共8杯,其颜色完全相同,并且其中4杯为A 饮料,另外4杯为B 饮料,公司要求此员工一一品尝后,从8杯饮料中选出4杯A 饮料.若4杯都选对,则月工资定为3500元;若4杯选对3杯,则月工资定为2800元;否则月工资定为2100元.令X 表示此人选对A 饮料的杯数.假设此人对A 和B 两种饮料没有鉴别能力.求X 的分布列.解:X 的所有可能取值为:0,1,2,3,4,P (X =i )=C i 4C 4-i4C 48(i =0,1,2,3,4),即X 01234P170167036701670170例10:袋中有3个白球,3个红球和5个黑球.从中抽取3个球,若取得1个白球得1分,取得1个红球解:得分ξ的取值为-3,-2,-1,0,1,2,3.ξ=-3时表示取得3个球均为红球,∴P (ξ=-3)=C 33C 311=1165.ξ=-2时表示取得2个红球和1个黑球,∴P (ξ=-2)=C 23C 15C 311=111.ξ=-1时表示取得2个红球和1个白球,或1个红球和2个黑球.∴P (ξ=-1)=C 23C 13+C 13C 25C 311=1355.ξ=0时表示取得3个黑球或1红、1黑、1白,∴P (ξ=0)=C 35+C 13C 13C 15C 311=13.ξ=1时表示取得1个白球和2个黑球或2个白球和1个红球,∴P (ξ=1)=C 13C 25+C 23C 13C 311=1355.ξ=2时表示取得2个白球和1个黑球,∴P (ξ=2)=C 23C 15C 311=111.ξ=3时表示取得3个白球,∴P (ξ=3)=C 33C 311=1165.∴所求概率分布列为:ξ-3-2-10123P116511113551313551111165例11:在学校组织的足球比赛中,某班要与其他4个班级各赛一场,在这4场比赛的任意一场中,此班级每次胜、负、平的概率相等.已知当这4场比赛结束后,该班胜场多于负场.(1)求该班级胜场多于负场的所有可能的个数和;(2)若胜场次数为X ,求X 的分布列.解:(1)若胜一场,则其余为平,共有C 14=4种情况;若胜两场,则其余两场为一负一平或两平,共有C 24C 12+C 24=18种情况;若胜三场,则其余一场为负或平,共有C 34×2=8种情况;若胜四场,则只有一种情况.综上,共有31种情况.(2)X 的可能取值为1,2,3,4,P (X =1)=431,P (X =2)=1831,P (X =3)=831,P (X =4)=131,所以X 的分布列为X 1234P4311831831131解:(1)所选3人中恰有一名男生的概率P =C 25C 14C 39=1021.(2)ξ的可能取值为0,1,2,3.P (ξ=0)=C 35C 39=542,P (ξ=1)=C 25C 14C 39=1021,P (ξ=2)=C 15C 24C 39=514,P (ξ=3)=C 34C 39=121.∴ξ的分布列为ξ0123P5421021514121解:由题意知η可取3,2,1,0即当η=3时,ξ=0.η=2时,ξ=1.η=1时,ξ=2.η=0时,ξ=3.∴η的分布列为η3210P5421021514121例13:第:31届奥林匹克夏季运动会于2016年8月5日至21日在里约热内卢举行,为了搞好接待工作,组委会在某学院招募了12名男志愿者和18名女志愿者,将这30名志愿者的身高编成如下茎如图(单位:cm):若身高在175cm 以上(包括175cm)定义为“高个子”,身高在175cm 以下定义为“非高个子”,且只有“女高个子”才能担任“礼仪小姐”.(1)如果用分层抽样的方法从“高个子”和“非高个子”中抽取5人,再从这5人中选2人,那么至少有1人是“高个子”的概率是多少?(2)若从所有“高个子”中选3名志愿者,用ξ表示所选志愿者中能担任“礼仪解:(1)根据茎叶图,有“高个子”12人,“非高个子”18人,用分层抽样的方法,每个人被抽中的概率是530=16,所以抽中的“高个子”有12×16=2人,“非高个子”有18×16=3人.用事件A 表示“至少有1名‘高个子’被选中”,则它的对立事件A 表示“没有1名‘高个子’被选中”,则P (A )=1-P (A )=1-C 23C 25=1-310=710.因此,至少有1人是“高个子”的概率是710.(2)依题意,ξ的可能取值为0,1,2,3,则P (ξ=0)=C 38C 312=1455,P (ξ=1)=C 14C 28C 312=2855,P (ξ=2)=C 24C 18C 312=1255,P (ξ=3)=C 34C 312=155.因此,ξ的分布列为ξ0123P145528551255155胜A 、乙胜B 、丙胜C 的概率分别为0.6,0.5,0.5.假设各盘比赛结果相互独立.(1)求红队至少两名队员获胜的概率;(2)用ξ表示红队队员获胜的总盘数,求ξ的分布列和数学期望E(ξ).解:(1)设甲胜A 的事件为D ,乙胜B 的事件为E ,丙胜C 的事件为F ,则D 、E 、F 分别表示甲不胜A 、乙不胜B 、丙不胜C 的事件.因为P (D )=0.6,P (E )=0.5,P (F )=0.5,由对立事件的概率公式知P (D )=0.4,P (E )=0.5,P (F )=0.5红队至少两人获胜的事件有:DE F ,D E F ,D EF ,DEF .由于以上四个事件两两互斥且各盘比赛的结果相互独立,因此红队至少两人获胜的概率为P =P (DE F )+P (D E F )+P (D EF )+P (DEF )=0.6×0.5×0.5+0.6×0.5×0.5+0.4×0.5×0.5+0.6×0.5×0.5=0.55.(2)由题意知ξ可能的取值为0,1,2,3.又由(1)知F 、E 、D 是两两互斥事件,且各盘比赛的结果相互独立,因此p (ξ=0)=P (DEF )=0.4×0.5×0.5=0.1,P (ξ=1)=P (DE F )+P (DEF )+P (D EF )=0.4×0.5×0.5+0.4×0.5×0.5+0.6×0.5×0.5=0.35,P (ξ=3)=P (DEF )=0.6×0.5×0.5=0.15.由对立事件的概率公式得P (ξ=2)=1-P (ξ=0)-P (ξ=1)-P (ξ=3)=0.4.所以ξ的分布列为:ξ0123P0.10.350.40.15因此E (ξ)=0×0.1+1×0.35+2×0.4+3×0.15=1.6.离散型随机变量及其分布列训练题1一、选择题1.下列4个表格中,可以作为离散型随机变量分布列的一个是()A. B.C.D.2.袋中装有10个红球、5个黑球.每次随机抽取1个球后,若取得黑球则另换1个红球放回袋中,直到取到红球为止.若抽取的次数为ξ,则表示“放回5个红球”事件的是()A .ξ=4B .ξ=5C .ξ=6D .ξ≤53.离散型随机变量X 的概率分布规律为P (X =n )=a n (n +1)(n =1,2,3,4),其中a 是常数,则P (12<X <52)的值为()A.23B.34C.45D.564.一盒中有12个乒乓球,其中9个新的,3个旧的,从盒中任取3个球来用,用完后装回盒中,此时盒中旧球个数X 是一个随机变量,其分布列为P (X ),则P (X =4)的值为()A.1220 B.2755 C.27220 D.21255.一只袋内装有m 个白球,n -m 个黑球,连续不放回地从袋中取球,直到取出黑球为止,设此时取出了ξ个白球,下列概率等于(n -m )A 2mA 3n的是()A .P (ξ=3)B .P (ξ≥2)C .P (ξ≤3)D .P (ξ=2)二、填空题6.随机变量X 的分布列如下:X -101P a b c 其中a ,b ,c 成等差数列,则P (|X |=1)=______.7.设随机变量X 只能取5、6、7、…、16这12个值,且取每个值的概率相同,则P (X >8)=________,P (6<X ≤14)=________.三、解答题8.口袋中有n (n ∈N *)个白球,3个红球,依次从口袋中任取一球,如果取到红球,那么继续取球,且取出的红球不放回;如果取到白球,就停止取球.记取球的次数为X .若P (X =2)=730,求:(1)n 的值;(2)X 的分布列.X 012P0.30.40.5X 012P0.3-0.10.8X1234P0.20.50.3X 012P1727379.一项试验有两套方案,每套方案试验成功的概率都是23,试验不成功的概率都是13.甲随机地从两套方案中选取一套进行这项试验,共试验了3次,且每次试验相互独立.(1)求3次试验都选择了同一套方案且都试验成功的概率;(2)记3次试验中,都选择了第一套方案并试验成功的次数为X ,求X 的分布列.10.在某射击比赛中,比赛规则如下:每位选手最多射击3次,射击过程中若击中目标,方可进行下一次射击,否则停止射击;同时规定第i (i =1,2,3)次射击时击中目标得4-i 分,否则该次射击得0分.已知选手甲每次射击击中目标的概率为0.8,且其各次射击结果互不影响.(1)求甲恰好射击两次的概率;(2)设选手甲停止射击时的得分总数为ξ,求随机变量ξ的分布列.1.C2.C3.解析:由(11×2+12×3+13×4+14×5)×a =1.知45a =1∴a =54.故P (12<X <52)=P (1)+P (2)=12×54+16×54=56.答案:D4.解析:由题意取出的3个球必为2个旧球1个新球,故P (X =4)=C 23C 19C 312=27220.答案:C5.解析:由超几何分布知P (ξ=2)=n -m A 2mA 3n答案:D6.解析:∵a ,b ,c 成等差数列,∴2b =a +c .又a +b +c =1,∴b =13,∴P (|X |=1)=a +c =23.答案:237.解析:P (X >8)=23,P (6<X ≤14)=23.答案:23238.解:(1)由P (X =2)=730知C 13C 1n +3×C 1n C 1n +2=730,∴90n =7(n +2)(n +3).∴n =7.(2)X =1,2,3,4且P (X =1)=710,P (X =2)=730,P (X =3)=7120,P (X =4)=1120.∴X 的分布列为X 1234P710730712011209.解:(1)记事件“一次试验中,选择第i 套方案并试验成功”为A i ,i =1,2,则P (A i )=1C 12×23=13.3次试验选择了同一套方案且都试验成功的概率P =P (A 1·A 1·A 1+A 2·A 2·A 2)=313⎛⎫ ⎪⎝⎭+313⎛⎫ ⎪⎝⎭=227.(2)由题意知X 的可能取值为0,1,2,3,则X ~B (3,23),P (X =k )=C k 3313k-⎛⎫ ⎪⎝⎭23k⎛⎫⎪⎝⎭,k =0,1,2,3.X 的分布列为X 0123P127294982710.解:(1)记“选手甲第i 次击中目标的事件”为A i (i =1,2,3),则P (A i )=0.8,P (A i )=0.2,依题意可知:A i 与A j (i ,j =1,2,3,i ≠j )相互独立,所求的概率为P (A 1A 2)=P (A 1)P (A 2)=0.8×0.2=0.16.(2)ξ的可能取值为0,3,5,6.P (ξ=0)=0.2,P (ξ=3)=0.8×0.2=0.16,P (ξ=5)=0.82×0.2=0.128,P (ξ=6)=0.83=0.512.所以ξ的分布列为:ξ0356P 0.20.160.1280.512【参考答案】离散型随机变量及其分布列训练题2一.选择题(共15小题)1.设随机变量ξ的分布列由,则a 的值为()A .1B .C .D .2.设随机变量X 等可能取值1,2,3,…,n ,如果P (X <4)=0.3,那么()A .n=3B .n=4C .n=10D .n=93.下列表中能成为随机变量ξ的分布列的是()A .B .C .D .4.已知8件产品中有2件次品,从中任取3件,取到次品的件数为随机变量,用ξ表示,那么ξ的取值()A .0,1B .1,2C .0,1,2D .0,1,2,35.设离散型随机变量X 的概率分布如表:则随机变量X 的数学期望为()A .B .C .D .6.设随机变量X 的概率分布列为X 1234P m则P (|X ﹣3|=1)=()A .B .C .D .7.设随机变量X 的概率分布如右下,则P (X≥0)=()X ﹣101P p A .B .C .D .8.随机变量ξ的分布列为P (ξ=k )=,k=1,2,3,其中c 为常数,则P (ξ≥2)等于()A .B .C .D .9.两名学生参加考试,随机变量x 代表通过的学生数,其分布列为x 012p那么这两人通过考试的概率最小值为()A .B .C .D .10.一盒中有12个乒乓球,其中9个新的,3个旧的,从盒子中任取3个球来用,用完后装回盒中,此时盒中旧球个数X 是一个随机变量,其分布列为P (X ),则P (X=4)的值为()A .B .C .D .ζ﹣101P 0.30.40.4ζ123P 0.40.7﹣0.1ζ﹣101P0.30.40.3ζ123P0.30.40.4X123P ip11.6件产品中有2件次品与4件正品,从中任取2件,则下列可作为随机变量的是()A.取到产品的件数B.取到正品的件数C.取到正品的概率D.取到次品的概率12.已知随机变量ξ~B(9,)则使P(ξ=k)取得最大值的k值为()A.2B.3C.4D.513.设随机变量的ξ的分布列为P(ξ=k)=(k=1,2,3,4,5,6),则P(1.5<ξ<3.5)=()A.B.C.D.14.已知随机变量X的分布列为:P(X=k)=,k=1,2,…,则P(2<X≤4)等于()A.B.C.D.15.袋中共放有6个仅颜色不同的小球,其中3个红球,3个白球,每次随机任取1个球,共取2次,则下列不可作为随机变量的是()A.取到红球的次数B.取到白球的次数C.2次取到的红球总数D.取球的总次数二.填空题(共5小题)16.设ξ是一个离散型随机变量,其概率分布列如下:ξ﹣101P0.5q2则q=.17.设随机变量X的分布列为P(X=i)=,i=1,2,3,则P(X=2)=.18.随机变量X的分布列为X x1x2x3P p1p2p3若p1,p2,p3成等差数列,则公差d的取值范围是.19.设随机变量X的概率分布为P(X=2k)=ak(a为常数,k=1,2,3,4,5),则P(X>6)=.20.(2014•嘉定区校级模拟)己知A、B两盒中都有红球、白球,且球的形状、大小都相同,盒子A中有m 个红球与10﹣m个白球,盒子B中有10﹣m个红球与m个白球(0<m<10).分别从A、B中各取一个球,ξ表示红球的个数,表中表示的是随机变量ξ的分布列则当m为时,D(ξ)取到最小值.ξ012P?三.解答题(共8小题)21.M公司从某大学招收毕业生,经过综合测试,录用了14名男生和6名女生,这20名毕业生的测试成绩如茎叶图所示(单位:分),公司规定:成绩在180分以上者到“甲部门”工作;180分以下者到“乙部门”工作.另外只有成绩高于180分的男生才能担任“助理工作”.(Ⅰ)如果用分层抽样的方法从“甲部分”人选和“乙部分”人选中选取8人,再从这8人中选3人,那么至少有一人是“甲部门”人选的概率是多少?(Ⅱ)若从所有“甲部门”人选中随机选3人,用X表示所选人员中能担任“助理工作”的人数,写出X的分布列,并求出X的数学期望.22.某校参加高一年级期中考试的学生中随机抽出60名学生,将其数学成绩分成六段[40,50)、[50,60)、…、[90,100]后得到如图部分频率分布直方图,观察图形的信息,回答下列问题:(1)求分数在[70,80)内的频率,并补全这个频率分布直方图;(2)统计方法中,同一组数据常用该组区间的中点值作为代表,据此估计本次考试的平均分;(3)若从60名学生中随抽取2人,抽到的学生成绩在[40,60)记0分,在[60,80)记1分,在[80,100]记2分,用ξ表示抽取结束后的总记分,求ξ的分布列和数学期望.23.2013年2月20日,针对房价过高,国务院常务会议确定五条措施(简称“国五条”).为此,记者对某城市的工薪阶层关于“国五条”态度进行了调查,随机抽取了60人,作出了他们的月收入的频率分布直方图(如图),同时得到了他们的月收入情况与“国五条”赞成人数统计表(如表):(Ⅰ)试根据频率分布直方图估计这60人的平均月收入;(Ⅱ)若从月收入(单位:百元)在[15,25),[25,35)的被调查者中各随机选取3人进行追踪调查,记选中的6人中不赞成“国五条”的人数为X ,求随机变量X 的分布列及数学期望.24.在某校高三学生的数学校本课程选课过程中,规定每位同学只能选一个科目.已知某班第一小组与第二小组各有六位同学选择科目甲或科目乙,情况如下表:现从第一小组、第二小组中各任选2人分析选课情况.(1)求选出的4人均选科目乙的概率;(2)设ξ为选出的4个人中选科目甲的人数,求ξ的分布列和数学期望.月收入(百元)赞成人数[15,25)8[25,35)7[35,45)10[45,55)6[55,65)2[65,75)1科目甲科目乙总计第一小组156第二小组246总计391225.某游乐场有A、B两种闯关游戏,甲、乙、丙、丁四人参加,其中甲乙两人各自独立进行游戏A,丙丁两人各自独立进行游戏B.已知甲、乙两人各自闯关成功的概率均为,丙、丁两人各自闯关成功的概率均为.(1)求游戏A被闯关成功的人数多于游戏B被闯关成功的人数的概率;(2)记游戏A、B被闯关总人数为ξ,求ξ的分布列和期望.26.某超市在节日期间进行有奖促销,凡在该超市购物满300元的顾客,将获得一次摸奖机会,规则如下:奖盒中放有除颜色外完全相同的1个红球,1个黄球,1个白球和1个黑球.顾客不放回的每次摸出1个球,若摸到黑球则停止摸奖,否则就要将奖盒中的球全部摸出才停止.规定摸到红球奖励10元,摸到白球或黄球奖励5元,摸到黑球不奖励.(Ⅰ)求1名顾客摸球3次停止摸奖的概率;(Ⅱ)记X为1名顾客摸奖获得的奖金数额,求随机变量X的分布列和数学期望.一.选择题(共15小题)1.D;2.C;3.C;4.C;5.C;6.B;7.C;8.C;9.B;10.C;11.B;12.A;13.A;14.A;15.D;二.填空题(共5小题)16.;17.;18.[-,];19.;20.1或9;三.解答题(共8小题)21.解:(I)用分层抽样的方法,每个人被抽中的概率为=,根据茎叶图,有“甲部门”人选10人,“乙部门”人选10人,所以选中的“甲部门”人选有10×=4人,“乙部门”人选有10×=4人,用事件A表示“至少有一名甲部门人被选中”,则它的对立事件表示“没有一名甲部门人被选中”,则P(A)=1﹣P()=1﹣=1﹣=.因此,至少有一人是“甲部门”人选的概率是;(Ⅱ)依据题意,所选毕业生中能担任“助理工作”的人数X的取值分别为0,1,2,3,P(X=0)==,P(X=1)==,P(X=2)==,P(X=3)==.因此,X的分布列如下:所以X的数学期望EX=0×+1×+2×+3×=.22.解:(1)设分数在[70,80)内的频率为x,根据频率分布直方图,有(0.01+0.015×2+0.025+0.005)×10+x=1,可得x=0.3,所以频率分布直方图如图所示(2)平均分为=45×0.1+55×0.15+65×0.15+75×0.3+85×0.25+95×0.05=71(3)学生成绩在[40,60)的有0.25×60=15人,在[60,80)的有0.45×60=27人,在[80,100)的有0.3×60=18人,ξ的可能取值是0,1,2,3,4则,,,,所以ξ的分布列为:∴23.解:(Ⅰ)这60人的月平均收入为(20×0.015+30×0.015+40×0.025+0.02×50+60×0.015+70×0.01)×10=43.5(百元)(Ⅱ)根据频率分布直方图可知[15,25)的人数为0.015×10×60=9人,其中不赞成的只有1人;[25,35)的人数为0.015×10×60=9人,其中不赞成的有2人.则X的所有取值可能为0,1,2,3.,,P (X=2)=+,.∴随机变量X 的分布列为∴E (X )==1.24.解:(1)设“从第一小组选出的2人选科目乙”为事件A ,“从第二小组选出的2人选科目乙”为事件B ,由于事件A 、B 相互独立,且P (A )=,P (B )=,所以选出的4人均选科目乙的概率为:P (A •B )=P (A )•P (B )=;(2)ξ可能的取值为0,1,2,3,则P (ξ=0)=,P (ξ=1)=+=,P (ξ=3)==,P (ξ=2)=1﹣P (ξ=0)﹣P (ξ=1)﹣P (ξ=3)=,ξ的分布列为:所以ξ的数学期望为:0×+1×+2×+3×=1.25.解:(1).(2)ξ可取0,1,2,3,4,P (ξ=0)=(1﹣)2(1﹣)2=;P (ξ=1)=()(1﹣)()2+(1﹣)2=;P (ξ=2)=++=;P (ξ=3)==;P (ξ=4)==.∴ξ的分布列为:ξ01234PE ξ=0×+1×+2×+3×+4×=.26.(Ⅰ)解:设“1名顾客摸球3次停止摸奖”为事件A ,则共有基本事件:1+++=16个,则A 事件包含基本事件的个数为=6个,则P (A )==,故1名顾客摸球3次停止摸奖的概率为,(Ⅱ)解:随机变量X 的所有取值为0,5,10,15,20.,,,,.所以,随机变量X 的分布列为:X 0123P (X )X 05101520P。
离散型随机变量的分布列专项测试题1.(2015·常熟二模)已知离散型随机变量X 的分布列为X 1 2 3 P35310110则X 的数学期望E (X )=( )A.32 B .2 C.52 D .3思路分析:利用公式n n p x p x p X E +++= 2211x )(求解即可。
解析:E(X)=1×35+2×310+3×110=32.选A小结:n n p x p x p X E +++= 2211x )(为随机变量X 的均值或数学期望,它反映了离散型随机变量取值的平均水平.2.同时抛掷两枚质地均匀的硬币,随机变量ξ=1表示结果中有正面向上,ξ=0表示结果中没有正面向上,则E (ξ)=( )A.14 B .12 C.34D .1 思路分析:同时抛掷两枚质地均匀的硬币会出现四种等可能的结果:正正,正反,反正,反反,其中没有正面向上的有一种结果所以概率为14,则有正面向上的概率为34,写出分布列利用公式求期望。
解析:∵P (ξ=0)=14,P (ξ=1)=34, ∴E (ξ)=0×14+1×34=34.答案:C小结:正确理解随机变量表示的意义,搞清随机变量每个取值对应的随机事件和每个随机事件所包含的各种情形并求概率,熟练掌握期望公式。
3.(2015·浙江联考)甲、乙两人独立地从六门选修课程中任选三门进行学习,记两人所选课程相同的门数为ξ,则Eξ为( )A .1B .1.5C .2D .2.5思路分析:ξ可取0,1,2,3。
需注意ξ=0表示所选课程都不相同,为平均分组然后排序的问题。
另外ξ=2所包含的情况较多,可以用间接法。
解析:ξ可取0,1,2,3,P (ξ=0)=C 36C 36C 36=120,P (ξ=1)=C 16C 25C 23C 36C 36=920,P (ξ=3)=C 36C 36C 36=120,P (ξ=2)=920,故Eξ=0×120+1×920+2×920+3×120=1.5.答案:B小结:平均分组问题是排列组合的难点,经常与分布列综合考察,需要认真分析是否有顺序。
离散型随机变量综合测试题(附答案)选修2-3 2.1.1 离散型随机变量一、选择题 1.①某机场候机室中一天的旅客数量X;②某寻呼台一天内收到的寻呼次数X;③某篮球下降过程中离地面的距离X;④某立交桥一天经过的车辆数X.其中不是离散型随机变量的是( ) A.①中的X B.②中的X C.③中的X D.④中的X [答案] C [解析] ①,②,④中的随机变量X可能取的值,我们都可以按一定次序一一列出,因此,它们都是离散型随机变量;③中的X可以取某一区间内的一切值,无法按一定次序一一列出,故③中的X不是离散型随机变量. 2.一个袋子中有质量相等的红,黄,绿,白四种小球各若干个,一次倒出三个小球,下列变量是离散型随机变量的是( ) A.小球滚出的最大距离 B.倒出小球所需的时间C.倒出的三个小球的质量之和 D.倒出的三个小球的颜色的种数[答案] D [解析] A小球滚出的最大距离不是一个随机变量,因为不能明确滚动的范围;B倒出小球所需的时间不是一个随机变量,因为不能明确所需时间的范围;C三个小球的质量之和是一个定值,可以预见,但结果只有一种,不是随机变量,就更不是离散型随机变量;D颜色的种数是一个离散型随机变量. 3.抛掷两枚骰子,记第一枚骰子掷出的点数与第二枚骰子掷出的点数之差为ξ,则“ξ>4”表示的试验结果是( ) A.第一枚6点,第二枚2点B.第一枚5点,第二枚1点 C.第一枚2点,第二枚6点 D.第一枚6点,第二枚1点 [答案] D [解析] 只有D中的点数差为6-1=5>4,其余均不是,应选D. 4.设某项试验的成功率是失败率的2倍,用随机变量ξ描述1次试验的成功次数,则ξ的值可以是( ) A.2 B.2或1 C.1或0 D.2或1或0 [答案] C[解析] 这里“成功率是失败率的2倍”是干扰条件,对1次试验的成功次数没有影响,故ξ可能取值有两种0,1,故选C. 5.下列变量中,不是离散型随机变量的是( ) A.从2010张已编号的卡片(从1号到2010号)中任取一张,被取出的号数ξ B.连续不断射击,首次命中目标所需要的射击次数η C.某工厂加工的某种钢管内径与规定的内径尺寸之差ξ1 D.从2010张已编号的卡片(从1号到2010号)中任取2张,被取出的卡片的号数之和η1 [答案] C [解析] 离散型随机变量的取值能够一一列出,故A,B,D都是离散型随机变量,而C不是离散型随机变量,所以答案选C. 6.给出下列四个命题:①15秒内,通过某十字路口的汽车的辆数是随机变量;②在一段时间内,候车室内候车的旅客人数是随机变量;③一条河流每年的最大流量是随机变量;④一个剧场共有三个出口,散场后从某一出口退场的人数是随机变量.其中正确命题的个数是( ) A.1 B.2 C.3 D.4 [答案] D [解析] 由随机变量的概念知四个命题都正确,故选D. 7.随机变量X是某城市1天之中发生的火警次数,随机变量Y是某城市1天之内的温度.随机变量ξ是某火车站1小时内的旅客流动人数.这三个随机变量中不是离散型随机变量的是( ) A.只有X和ξB.只有Y C.只有Y和ξ D.只有ξ [答案] B [解析] 某城市1天之内的温度不能一一列举,故不是离散型随机变量,故选B. 8.①某电话亭内的一部电话1小时内使用的次数记为X;②某人射击2次,击中目标的环数之和记为X;③测量一批电阻,阻值在950Ω~1200Ω之间;④一个在数轴上随机运动的质点,它在数轴上的位置记为X. 其中是离散型随机变量的是( ) A.①②B.①③ C.①④ D.①②④ [答案] A [解析] ①②中变量X所有可能取值是可以一一列举出来的,是离散型随机变量,而③④中的结果不能一一列出,故不是离散型随机变量. 9.抛掷一枚均匀骰子一次,随机变量为( ) A.掷骰子的次数 B.骰子出现的点数 C.出现1点或2点的次数 D.以上都不正确 [答案] B 10.某人进行射击,共有5发子弹,击中目标或子弹打完就停止射击,射击次数为ξ,则“ξ=5”表示的试验结果是( ) A.第5次击中目标 B.第5次末击中目标 C.前4次未击中目标 D.第4次击中目标 [答案] C [解析] 击中目标或子弹打完就停止射击,射击次数为ξ=5,则说明前4次均未击中目标,故选C. 二、填空题11.一木箱中装有8个同样大小的篮球,编号为1、2、3、4、5、6、7、8,现从中随机取出3个篮球,以ξ表示取出的篮球的最大号码,则ξ=8表示的试验结果有______种. [答案] 21 [解析] 从8个球中选出3个球,其中一个的号码为8,另两个球是从1、2、3、4、5、6、7中任取两个球.∴共有C27=21种. 12.同时抛掷5枚硬币,得到硬币反面向上的个数为ξ,则ξ的所有可能取值的集合为________. [答案] {0,1,2,3,4,5} 13.一袋中装有6个同样大小的黑球,编号为1,2,3,4,5,6.现从中随机取出3个球,以ξ表示取出的最大号码,则ξ=6表示的试验结果是___________________________________________________________ ________________________________________________________________________ _____________. [解析] 从6个球中选出3个球,其中有一个是6号球,其余的2个球是1,2,3,4,5号球中的任意2个. [点评] “ξ=6”表示取出的3个球的最大号码是6,也就是说,从6个球中随机选出3个球,有一个球是6号球,其余的2个球是1,2,3,4,5号球中的任意2个. 14.一用户在打电话时忘记了号码的最后三个数字,只记得最后三个数字两两不同,且都大于5,于是他随机拨最后三个数字(两两不同),设他拨到所要号码的次数为ξ,则随机变量ξ的可能取值共有________种. [答案] 24 [解析] 后三个数字两两不同且都大于5的电话号码共有A34=24(种).三、解答题 15.盒中有9个正品和3个次品零件,每次从中取一个零件,如果取出的是次品,则不再放回,直到取出正品为止,设取得正品前已取出的次品数为ξ. (1)写出ξ的所有可能取值;(2)写出ξ=1所表示的事件. [解析] (1)ξ可能取的值为0,1,2,3. (2)ξ=1表示的事件为:第一次取得次品,第二次取得正品. 16.写出下列随机变量的可能取值,并说明随机变量的所取值表示的随机试验的结果: (1)从标有1,2,3,4,5,6的6张卡片中任取2张,所取卡片上的数字之和; (2)某单位的某部电话在单位时间内收到的呼叫次数Y. [解析] (1)设所取卡片的数字之和为ξ,则ξ的可能取值为3,4,…,11,其中ξ=3,表示取出标有1,2的两张卡片,…,ξ=11,表示取出标有5,6的两张卡片. (2)Y 可取0,1,2,…,n,…,Y=i,表示被呼叫i次,其中i=0,1,2,…. 17.小王参加一次比赛,比赛共设三关,第一、二关各有两个必答题,如果每关两个问题都答对,可进入下一关,第三关有三个问题,只要答对其中两个问题,则闯关成功.每过一关可一次性获得价值分别为1 000元,3 000元,6 000元的奖品(不重复设奖),小王对三关中每个问题回答正确的概率依次是45,34,23,且每个问题回答正确与否相互之间没有影响,用X表示小王所获奖品的价值,写出X的所有可能取值及每个值所表示的随机试验的结果. [解析] X的可能取值为0,1 000,3 000,6 000. X=0,表示第一关就没有通过; X=1 000,表示第一关通过,而第二关没有通过; X=3 000,表示第一、二关通过,而第三关没有通过; X=6 000,表示三关都通过. 18.写出下列随机变量可能取的值,并说明随机变量所取的值表示的随机试验的结果. (1)一个袋中装有2个白球和5个黑球,从中任取3个,其中所含白球的个数ξ; (2)一袋中装有5只同样大小的球,编号为1,2,3,4,5.现从该袋中随机取出3只球,被取出的最大号码数ξ; (3)电台在每个整点都报时,报时所需时间为0.5分钟,某人随机打开收音机对表,他所等待的时间ξ分. [解析] (1)ξ可取0,1,2. ξ=i,表示取出的3个球中有i个白球,3-i个黑球,其中i=0,1,2. (2)ξ可取3,4,5. ξ=3,表示取出的3个球的编号为1,2,3;ξ=4,表示取出的3个球的编号为1,2,4或1,3,4或2,3,4;ξ=5,表示取出的3个球的编号为1,2,5或1,3,5或1,4,5或2,3,5或2,4,5或3,4,5. (3)ξ的可能取值为区间[0,59.5]内任何一个值,每一个可能取值表示他所等待的时间.。
高中数学离散型随机变量的分布列综合测试题(附答案)第二课时离散型随机变量的分布列2一、选择题1.下列表中可以作为离散型随机变量的分布列是()A.1 0 1P 141214B.0 1 2P -143412C.0 1 2P 152535D.-1 0 1P 141412[答案] D[解析] 本题考查分布列的概念与性质.即的取值应互不相同且P(0,i=1,2,…,n,i=1nP(i)=1.A中的取值出现了重复性;B中P(=0)=-140,C中i=13P(i)=15+25+35=651.2.若在甲袋内装有8个白球,4个红球,在乙袋内装有6个白球,6个红球,今从两袋里任意取出1个球,设取出的白球个数为,则下列概率中等于C18C16+C14C16C112C112的是()A.P(=0) B.P(2)C.P(=1) D.P(=2)[答案] C[解析] 即取出白球个数为1的概率.3.已知随机变量X的分布列为:P(X=k)=12k,k=1、2、…,则P(2<X4)=()A.316B.14C.116D.516[答案] A[解析] P(2<X4)=P(X=3)+P(X=4)=123+124=316.4.随机变量的概率分布列为P(=k)=ck(k+1),k=1,2,3,4,其中c是常数,则P12<<52则值为()A.23B.34C.45D.56[答案] D[解析] c12+c23+c34+c45=c1-12+12-13+13-14+14-15=45c=1.c=54.P12<<52=P(=1)+P(=2)=54112+123=56.5.一个袋中有6个同样大小的黑球,编号为1,2,3,4,5,6,还有4个同样大小的白球,编号为7,8,9,10.现从中任取4个球,有如下几种变量:①X表示取出的最大号码;②Y表示取出的最小号码;③取出一个黑球记2分,取出一个白球记1分,表示取出的4个球的总得分;④表示取出的黑球个数.这四种变量中服从超几何分布的是()A.①② B.③④C.①②④ D.①②③④[答案] B[解析] 依据超几何分布的数学模型及计算公式,或用排除法.6.(2019东营)已知随机变量的分布列为P(=i)=i2a(i=1,2,3),则P(=2)=()A.19B.16C.13D.14[答案] C[解析] 由离散型随机变量分布列的性质知12a+22a+32a =1,62a=1,即a=3,P(=2)=1a=13.7.袋中有10个球,其中7个是红球,3个是白球,任意取出3个,这3个都是红球的概率是()A.1120B.724C.710D.37[答案] B[解析] P=C37C03C310=724.8.用1、2、3、4、5组成无重复数字的五位数,这些数能被2整除的概率是()A.15B.14C.25D.35[答案] C[解析] P=2A44A55=25.二、填空题9.从装有3个红球、3个白球的袋中随机取出2个球,设其中有个红球,则随机变量的概率分布为:0 1 2P[答案] 15 35 1510.随机变量的分布列为:0 1 2 3 4 5P 192157458451529则为奇数的概率为________.[答案] 81511.(2019常州)从6名男同学和4名女同学中随机选出3名同学参加一项竞技测试,则在选出的3名同学中,至少有一名女同学的概率是______.[答案] 5612.一批产品分为四级,其中一级产品是二级产品的两倍,三级产品是二级产品的一半,四级产品与三级产品相等,从这批产品中随机抽取一个检验质量,其级别为随机变量,则P(>1)=________.[答案] 12[解析] 依题意,P(=1)=2P(=2),P(=3)=12P(=2),P(=3)=P(=4),由分布列性质得1=P(=1)+P(=2)+P(=3)+P(=4)4P(=2)=1,P(=2)=14.P(=3)=18.P(>1)=P(=2)+P(=3)+P(=4)=12.三、解答题13.箱中装有50个苹果,其中有40个合格品,10个是次品,从箱子中任意抽取10个苹果,其中的次品数为随机变量,求的分布列.[解析] 可能取的值为0、1、2、...、10.由题意知P(=m) =Cm10C10-m40C1050(m=0、1、2、...、10),的分布列为0 1 ... k (10)P C010C1040C1050C110C940C1050… Ck10C10-k40C1050… C1010C040C105014.设随机变量X的分布列PX=k5=ak,(k=1、2、3、4、5).(1)求常数a的值;(2)求P(X)35;(3)求P110<X<710.[分析] 分布列有两条重要的性质:Pi0,i=1、2、…;P1+P2+…+Pn=1利用这两条性质可求a的值.(2)(3)由于X的可能取值为15、25、35、45、1.所以满足X35或110710的X值,只能是在15、25、35、45、1中选取,且它们之间在一次试验中相互独立,只要求得满足条件的各概率之和即可.[解析] (1)由a1+a2+a3+a4+a5=1,得a=115. (2)因为分布列为PX=k5=115k (k=1、2、3、4、5)解法一:PX35=PX=35+PX=45+P(X=1)=315+415+515=45;解法二:PX35=1-PX=15+PX=25=1-115+215=45.(3)因为110<X<710,只有X=15、25、35时满足,故P110<X<710=PX=15+PX=25+PX=35=115+215+315=25.15.(2009福建)盒子中装着标有数字1,2,3,4,5的卡片各2张,从盒子中任取3张卡片,每张卡片被取出的可能性都相等,用表示取出的3张卡片上的最大数字,求:(1)取出的3张卡片上的数字互不相同的概率;(2)随机变量的概率分布.[解析] (1)记“一次取出的3张卡片上的数字互不相同的事件”为A,则P(A)=C35C12C12C12C310=23.(2)由题意可能的取值为2,3,4,5,P(=2)=C22C12+C12C22C310=130,P(=3)=C24C12+C14C22C310=215,P(=4)=C26C12+C16C22C310=310,P(=5)=C28C12+C18C22C310=815.所以随机变量的概率分布为:2 3 4 5P 13021531081516.(2019福建理,16)设S是不等式x2-x-60的解集,整数m,nS.(1)记“使得m+n=0成立的有序数组(m,n)”为事件A,试列举A包含的基本事件;(2)设=m2,求的分布列.[解析] 本小题主要考查概率与统计、不等式等基础知识,考查运算求解能力、应用意识,考查分类与整合思想、必然与或然思想、化归与转化思想.解题思路是先解一元二次不等式,再在此条件下求出所有的整数解.解的组数即为基本事件个数,按照古典概型求概率分布列,注意随机变量的转换.(1)由x2-x-60得-23,即S={x|-23}.由于m,nZ,m,nS且m+n=0,所以A包含的基本事件为:(-2,2),(2,-2),(-1,1),(1,-1),(0,0).(2)由于m的所有不同取值为-2,-1,0,1,2,3,所以=m2的所有不同取值为0,1,4,9.且有P(=0)=16,P(=1)=26=13,P(=4)=26=13,P(=9)=16.故的分布列为:0 1 4 9P 161313。
离散型随机变量及其分布列训练题2一.选择题(共15小题) 1.设随机变量ξ的分布列由,则a 的值为( )A .1B .C .D .2.设随机变量X 等可能取值1,2,3,…,n ,如果P (X <4)=0.3,那么( ) A .n=3 B .n=4 C .n=10 D .n=93.下列表中能成为随机变量ξ的分布列的是( ) A . B .C .D .4.已知8件产品中有2件次品,从中任取3件,取到次品的件数为随机变量,用ξ表示,那么ξ的取值( )A .0,1B .1,2C .0,1,2D .0,1,2,35.设离散型随机变量X 的概率分布如表:则随机变量X 的数学期望为( )A .B .C .D . 6.设随机变量X 的概率分布列为 X 1 2 3 4 Pmζ ﹣1 0 1 P 0.3 0.4 0.4 ζ 1 2 3 P0.40.7﹣0.1ζ ﹣1 01P 0.3 0.4 0.3ζ 1 2 3P0.3 0.4 0.4X 0 1 2 3 P ip则P(|X﹣3|=1)=()A.B. C.D.7.设随机变量X的概率分布如右下,则P(X≥0)=()X ﹣1 0 1P pA.B.C.D.8.随机变量ξ的分布列为P(ξ=k)=,k=1,2,3,其中c为常数,则P(ξ≥2)等于()A.B.C.D.9.两名学生参加考试,随机变量x代表通过的学生数,其分布列为x 0 1 2p那么这两人通过考试的概率最小值为()A. B.C.D.10.一盒中有12个乒乓球,其中9个新的,3个旧的,从盒子中任取3个球来用,用完后装回盒中,此时盒中旧球个数X是一个随机变量,其分布列为P(X),则P(X=4)的值为()A.B. C.D.11.6件产品中有2件次品与4件正品,从中任取2件,则下列可作为随机变量的是()A.取到产品的件数 B.取到正品的件数C.取到正品的概率D.取到次品的概率12.已知随机变量ξ~B(9,)则使P(ξ=k)取得最大值的k值为()A.2 B.3 C.4 D.513.设随机变量的ξ的分布列为P(ξ=k)=(k=1,2,3,4,5,6),则P(1.5<ξ<3.5)=()A.B. C. D.14.已知随机变量X的分布列为:P(X=k)=,k=1,2,…,则P(2<X≤4)等于()A. B.C. D.15.袋中共放有6个仅颜色不同的小球,其中3个红球,3个白球,每次随机任取1个球,共取2次,则下列不可作为随机变量的是()A.取到红球的次数 B.取到白球的次数C.2次取到的红球总数D.取球的总次数二.填空题(共5小题)16.设ξ是一个离散型随机变量,其概率分布列如下:ξ﹣1 0 1P 0.5 q2则q= .17.设随机变量X的分布列为P(X=i)=,i=1,2,3,则P(X=2)= .18.随机变量X的分布列为X x1x2x3P p1p2p3若p1,p2,p3成等差数列,则公差d的取值范围是.19.设随机变量X的概率分布为P(X=2k)=ak(a为常数,k=1,2,3,4,5),则P(X>6)= .20.(2014•嘉定区校级模拟)己知A、B两盒中都有红球、白球,且球的形状、大小都相同,盒子A中有m个红球与10﹣m个白球,盒子B中有10﹣m个红球与m个白球(0<m<10).分别从A、B中各取一个球,ξ表示红球的个数,表中表示的是随机变量ξ的分布列则当m为时,D(ξ)取到最小值.ξ0 1 2P ?三.解答题(共8小题)21.M公司从某大学招收毕业生,经过综合测试,录用了14名男生和6名女生,这20名毕业生的测试成绩如茎叶图所示(单位:分),公司规定:成绩在180分以上者到“甲部门”工作;180分以下者到“乙部门”工作.另外只有成绩高于180分的男生才能担任“助理工作”.(Ⅰ)如果用分层抽样的方法从“甲部分”人选和“乙部分”人选中选取8人,再从这8人中选3人,那么至少有一人是“甲部门”人选的概率是多少?(Ⅱ)若从所有“甲部门”人选中随机选3人,用X表示所选人员中能担任“助理工作”的人数,写出X的分布列,并求出X的数学期望.22.某校参加高一年级期中考试的学生中随机抽出60名学生,将其数学成绩分成六段[40,50)、[50,60)、…、[90,100]后得到如图部分频率分布直方图,观察图形的信息,回答下列问题:(1)求分数在[70,80)内的频率,并补全这个频率分布直方图;(2)统计方法中,同一组数据常用该组区间的中点值作为代表,据此估计本次考试的平均分;(3)若从60名学生中随抽取2人,抽到的学生成绩在[40,60)记0分,在[60,80)记1分,在[80,100]记2分,用ξ表示抽取结束后的总记分,求ξ的分布列和数学期望.23.2013年2月20日,针对房价过高,国务院常务会议确定五条措施(简称“国五条”).为此,记者对某城市的工薪阶层关于“国五条”态度进行了调查,随机抽取了60人,作出了他们的月收入的频率分布直方图(如图),同时得到了他们的月收入情况与“国五条”赞成人数统计表(如表):(Ⅰ)试根据频率分布直方图估计这60人的平均月收入;(Ⅱ)若从月收入(单位:百元)在[15,25),[25,35)的被调查者中各随机选取3人进行追踪调查,记选中的6人中不赞成“国五条”的人数为X ,求随机变量X 的分布列及数学期望.24.在某校高三学生的数学校本课程选课过程中,规定每位同学只能选一个科目.已知某班第一小组与第二小组各有六位同学选择科目甲或科目乙,情况如下表:现从第一小组、第二小组中各任选2人分月收入(百元) 赞成人数 [15,25) 8 [25,35) 7 [35,45) 10[45,55) 6 [55,65) 2 [65,75) 1科目甲 科目乙 总计 第一小组 1 5 6 第二小组 24 6 总计3912析选课情况.(1)求选出的4 人均选科目乙的概率;(2)设ξ为选出的4个人中选科目甲的人数,求ξ的分布列和数学期望.25.某游乐场有A、B两种闯关游戏,甲、乙、丙、丁四人参加,其中甲乙两人各自独立进行游戏A,丙丁两人各自独立进行游戏B.已知甲、乙两人各自闯关成功的概率均为,丙、丁两人各自闯关成功的概率均为.(1)求游戏A被闯关成功的人数多于游戏B被闯关成功的人数的概率;(2)记游戏A、B被闯关总人数为ξ,求ξ的分布列和期望.26.某超市在节日期间进行有奖促销,凡在该超市购物满300元的顾客,将获得一次摸奖机会,规则如下:奖盒中放有除颜色外完全相同的1个红球,1个黄球,1个白球和1个黑球.顾客不放回的每次摸出1个球,若摸到黑球则停止摸奖,否则就要将奖盒中的球全部摸出才停止.规定摸到红球奖励10元,摸到白球或黄球奖励5元,摸到黑球不奖励.(Ⅰ)求1名顾客摸球3次停止摸奖的概率;(Ⅱ)记X为1名顾客摸奖获得的奖金数额,求随机变量X的分布列和数学期望.一.选择题(共15小题)1.D;2.C;3.C;4.C;5.C;6.B;7.C;8.C;9.B;10.C;11.B;12.A;13.A;14.A;15.D;二.填空题(共5小题)16.;17.;18.[-,];19.;20.1或9;三.解答题(共8小题)21.解:(I)用分层抽样的方法,每个人被抽中的概率为=,根据茎叶图,有“甲部门”人选10人,“乙部门”人选10人,所以选中的“甲部门”人选有10×=4人,“乙部门”人选有10×=4人,用事件A表示“至少有一名甲部门人被选中”,则它的对立事件表示“没有一名甲部门人被选中”,则P(A)=1﹣P()=1﹣=1﹣=.因此,至少有一人是“甲部门”人选的概率是;(Ⅱ)依据题意,所选毕业生中能担任“助理工作”的人数X的取值分别为0,1,2,3,P(X=0)==,P(X=1)==,P(X=2)==,P(X=3)==.因此,X的分布列如下:所以X的数学期望EX=0×+1×+2×+3×=.22.解:(1)设分数在[70,80)内的频率为x,根据频率分布直方图,有(0.01+0.015×2+0.025+0.005)×10+x=1,可得x=0.3,所以频率分布直方图如图所示(2)平均分为=45×0.1+55×0.15+65×0.15+75×0.3+85×0.25+95×0.05=71(3)学生成绩在[40,60)的有0.25×60=15人,在[60,80)的有0.45×60=27人,在[80,100)的有0.3×60=18人,ξ的可能取值是0,1,2,3,4则,,,,所以ξ的分布列为:∴23.解:(Ⅰ)这60人的月平均收入为(20×0.015+30×0.015+40×0.025+0.02×50+60×0.015+70×0.01)×10=43.5(百元)(Ⅱ)根据频率分布直方图可知[15,25)的人数为0.015×10×60=9人,其中不赞成的只有1人;[25,35)的人数为0.015×10×60=9人,其中不赞成的有2人.则X 的所有取值可能为0,1,2, 3.,,P (X=2)=+,.∴随机变量X 的分布列为 ∴E (X )==1.24.解:(1)设“从第一小组选出的2人选科目乙”为事件A ,“从第二小组选出的2人选科目乙”为事件B ,由于事件A 、B 相互独立,且P (A )=,P (B )=,所以选出的4人均选科目乙的概率为: P (A •B )=P (A )•P (B )=;(2)ξ可能的取值为0,1,2,3,则P (ξ=0)=,P (ξ=1)=+=,P (ξ=3)==,P (ξ=2)=1﹣P (ξ=0)﹣P(ξ=1)﹣P (ξ=3)=,ξ的分布列为:所以ξ的数学期望为:0×+1×+2×+3×=1. 25.解:(1).(2)ξ可取0,1,2,3,4,P (ξ=0)=(1﹣)2(1﹣)2=; P (ξ=1)=()(1﹣)()2+(1﹣)2=;P (ξ=2)=++=;P (ξ=3)==;P (ξ=4)==.X12 3 P (X )∴ξ的分布列为: ξ 0 1 2 3 4 PE ξ=0×+1×+2×+3×+4×=.26.(Ⅰ)解:设“1名顾客摸球3次停止摸奖”为事件A ,则共有基本事件:1+++=16个,则A 事件包含基本事件的个数为=6个,则 P (A )==,故1名顾客摸球3次停止摸奖的概率为,(Ⅱ)解:随机变量X 的所有取值为0,5,10,15,20.,,,,.所以,随机变量X 的分布列为:X 0 5 10 15 20 P。
离离离离离离离离离离离离一、单选题1. 随机变量X的分布列如下表所示:则P(X≤2)=( )A. 0.1B. 0.2C. 0.3D. 0.42. 已知离散型随机变量X的分布列服从两点分布,且P(X=0)=3−4P(X=1)=a,则a=( )A. 23B. 12C. 13D. 14二、解答题3. 一机床生产了100个汽车零件,其中有40个一等品、50个合格品、10个次品,从中随机地抽出4个零件作为样本.用X表示样本中一等品的个数.(1)若有放回地抽取,求X的分布列;(2)若不放回地抽取,用样本中一等品的比例去估计总体中一等品的比例.①求误差不超过0.2的X的值;②求误差不超过0.2的概率(结果不用计算,用式子表示即可).4. 第22届世界杯于2022年11月21日到12月18日在卡塔尔举办.在决赛中,阿根廷队通过点球战胜法国队获得冠军.(1)扑点球的难度一般比较大,假设罚点球的球员会等可能地随机选择球门的左、中、右三个方向射门,门将也会等可能地随机选择球门的左、中、右三个方向来扑点球,而且门将即使方向判断正确也有2的可能性扑不到球.不考虑其它因素,在一次点球大战中,求门将在前3三次扑到点球的个数X的分布列和期望;(2)好成绩的取得离不开平时的努力训练,甲、乙、丙三名前锋队员在某次传接球的训练中,球从甲脚下开始,等可能地随机传向另外2人中的1人,接球者接到球后再等可能地随机传向另外2人中的1人,如此不停地传下去,假设传出的球都能接住.记第n次传球之前球在甲脚下的概率为p n,易知p1=1,p2=0.}为等比数列;①试证明:{p n−13②设第n次传球之前球在乙脚下的概率为q n,比较p10与q10的大小.5. 五一期间,某商场决定从2种服装、3种家电、4种日用品中,选出3种商品进行促销活动.(1)试求选出3种商品中至少有一种是家电的概率;(2)商场对选出的某商品采用抽奖方式进行促销,即在该商品现价的基础上将价格提高60元,规定购买该商品的顾客有3次抽奖的机会:若中一次奖,则获得数额为n元的奖金;若中两次奖,则获得数额为3n元的奖金;若中三次奖,则共获得数额为6n元的奖金.假设顾客每次抽奖中奖,请问:商场将奖金数额n最高定为多少元,才能使促销方案对商场有利⋅的概率都是146. 在一次购物抽奖活动中,假设某10张奖券中有一等奖券1张,可获价值50元的奖品;有二等奖券3张,每张可获价值10元的奖品;其余6张没有奖.某顾客从这10张中任抽2张.(1)该顾客中奖的概率;(2)该顾客获得的奖品总价值X(元)的分布列.答案和解析1.解:由分布列的性质可得,0.1+m+0.3+2m=1,可得m=0.2,所以P(X ≤2)=P(X =1)+P(X =2)=0.1+0.2=0.3.故选:C .2.解:因为X 的分布列服从两点分布,所以,因为所以,,故选C .3.解:(1)依题意可得,门将每次可以扑到点球的概率为p =13×13=19,门将在前三次扑到点球的个数X 可能的取值为0,1,2,3,易知X∽B(3,19),所以P(X =k)=C 3k×(19)k ×(89)3−k ,k =0,1,2,3,故X 的分布列为: X 0123P512729 6424382431729所以X 的期望E(X)=3×19=13.(2) ①第n 次传球之前球在甲脚下的概率为p n ,则当n ≥2时,第n −1次传球之前球在甲脚下的概率为p n−1, 第n −1次传球之前球不在甲脚下的概率为1−p n−1, 则p n =p n−1×0+(1−p n−1)×12=−12p n−1+12, 即p n −13=−12(p n−1−13),又p 1−13=23, 所以{p n −13}是以23为首项,公比为−12的等比数列. ②由 ①可知p n =23(−12)n−1+13,所以p 10=23(−12)9+13<13, 所以q 10=12(1−p 10)=12[23−23(−12)9]>13,故p 10<q 10.4.解:(1)解:设选出的3种商品中至少有一种是家电为事件A ,从2种服装、3种家电、4种日用品中,选出3种商品,一共有C 93种不同的选法,选出的3种商品中,没有家电的选法有C 63种,所以选出的3种商品中至少有一种是家电的概率为P(A)=1−C 63C 93=1−521=1621;(2)解:设顾客三次抽奖所获得的奖金总额为随机变量ξ,其所有可能取值为0,n ,3n ,6n;(单元:元)ξ=0表示顾客在三次抽奖都没有获奖,所以P(ξ=0)=C 30(14)0(1−14)3=2764, 同理P(ξ=n)=C 31(141(1−14)2=2764,P(ξ=3n)=C 32(14)2(1−14)=964,P(ξ=6n)=C 33(14)3(1−14)0=164;顾客在三次抽奖中所获得的奖金总额的期望值是E(ξ)=0×2764+n ×2764+3n ×964+6n ×164=15n16, 由15n16≤60,解得n ≤64,所以n 最高定为64元,才能使促销方案对商场有利.5.解:(1)P =1−C 62C 102=1−1545=23,即该顾客中奖的概率为23.(2)X 的所有可能值为:0,10,20,50,60. 且P(X =0)=C 62C 102=13,P(X =10)=C 31C 61C 102=25, P(X =20)=C 32C 102=115,P(X =50)=C 11C 61C 102=215,P(X =60)=C 11C 31C 102=115. 故X 的概率分布列为:6.解:(1)一机床生产了100个汽车零件,其中有40个一等品、50个合格品、10个次品,从中随机地抽出4个零件作为样本.用X 表示样本中一等品的个数.若有放回地抽取,X ~B(4,25),∴P(X =0)=C 40(35)4=81625, P(X =1)=C 41(25)(35)3=216625,P(X =2)=C 42(25)2(35)2=216625, P(X =3)=C 43(25)3(35)=96625,P(X =4)=C 44(25)4=16625,∴X 的分布列为:(2)对于不放回抽取,各次试验结果不独立,X 服从超几何分布,样本中一等品的比例为X4,而总体中一等品的比例为40100=0.4,①|X4−0.4|≤0.2,解得0.8≤X≤2.4,所以X=1或X=2,②P(|X4−0.4|≤0.2)=P(X=1)+P(X=2)=C401C603+C402C602C1004.。
离散型随机变量及其分布列测试题一、选择题:1、如果X 是一个离散型随机变量,则假命题是( )A. X 取每一个可能值的概率都是非负数;B. X 取所有可能值的概率之和为1;C. X 取某几个值的概率等于分别取其中每个值的概率之和;D . X 在某一范围内取值的概率大于它取这个范围内各个值的概率之和2、甲乙两名篮球运动员轮流投篮直至某人投中为止,设每次投篮甲投中的概率为0.4,乙投中的概率为0.6,而且不受其他投篮结果的影响.设甲投篮的次数为ξ,若甲先投,则==)(k P ξA.4.06.01⨯-k B.76.024.01⨯-k C.6.04.01⨯-k D.24.076.01⨯-k3、设随机变量X 等可能取1、2、3...n 值,如果(4)0.4p X ≤=,则n 值为( )A. 4B. 6 C . 10 D. 无法确定4、投掷两枚骰子,所得点数之和记为X ,那么4X =表示的随机实验结果是( )A. 一枚是3点,一枚是1点B. 两枚都是2点C. 两枚都是4点 D . 一枚是3点,一枚是1点或两枚都是2点5.盒中有10只螺丝钉,其中有3只是坏的,现从盒中随机地抽取4个,那么概率是310的事件为( )A .恰有1只是坏的B .4只全是好的C .恰有2只是好的D .至多有2只是坏的6. 如果nx x ⎪⎭⎫ ⎝⎛-3223 的展开式中含有非零常数项,则正整数n 的最小值为A.3 B .5 C.6 D.107.连掷两次骰子得到的点数分别为m 和n ,记向量a =(m,n)与向量b =(1,-1)的夹角为θ,则⎥⎦⎤ ⎝⎛π∈θ20,的概率是A.125 B.21 C .127 D.65 8.设随机变量ξ的分布列为)5,4,3,2,1(15)(===k k k P ξ,则)2521(<<ξP 等于( )A.21B.91C. 61D.51 9.一工厂生产的100个产品中有90个一等品,10个二等品,现从这批产品中抽取4个,则其中恰好有一个二等品的概率为: A.41004901C C -B.4100390110490010C C C C C + C.4100110C C D.4100390110C C C .10.位于坐标原点的一个质点P ,其移动规则是:质点每次移动一个单位,移动的方向向上或向右,并且向上、向右移动的概率都是21.质点P 移动5次后位于点(2,3)的概率是: A.5)21( B .525)21(C C.335)21(C D.53525)21(C C11.甲、乙两人进行乒乓球比赛,比赛规则为“3局2胜”,即以先赢2局者为胜.根据经验,每局比赛中甲获胜的概率为0.6,则本次比赛甲获胜的概率是A. 0.216B.0.36C.0.432 D .0.648 5.把一枚质地不均匀.....的硬币连掷5次,若恰有一次正面向上的概率和恰有两次正面向上的概率相同(均不为0也不为1),则恰有三次正面向上的概率是: A .40243 B .1027C .516 D .1024312.将三颗骰子各掷一次,设事件A=“三个点数都不相同”,B=“至少出现一个6点”,则概率)(B A P 等于: A9160 B 21 C 185 D 2169113.从1,2,……,9这九个数中,随机抽取3个不同的数,则这3个数的和为偶数的概率是:A .95B .94 C .2111 D .2110 14.从甲口袋摸出一个红球的概率是31,从乙口袋中摸出一个红球的概率是21,则32是A .2个球不都是红球的概率 B. 2个球都是红球的概率C .至少有一个个红球的概率 D. 2个球中恰好有1个红球的概率 15.通讯中常采取重复发送信号的办法来减少在接收中可能发生的错误,假定接收一个信号时发生错误的概率是101,为减少错误,采取每一个信号连发3次,接收时以“少数服从多数”的原则判断,则判错一个信号的概率为: A .1001 B .2507 C .2501 D .10001 16. .已知随机变量ξ的分布列为:若12)(2=<x P ξ,则实数x 的取值范围是( )A.94≤<xB.94<≤xC.94≥<x x 或D.94>≤x x 或17. 12.一袋中有5个白球,3个红球,现从袋中往外取球,每次任取一个记下颜色后放回,直到红球出现10次时停止,设停止时共取了ξ次球,则==)12(ξP ( )A.2101012)85()83(⋅C B .83)85()83(29911⨯C C.29911)83()85(⋅C D. 29911)85()83(⋅C18. 考察正方体6个面的中心,甲从这6个点中任意选两个点连成直线,乙也从这6个点中任意选两个点连成直线,则所得的两条直线相互平行但不重合的概率等于( )(A )175 (B ) 275 (C )375 (D )475二、填空题:19.若1nx x ⎛⎫+ ⎪⎝⎭展开式的二项式系数之和为64,则展开式的常数项为_____20. 如果在一次试验中,某事件A 发生的概率为p ,那么在n 次独立重复试验中,这件事A 发生偶数次的概率为________.解:由题,因为()p n B ,~ξ且ξ取不同值时事件互斥,所以,[][]n n n n n n n n n p p q p q q p C q p C q p C P P P P )21(121)()(21)4()2()0(44422200-+=-++=+++=+=+=+==-- ξξξ.(因为1=+q p ,所以p p q 21-=-)21.某射手射击1次,击中目标的概率是0.9 .她连续射击4次,且各次射击是否击中目标相互之间没有影响.有下列结论:①他第3次击中目标的概率是0.9;②他恰好击中目标3次的概率是30.90.1⨯;③他至少击中目标1次的概率是410.1-.其中正确结论的序号是 ①③ __(写出所有正确结论的序号). 22.对有n (n ≥4)个元素的总体{}1,2,,n 进行抽样,先将总体分成两个子总体{}1,2,,m 和{}1,2,,m m n ++ (m 是给定的正整数,且2≤m ≤n -2),再从每个子总体中各随机抽取2个元素组成样本.用ij P 表示元素i 和j 同时出现在样本中的概率,则1n P = ;4()m n m -三、解答题:23、一盒中放有大小相同的红色、绿色、黄色三种小球,已知红球个数是绿球个数的两倍,黄球个数是绿球个数的一半.现从该盒中随机取出一个球,若取出红球得1分,取出黄球得0分,取出绿球得-1分,试写出从该盒中取出一球所得分数X 的分布列.24.一个口袋中装有n 个红球(5n ≥且n N ∈)和5个白球,一次摸奖从中摸两个球,两个球颜色不同则为中奖.(Ⅰ)试用n 表示一次摸奖中奖的概率p ;(Ⅱ)若5n =,求三次摸奖(每次摸奖后放回)恰有一次中奖的概率;(Ⅲ)记三次摸奖(每次摸奖后放回)恰有一次中奖的概率为P .当n 取多少时,P 最大?24.(Ⅰ)一次摸奖从5n +个球中任选两个,有25n C +种,它们等可能,其中两球不同色有115n C C 种,一次摸奖中奖的概率10(5)(4)np n n =++.(Ⅱ)若5n =,一次摸奖中奖的概率59p =,三次摸奖是独立重复试验,三次摸奖(每次摸奖后放回)恰有一次中奖的概率是:123380(1)(1)243P C p p =⋅⋅-=. (Ⅲ)设每次摸奖中奖的概率为p ,则三次摸奖(每次摸奖后放回)恰有一次中奖的概率为123233(1)(1)363P P C p p p p p ==⋅⋅-=-+,01p <<,2'91233(1)(31)P p p p p =-+=--,知在1(0,)3上P 为增函数,在1(,1)3上P 为减函数,当13p =时P 取得最大值.又101(5)(4)3n p n n ==++,解得20n =.25. 一名学生每天骑车上学,从他家到学校的途中有6个交通岗,假设他在各个交通岗遇到红灯的事件是相互独立的,并且概率都是31.(1)设ξ为这名学生在途中遇到红灯的次数,求ξ的分布列; (2)设η为这名学生在首次停车前经过的路口数,求η的分布列; (3)求这名学生在途中至少遇到一次红灯的概率.•(1)X 的分布列为P (X=k )=·,k=0,1,2,3,4,5,6.(2)Y 的概率分布为:Y 0 1 2 3P·· ·Y 4 5 6P··(3)0.912 解析:(1)将通过每个交通岗看做一次试验,则遇到红灯的概率为,且每次试验结果是相互独立的,故X~B(6,), 2分所以X的分布列为P(X=k)=·,k=0,1,2,3,4,5,6. 5分(2)由于Y表示这名学生在首次停车时经过的路口数,显然Y是随机变量,其取值为0,1,2,3,4,5.其中:{Y=k}(k=0,1,2,3,4,5)表示前k个路口没有遇上红灯,但在第k+1个路口遇上红灯,故各概率应按独立事件同时发生计算.P(Y=k)=·(k=0,1,2,3,4,5),而{Y=6}表示一路没有遇上红灯,故其概率为P(Y=6)=.8分因此Y的概率分布为:Y 0 1 2 3P···Y 4 5 6P··12分(3)这名学生在途中至少遇到一次红灯的事件为 {X≥1}={X=1或X=2或…或X=6}, 14分 所以其概率为P (X≥1)==1-=≈0.912. 16分20.一个坛子里有编号为1,2,…,12的12个大小相同的球,其中1到6号球是红球,其余的是黑球. 若从中任取两个球,则取到的都是红球,且至少有1个球的号码是偶数的概率为多少21、一个类似于细胞分裂的物体,一次分裂为二,两次分裂为四,如此继续分裂有限多次,而随机终止.设分裂n 次终止的概率是n21(n =1,2,3,…).记X 为原物体在分裂终止后所生成的子块数目,求(10)P X .22.甲、乙等五名奥运志愿者被随机地分到A ,B ,C ,D 四个不同的岗位服务,每个岗位至少有一名志愿者.(1)求甲、乙两人同时参加A 岗位服务的概率; (2)求甲、乙两人不在同一个岗位服务的概率;(3)设随机变量X 为这五名志愿者中参加A 岗位服务的人数,求X 的分布列.高中数学系列2—3单元测试题(2.1)参考答案一、选择题:1、D2、B3、C4、D5、C6、B7、C8、B二、填空题: 18、 20三、解答题:18、解:设黄球的个数为n ,由题意知 绿球个数为2n ,红球个数为4n ,盒中的总数为7n .∴ 44(1)77n P X n ===,1(0)77n P X n ===,22(1)77n P X n =-==. 所以从该盒中随机取出一球所得分数X 的分布列为X 10 -1 P74 71 72 19、解从总数为10的门票中任取3张,总的基本事件数是C 310=120,而“至少有2张价格相同”则包括了“恰有2张价格相同”和“恰有3张价格相同”,即C 25+C 9033351822172315=++⋅+⋅⋅C C C C C C (种).所以,所求概率为.4312090= 20解P (A )=112211122232562122326=⨯⨯-⨯=-C C C .21、解:依题意,原物体在分裂终止后所生成的数目X 的分布列为X 24 8 16 ...n 2 ... P21 4181 161 ... n 21 ...∴ (10)(2)(4)(8)P X P X P X P X ≤==+=+==8842=++.22. [解析] (1)记甲、乙两人同时参加A 岗位服务为事件E A ,那么P (E A )=A 33C 25A 44=140.即甲、乙两人同时参加A 岗位服务的概率是140.(2)记甲、乙两人同时参加同一岗位服务为事件E ,那么P (E )=A 44C 25A 44=110.所以,甲、乙两人不在同一岗位服务的概率是P (E )=1-P (E )=910.(3)随机变量X 可能取的值为1,2,事件“X =2”是指有两人同时参加A 岗位服务,则P (X =2)=C 25A 33C 25A 44=14.所以P (X =1)=1-P (X =2)=34,X 的分布列为: X 1 2 P3414。