摸到红球的概率 ppt课件1
- 格式:ppt
- 大小:181.00 KB
- 文档页数:3
高二复习公开课《摸球问题的三种题型及解题方法》摸球问题是古典概型中一类重要而常见的问题。
由于摸球的方式、球色的搭配及最终考虑的问题不同,其内容可以说是形形色色、千差万别。
在高考中以摸球为背景的概率问题多种多样,但同学们对这一类问题始终不能很好地分析和解答,为此有必要对以摸球为背景的问题类型做一次深入的归纳总结,以期让同学提高解决这一类问题的能力。
下面我们通过三个典型的摸球问题来阐述解决此类问题的思想方法。
引例:盒中装有大小、重量相同的5个小球,其中白色2个,黑色3个,求下列事件的概率:(1)从中摸出3个小球,恰有一个是白色;(2)连续摸球3次,每次摸一个,摸后不放回,第三次摸到白球;(3)连续摸球三次,每次摸一个,摸后放回,恰有两次摸到白球。
总结:以上三个问题,分别代表了摸球问题中常见的三种类型,即(1)一次性摸取:摸球的特点:一次摸够,元素不重复,无顺序。
解决的方法:用组合的思想去解决。
(2)逐次、每次不放回摸取:摸球的特点:每次只摸一个,若干次摸够,元素不重复,但有顺序。
解决的方法:用排列的思想或分步计数原理去解决。
(3)逐次、每次有放回摸取:摸球的特点:每次只摸一个,若干次摸够,元素重复,同一个(种)球每次被摸到的概率都一样。
解决方法:独立重复实验某事件恰好发生k次的概率。
为了让大家更好地理解并应用这三种思想方法来解决相关问题,我们再通过三个三个例题来加深大家的印象:例1.一个口袋中装有大小相同的2个白球和4个黑球。
(1)从中摸出两个球,求两球颜色不同的概率;(2)采取不放回的抽样方式,从中摸出两个球,求两球颜色不同的概率。
例2.袋中有同样的小球5个,其中3个红球,2个黄球,现从中随机且不放回地摸球,每次摸一个,当两种颜色的小球都被摸到时,即停止摸球,求至少摸球三次才停止游戏的概率。
例3.袋子中有若干个均匀的小球,其中红球5个,白球10个。
从袋中有放回地摸球,每次摸一个,有3次摸到红球即停止。