4-4 贝塞尔函数应用举例chen
- 格式:pdf
- 大小:430.62 KB
- 文档页数:19
第五章-贝塞尔函数n阶第一类贝塞尔函数()J xn第二类贝塞尔函数,或称Neumann函数()Y xn第三类贝塞尔函数汉克尔(Hankel)函数,(1)()H xn第一类变形的贝塞尔函数()I xn开尔文函数(或称汤姆孙函数)n阶第一类开尔文(Kelvin)第五章贝塞尔函数在第二章中,用分离变量法求解了一些定解问题。
从§2.3可以看出,当我们采用极坐标系后,经过分离变量就会出现变系数的线性常微分方程。
在那里,由于只考虑圆盘在稳恒状态下的温度分布,所以得到了欧拉方程。
如果不是考虑稳恒状态而是考虑瞬时状态,就会得到一种特殊类型的常微分方程。
本章将通过在柱坐标系中对定解问题进行分离变量,引出在§2.6中曾经指出过的贝塞尔方程,并讨论这个方程解的一些性质。
下面将看到,在一般情况下,贝塞尔方程的解不能用初等函数表出,从而就导入一类特殊函数,称为贝塞尔函数。
贝塞尔函数具有一系列性质,在求解数学物理问题时主要是引用正交完备性。
§5.1 贝塞尔方程的引出下面以圆盘的瞬时温度分布为例推导出贝塞尔方程。
设有半径为R 的薄圆盘,其侧面绝缘,若圆盘边界上的温度恒保持为零摄氏度,且初始温度为已知,求圆盘内瞬时温度分布规律。
这个问题可以归结为求解下述定解问题:222222222222220(),,0, (5.1)(,),, (5.2)0, t x y R u u u a x y R t t x y u x y x y R u ϕ=+=∂∂∂=++<>∂∂∂=+≤= (5.3)⎧⎪⎪⎪⎨⎪⎪⎪⎩用分离变量法解这个问题,先令(,,)(,)()u x y t V x y T t =代入方程(5.1)得22222()V VVT a T x y∂∂'=+∂∂或22222 (0)V V T x y a T Vλλ∂∂+'∂∂==-> 由此得到下面关于函数()T t 和(,)V x y 的方程20T a T λ'+=(5.4)22220V VV x y λ∂∂++=∂∂ (5.5)从(5.4)得2()a t T t Ae λ-=方程(5.5)称为亥姆霍兹(Helmholtz )方程。
贝塞尔函数和球贝塞尔函数前言:贝塞尔函数是数学中一类特殊的函数,它是傅里叶变换的基础。
贝塞尔函数在物理学、工程学、计算机科学等学科中都有着重要的应用。
本文将重点介绍贝塞尔函数及其应用中常用到的球贝塞尔函数,分别从定义、性质、运算及应用等多个角度进行解释。
一、贝塞尔函数的定义贝塞尔函数,又称为柏松函数或泊松函数,是一个数学函数系列,其名称是为了纪念德国数学家弗里德里希·威廉·贝塞尔(Friedrich Wilhelm Bessel)而得名。
贝塞尔函数最初是为了解决圆形振动、电磁场、流体力学等问题而被引入的。
具体地说,贝塞尔函数是微分方程中的一类特殊解,其通式如下:$$ J_n(x) = \sum_{k=0}^{\infty}\frac{(-1)^k(x/2)^{n+2k}}{k!(n+k)!} $$式中,Jn(x)代表了一类常微分方程的解,其中n代表了贝塞尔函数中的次数,x代表自变量,通常被称为“辐角”。
由于贝塞尔函数满足贝塞尔微分方程,因此它有许多重要的性质和应用。
(1)奇偶性:贝塞尔函数具有两种奇偶性,一种是关于自变量x的奇偶性,另一种是关于次数n的奇偶性。
$$ J_{-n}(x) = (-1)^n J_n(x) $$(2)正交性:当n≠m时,两个不同次数的贝塞尔函数在区间[0,a]上的积分为0。
$$\int_{0}^{a}xJ_n(\alpha_n x)J_m(\alpha_mx)dx=\frac{\delta_{mn}}{\alpha_n}\frac{(J'_{n}(\alpha_n a))^2-(J_{n}(\alpha_n a))^2}{2}$$其中,δmn是Kronecker δ 符号,当n=m时为1,否则为0。
(3)渐近行为:在辐角趋近于无穷大时,贝塞尔函数的渐近行为为:$$ J_n(x)\sim\sqrt{\frac{2}{\pi x}}\cos(x-\frac{n\pi}{2}-\frac{\pi}{4}) $$(4)级数展开:贝塞尔函数能用级数的形式表示:(1)递推关系:以Jn(x)为例,它的递推关系可以表示为:(2)德拜函数:德拜函数是一个和贝塞尔函数非常相似的函数,它用来描述球面波的性质。
图1 贝塞尔函数的一个实例:一个紧绷的鼓面在中心受到敲击后的二阶振动振型,其振幅沿半径方向上的分布就是一个贝塞尔函数(考虑正负号)。
实际生活中受敲击的鼓面的振动是各阶类似振动形态的叠加。
贝塞尔函数维基百科,自由的百科全书贝塞尔函数(Bessel functions),是数学上的一类特殊函数的总称。
通常单说的贝塞尔函数指第一类贝塞尔函数(Bessel function of the first kind)。
一般贝塞尔函数是下列常微分方程(一般称为贝塞尔方程)的标准解函数:这类方程的解是无法用初等函数系统地表示。
由于贝塞尔微分方程是二阶常微分方程,需要由两个独立的函数来表示其标准解函数。
典型的是使用第一类贝塞尔函数和第二类贝塞尔函数来表示标准解函数:注意,由于 在 x=0 时候是发散的(无穷),当取 x=0 时,相关系数 必须为0时,才能获得有物理意义的结果。
贝塞尔函数的具体形式随上述方程中任意实数或复数α变化而变化(相应地,α被称为其对应贝塞尔函数的阶数)。
实际应用中最常见的情形为α是整数n,对应解称为n 阶贝塞尔函数。
尽管在上述微分方程中,α本身的正负号不改变方程的形式,但实际应用中仍习惯针对α和−α定义两种不同的贝塞尔函数(这样做能带来好处,比如消除了函数在α=0 点的不光滑性)。
贝塞尔函数也被称为柱谐函数、圆柱函数或圆柱谐波,因为他们是于拉普拉斯方程在圆柱坐标上的求解过程中被发现的。
目录1 历史2 现实背景和应用范围3 定义3.1 第一类贝塞尔函数3.1.1 贝塞尔积分3.1.2 和超几何级数的关系3.2 第二类贝塞尔函数(诺依曼函数)3.3 第三类贝塞尔函数(汉克尔函数)3.4 修正贝塞尔函数3.5 球贝塞尔函数3.6 黎卡提-贝塞尔函数4 渐近形式5 性质6 参考文献7 外部连接历史贝塞尔函数的几个正整数阶特例早在18世纪中叶就由瑞士数学家丹尼尔·伯努利在研究悬链振动时提出了,当时引起了数学界的兴趣。
题目: 贝塞尔函数及其应用摘要贝塞尔方程是在柱坐标或球坐标下使用分离变量法求解拉普拉斯方程时得到的,因此它在波动问题以及各种涉及有势场的问题的研究中占有非常重要的地位。
贝塞尔函数是贝塞尔方程的解。
它在物理和工程中,有着十分广泛的应用。
本文首先通过一个物理问题引入贝塞尔方程,并求出贝塞尔方程的解,即贝塞尔函数。
其次列出了贝塞尔函数的几个重要的结论,如递推公式,零点性质等,并对他们进行了深入的分析。
第二部分主要介绍了傅里叶-贝塞尔级数,通过m atlab编程对函数按傅里叶-贝塞尔级数展开之后的图像进行分析,得到了它们的逼近情况。
最后一部分介绍了贝塞尔函数的几个重要应用,一个是在物理光学中的应用,着重分析了贝塞尔函数近似公式的误差;一个是在信号处理中调频制的应用,得到了特殊情况下的公式算法。
关键词:贝塞尔函数,傅里叶-贝塞尔级数,渐近公式目录一、起源ﻩ错误!未定义书签。
(一)贝塞尔函数的提出ﻩ错误!未定义书签。
(二)贝塞尔方程的引出.................................................................... 错误!未定义书签。
二、贝塞尔函数的基本概念.......................................................................... 错误!未定义书签。
(一) 贝塞尔函数的定义........................................................................ 错误!未定义书签。
1. 第一类贝塞尔函数....................................................................... 错误!未定义书签。
2.第二类贝塞尔函数.................................................................. 错误!未定义书签。