航模的基本原理和基本知识
- 格式:docx
- 大小:237.05 KB
- 文档页数:17
航模基础知识要点航模基础知识要点一、航模的组成航模一般由动力源、螺旋桨、安定器、电池、遥控器等其他配件组成。
1、动力源:航模的动力源主要分为两种,一种是燃油发动机,一种是电动机。
燃油发动机航模的优点是马力大,不需要电源,飞行时间长,但需要燃烧汽油,有污染。
电动机航模的优点是噪音小,马力大,环保,但飞行时间短。
2、螺旋桨:螺旋桨是航模飞行的直接动力部分,通过旋转产生升力,推动航模飞行。
根据飞行需要,可选择不同规格的螺旋桨。
3、安定器:安定器是航模的重要配件,主要作用是稳定航模飞行,减少航模的摇晃和旋转。
4、电池:电池是航模的能源来源,一般使用聚合物锂电池。
电池的容量和放电倍率会影响航模的飞行时间和性能。
5、遥控器:遥控器是操纵航模的设备,通过遥控器上的操纵杆和控制按钮,飞行员可以控制航模的飞行方向、高度、速度等。
二、航模的性能航模的性能主要分为三种:最大飞行速度、最大爬升率、最大下降率。
1、最大飞行速度:指航模在正常飞行条件下所能达到的最大速度。
2、最大爬升率:指航模在最大推力条件下所能达到的最大爬升速度。
3、最大下降率:指航模在最大推力条件下所能达到的最大下降速度。
三、航模的飞行环境航模的飞行环境对其飞行性能有很大影响,因此飞行员需要了解航模的最佳飞行环境。
1、高度:航模的飞行高度受到空气密度、温度、气压等因素的影响,一般适合在1000米以下飞行。
2、气象条件:航模一般适合在晴朗、无风的天气飞行,风速一般不超过10米/秒。
大风、暴雨、雷电等恶劣天气不适合飞行。
3、地形:航模的飞行场地需要选择平坦、开阔、无障碍物的地形,以保证航模的安全飞行。
四、航模的操纵技巧操纵航模需要有一定的技巧和经验,以下是几个重要的操纵技巧:1、控制油门:油门是控制发动机或电机的转速,通过控制油门的大小,可以控制航模的飞行速度和高度。
2、控制姿态:通过控制遥控器的操纵杆,可以控制航模的姿态,如俯冲、爬升、侧滑等。
3、调整重心:航模的重心位置会影响航模的稳定性和操纵性,通过调整配重,可以调整航模的重心位置。
(1)伯努利原理如果两手各拿一张薄纸,使它们之间的距离大约4~6厘米。
然后用嘴向这两张纸中间吹气,你会看到,这两张纸不但没有分开,反而相互靠近了,而且用最吹出的气体速度越大,两张纸就越靠近。
从这个现象可以看出,当两纸中间有空气流过时,压强变小了,纸外压强比纸内大,内外的压强差就把两纸往中间压去。
中间空气流动的速度越快,纸内外的压强差也就越大。
(2)机翼升力原理飞机机翼地翼剖面又叫做翼型,一般翼型的前端圆钝、后端尖锐,上表面拱起、下表面较平,呈鱼侧形。
前端点叫做前缘,后端点叫做后缘,两点之间的连线叫做翼弦。
当气流迎面流过机翼时,由于机翼地插入,被分成上下两股。
通过机翼后,在后缘又重合成一股。
由于机翼上表面拱起,是上方的那股气流的通道变窄。
根据气流的连续性原理和伯努利定理可以得知,机翼上方的压强比机翼下方的压强小,也就是说,机翼下表面受到向上的压力比机翼上表面受到向下的压力要大,这个压力差就是机翼产生的升力。
(3)失速原理在机翼迎角较小的范围内,升力随着迎角的加大而增大。
但是,当迎角加大到某个值时,升力就不再增加了。
这时候的迎角叫做临界迎角。
当超过临界迎角后,迎角再加大,阻力增加,升力反而减小。
这现象就叫做失速。
产生失速的原因是:由于迎角的增加,机翼上表面从前缘到最高点压强减小和从最高点到后缘压强增大的情况更加突出。
当超过临界迎角以后,气流在流过机翼的最高点不多远,就从翼表面上分离;了,在翼面后半部分产生很大的涡流,造成阻力增加,升力减小。
(4)人工扰流方案要推迟失速的发生,就要想办法使气流晚些从机翼上分离。
机翼表面如果是层流边界层,气流比较容易分离;如果是絮流边界层,气流比较难分离。
也就是说,为了推迟失速,在机翼表面要造成絮流边界层。
一般来说,雷诺数增大,机翼表面的层流边界层容易变成絮流边界层。
但是,模型飞机的速度很低,翼弦很小,所以雷诺数不可能增大很大。
要推迟模型飞机失速的发生,就必须要想别的办法。
小学航模教案学习基本的航模操作和飞行原理航模教案:学习基本的航模操作和飞行原理导语:航模作为一种集合科学知识和动手实践于一体的娱乐活动,已经逐渐引起小学生们的关注和兴趣。
本教案旨在帮助小学生学习基本的航模操作和飞行原理,通过实践与探索,培养他们的动手能力、思维逻辑和学习兴趣。
一、航模基础知识1. 了解航模的定义和分类航模是指模拟真实飞行器的模型,可以分为飞机模型、直升机模型和无人机模型等。
分别介绍各种航模的特点和用途,让学生了解不同类型航模的基本知识。
2. 航模组成部分的介绍主要讲解航模的结构和各个部分的功能,如机翼、机身、尾翼、发动机等,让学生对航模组成有一个整体的了解。
二、航模操作技巧1. 学习使用航模遥控器展示航模遥控器的基本按钮和操作方法,让学生掌握如何开关、油门控制和方向控制,培养他们的手眼协调能力。
2. 实践操作航模在开阔的场地上,根据安全规范,让学生分组进行航模操作训练,让他们亲自感受航模的操控性和稳定性。
三、航模飞行原理1. 空气动力学基础知识介绍航模飞行的基本原理,如升力、重力、空气动力以及稳定控制等概念,让学生初步了解航模飞行的科学基础。
2. 轻型航模飞行实验设计小型轻型航模实验,通过改变机翼面积、舵面的角度等实际操作,让学生亲自体验不同设计对航模飞行性能的影响,培养他们的观察和实验能力。
3. 飞行模拟软件的应用介绍飞行模拟软件的使用,让学生通过计算机模拟飞行,深入理解航模飞行原理,并能够进行飞行实验。
四、航模安全知识1. 安全意识与规范强调航模操作的安全意识,包括场地选择、飞行时遵守规则、人员保护等方面的注意事项,确保学生在航模活动中的安全。
2. 预防事故与维护保养教授如何预防航模事故的发生,包括航模的正常检查、保养和维修等方面的基本知识,让学生学会正确使用航模并保证其安全运行。
五、航模应用拓展1. 航模竞赛与交流介绍航模竞赛与航模俱乐部,并鼓励学生积极参与,培养他们的竞争意识和团队精神。
航模的基本原理和基本知识航模是一种模拟真实飞行的模型飞机,其基本原理和基本知识包含以下几个方面:一、模型飞行原理:1.大气动力学原理:航模飞行时受到气流的作用,包括升力、阻力、重力和推力等力的相互作用。
模型飞机需要通过翼面产生升力来维持飞行高度,并通过推力提供动力。
2.控制原理:航模飞机通过控制表面(如方向舵、升降舵、副翼等)的运动来改变其姿态和方向。
操纵杆和舵机通过电子信号传输,实现对控制表面的精确控制。
3.飞行稳定原理:航模飞行过程中需要保持一定的稳定性。
包括静稳定和动态稳定两个方面。
定翼航模通过设置翼面的远心点位置来实现静态稳定性,而控制面的设计和操纵杆的操作则保证动态稳定。
二、模型飞机的组成部分及功能:1.机身:模型飞机的主要结构,包括机翼、机身和尾翼。
机身主要用于容纳电子设备和动力系统。
2.机翼:模型飞机的升力产生部分,具有翼型、翼展和翼面积等特征,通过改变翼面的攻角来产生升力。
3.尾翼:包括升降舵、方向舵和副翼。
升降舵用于控制模型飞机的上升和下降,方向舵用于控制模型飞机的左右转向,副翼用于控制模型飞机的横滚运动。
5.舵机:用于控制模型飞机的控制表面,将电子信号转换为机械运动。
6.遥控系统:遥控器和接收机组成的遥控系统用于控制模型飞机的姿态和方向。
三、航模飞行的基本知识:1.飞行理论:了解飞行原理、飞行姿态和飞行控制等相关理论知识,包括升力、阻力、重力、推力、迎角、侧滑等概念。
2.翼型知识:了解不同翼型的特征和表现,掌握常见的对称翼型、半对称翼型和弯曲翼型。
3.翼展和翼面积:翼展影响飞机的横向稳定性和机动性能,翼面积影响飞机的升力产生能力。
4.飞行控制知识:包括副翼、升降舵和方向舵的操作原理、机动动作和配平技巧等。
5.飞行安全知识:了解飞行场地的选择、飞行规则以及飞行器的安全性维护等方面的知识。
6.电子设备知识:了解遥控器、接收机、舵机、电机和电池等电子设备的基本原理和使用方法。
总结:航模的基本原理是依靠大气动力学原理和控制原理来模拟真实的飞行。
——弹射模型滑翔机(P1T-1)的制作与放飞第一节基本概念一、航空模型的定义凡是不能载人,符合一定技术要求,重于空气的飞行器都能够称为航空模型。
二、航空模型的基本组成模型飞机与真飞机一样,主要有机翼、尾翼、机身、起装装置;动力装置五局部组成。
图1-1-11.机翼:在一定的速度下,产生升力,克服重力使飞机升空飞行。
机翼后部的副翼,能够调整模型飞机左右倾斜。
2.尾翼:由垂直尾翼和水平尾翼组成,用于保证模型飞机在飞行时的平衡和稳定,并通过尾翼的舵面对飞机实行操纵。
其中水平尾翼保持模型飞机的俯仰稳定,并可产生一局部升力,垂直尾翼保持模型飞机飞行方向的稳定。
水平尾翼后部的舵是升降舵,它的上下偏转能够控制模型升降。
垂直尾翼后部的舵是方向舵,它的左右偏转能够控制模型飞机的飞行方向。
3.机身:连接模型的各局部,使之成为一个整体。
同时能够装载一些设备。
4.动力系统:产生拉力或推力,使模型飞机获得前进速度。
5.起落装置:支撑模型飞机,供起飞着陆时使用。
典型的常规飞机一般都具有以上五局部,但在特殊形式的飞机也有例外。
比方弹射和手掷模型滑翔机,就没有动力和起落装置。
三、航空模型的常见术语1.翼展:左右机翼终端两点间的最大直线距离。
2.翼型:机翼或尾翼的剖面形状。
3.上反角:机翼与模型飞机横轴之间的夹角。
图1-1-24.安装角:翼弦与机身量度用的基准线的夹角。
图1-1-35.重心:模型各局部重力的合力点称为重心。
6.前缘:机翼最前面的边缘。
7.尾力臂:由重心到尾翼前缘1/4弦长处的距离。
8.(翼)载荷:每平方米升力面积所承受的(以克为单位的)重量。
四、航空模型的分类:P级(国内青少年级)F级(国际级)1.自由飞类(PI类)(1)P1A牵引模型滑翔机分为P1A-1一级牵引模型滑翔机P1A-2二级引模型滑翔机(2)P1B橡筋模型滑翔机分为P1B-1一级橡筋模型滑翔机P1B-2二级橡筋模型滑翔机(3)P1C活塞式发动机模型滑翔机(4)P1D室内模型飞机(橡筋动力)(5)P1E电动模型飞机(6)P1F橡筋模型直升机(7)P1S手掷模型滑翔机技术要求:最大飞行重量15克,比赛方式有两种,一种比留空时间,另一种比飞行距离。
航模基础知识要点航模是指模仿真实飞机原理和结构,通过模型制作的飞行器。
它可以飞行、模拟飞行和进行相关实验,并在飞行过程中采集数据。
航模制作是一门综合性比较强的学科,需要涉及飞行原理、空气动力学、材料科学、机械工程等多个学科的知识。
下面是航模基础知识的要点介绍。
一、飞行原理:1.升力的产生:航模的飞行依靠翅膀产生的升力。
升力的产生与机翼的气动特性有关,如充气方式、翼型、机翼横断面、机翼悬挂方式等。
2.推力的产生:推力的产生与发动机和螺旋桨有关。
常见的推力方式有喷气推力和螺旋桨推力。
3.驱动方式:航模的驱动方式有遥控和自动驾驶两种。
遥控驱动需要通过遥控设备来控制航模的运动,而自动驾驶是指通过预设的程序或传感器来控制航模的运动。
二、材料科学:1.结构材料:航模的结构通常采用轻质材料,如碳纤维复合材料、玻璃纤维复合材料等,以实现轻量化和强度要求。
2.制造工艺:航模的制造工艺包括模具制作、材料选择、剪裁、分层和成型等。
模具的制作要求精度高,以保证航模的几何形状和表面光洁度。
3.节能材料:航模中还广泛应用了一些具有节能特性的材料,如空气动力学中的流线型设计、减阻材料等,以增加航模的飞行效率。
三、控制系统:1.操纵系统:航模的操纵系统包括遥控器、舵机、控制杆等。
通过操纵杆控制舵机的运动,进而控制航模的姿态。
2.自动控制系统:航模的自动控制系统通常包括航向控制、高度控制和速度控制等。
通过预设的程序或传感器来实现航模的自动控制。
四、空气动力学:1.升力与阻力:航模在飞行时会受到气流的作用,其中最重要的是升力和阻力。
升力使航模能够飞行,在设计航模时需要根据升力和重力平衡关系来确定机翼的形状和大小。
阻力会影响航模的速度和飞行续航能力,因此需要进行降低阻力的设计。
2.气动性能:航模的气动性能取决于机翼的几何形状、气动特性和航模的重量。
要提高航模的气动性能,需要注意机翼和机身的流线型设计,减小飞行阻力。
五、航模制作与调试:1.比例缩小:航模制作时需要考虑飞机模型与真实飞机的比例关系,以保证航模的结构和空气动力学特性与真实飞机相似。
航模的基本原理和基本知识标准化管理处编码[BBX968T-XBB8968-NNJ668-MM9N]一、航空模型的基本原理与基本知识1)航空模型空气动力学原理1、力的平衡飞行中的飞机要求手里平衡,才能平稳的飞行。
如果手里不平衡,依牛顿第二定律就会产生加速度轴力不平衡则会在合力的方向产生加速度。
飞行中的飞机受的力可分为升力、重力、阻力、推力﹝如图1-1﹞。
升力由机翼提供,推力由引擎提供,重力由地心引力产生,阻力由空气产生,我们可以把力分解为两个方向的力,称 x 及 y 方向﹝当然还有一个z方向,但对飞机不是很重要,除非是在转弯中﹞,飞机等速直线飞行时x方向阻力与推力大小相同方向相反,故x方向合力为零,飞机速度不变,y方向升力与重力大小相同方向相反,故y方向合力亦为零,飞机不升降,所以会保持等速直线飞行。
图1-1弯矩不平衡则会产生旋转加速度,在飞机来说,X轴弯矩不平衡飞机会滚转,Y轴弯矩不平衡飞机会偏航、Z轴弯矩不平衡飞机会俯仰﹝如图1-2﹞。
图1-22、伯努利定律伯努利定律是空气动力最重要的公式,简单的说流体的速度越大,静压力越小,速度越小,静压力越大,流体一般是指空气或水,在这里当然是指空气,设法使机翼上部空气流速较快,静压力则较小,机翼下部空气流速较慢,静压力较大,两边互相较力﹝如图1-3﹞,于是机翼就被往上推去,然后飞机就飞起来,以前的理论认为两个相邻的空气质点同时由机翼的前端往后走,一个流经机翼的上缘,另一个流经机翼的下缘,两个质点应在机翼的后端相会合﹝如图1-4﹞,经过仔细的计算后发觉如依上述理论,上缘的流速不够大,机翼应该无法产生那么大的升力,现在经风洞实验已证实,两个相邻空气的质点流经机翼上缘的质点会比流经机翼的下缘质点先到达后缘﹝如图1-5﹞。
图1-3图1-4图1-53、翼型的种类1全对称翼:上下弧线均凸且对称。
2半对称翼:上下弧线均凸但不对称。
3克拉克Y翼:下弧线为一直线,其实应叫平凸翼,有很多其它平凸翼型,只是克拉克Y 翼最有名,故把这类翼型都叫克拉克Y翼,但要注意克拉克Y翼也有好几种。
4S型翼:中弧线是一个平躺的S型,这类翼型因攻角改变时,压力中心较不变动,常用于无尾翼机。
5内凹翼:下弧线在翼弦在线,升力系数大,常见于早期飞机及牵引滑翔机,所有的鸟类除蜂鸟外都是这种翼型。
基本航模的翼型选测规律:1薄的翼型阻力小,但不适合高攻角飞行,适合高速机。
2厚的翼型阻力大,但不易失速。
3练习机用克拉克Y翼或半对称翼,因浮力大。
4特技机用全对称翼,因正飞或倒飞差异不大。
5斜坡滑翔机用薄一点翼型以增大滑空比。
63D特技机用前缘特别大的翼型以便高攻角飞行。
4、飞行中的阻力一架飞行中飞机阻力可分成四大类:1磨擦阻力:空气分子与飞机磨擦产生的阻力,这是最容易理解的阻力但不很重要,只占总阻力的一小部分,当然为减少磨擦阻力还是尽量把飞机磨光。
2形状阻力:物体前后压力差引起的阻力,平常汽车广告所说的风阻系数就是指形状阻力系数﹝如图3-3﹞,飞机做得越流线形,形状阻力就越小,尖锥状的物体形状阻力不见得最小,反而是有一点钝头的物体阻力小,读者如果有机会看到油轮船头水底下那部分,你会看到一个大头,高级滑翔机大部分也有一个大头,除了提供载人的空间外也是为了减少形状阻力。
3诱导阻力:机翼的翼端部因上下压力差,空气会从压力大往压力小的方向移动,部份空气不会规规矩矩往后移动,而从旁边往上翻,因而在两端产生涡流﹝如图3-4﹞,因而产生阻力,这现象在飞行表演时,飞机翼端如有喷烟时可看得非常清楚,你可以注意涡流旋转的方向﹝如图3-5﹞,﹝图3-6﹞是NASA的照片,可看见壮观的涡流,因为这种涡流延伸至水平尾翼时,从水平尾翼的观点气流是从上往下吹,因此会减小水平尾翼的攻角,也就是说水平尾翼的攻角实际会比较小,﹝图3-6﹞只不过是一架小飞机,如像类似747这种大家伙起飞降落后,小飞机要隔一阵子才能起降,否则飞入这种涡流,后果不堪设想,这种阻力是因为涡流产生,所以也称涡流阻力。
4寄生阻力:所有控制面的缝隙﹝如主翼后缘与副翼间﹞、主翼及尾翼与机身接合处、机身开孔处、机轮及轮架、拉杆等除本身的原有的阻力以外,另外衍生出来的阻力﹝如图3-7,3-8﹞。
一架飞机的总阻力就是以上四种阻力的总合,但飞机的阻力互相影响的,以上的分类只是让讨论方便而已,另外诱导阻力不只出现在翼端,其它舵面都会产生,只是翼端比较严重,磨擦阻力、形状阻力、寄生阻力与速度的平方成正比,速度越快阻力越大,诱导阻力则与速度的平方成反比﹝如图3-9﹞,所以要减少阻力的话,无动力飞机重点在减少诱导阻力,高速飞机重点在减少形状阻力与寄生阻力。
5、机翼负载翼面负载就是主翼每单位面积所分担的重量,这是评估一架飞机性能很重要的指针,模型飞机采用的单位是每平方公寸多少公克﹝g/dm2﹞,实机的的单位则是每平方公尺多少牛顿﹝N/m2﹞,翼面负载越大意思就是相同翼面积要负担更大的重量,如果买飞机套件的话大部分翼面负载都标示在设计图上,计算翼面负载很简单,把飞机﹝全配重量不加油﹞秤重以公克计,再把翼面积计算出来以平方公寸计﹝一般为简化计算,与机身结合部分仍算在内﹞两个相除就得出翼面负载,例如一架30级练习机重1700公克,主翼面积30平方公寸,则翼面负载为 g/dm2。
练习机一般在50~70左右,特技机约在60~90,热气流滑翔机30~50,像真机110以内还可忍受,牵引滑详机约12~15左右,6、展弦比从雷诺数的观点机翼越宽、速度越快越好,但我们不要忘了阻力,短而宽的机翼诱导阻力会消耗你大部分的马力。
飞机要有适合的展弦比,展弦比A就是翼展L除以平均翼弦b(A=L/b),L与b单位都是cm,如果不是矩形翼的话我们把右边上下乘以L,得A=L2 / S,S是主翼面积,单位是cm2,这样不用求平均翼弦,一般适合的展弦比在5~7左右,超过8以上要特别注意机翼的结构,药加强记忆强度,否则,一阵风就断了。
滑翔机实机的展弦比有些高达30以上。
如前所述磨擦阻力、形状阻力与速度的平方成正比,速度越快阻力越大,诱导阻力则与速度的平方成反比,所以高速飞机比较不考虑诱导阻力,所以展弦比低,滑翔机速度慢,采高展弦比以降低诱导阻力,最典型的例子就是U2﹝如图3-15﹞跟F104﹝如图3-16﹞,U2为高空侦察机,为长时间翱翔,典型出一次任务约10~12小时,U2展弦比为,F104为高速拦截机,速度达2倍音速以上,展弦比,自然界也是如此,信天翁为长时间遨翔,翅膀展弦比高,隼为掠食性动物,为求高速、灵活,所以展弦比低。
滑翔机没有动力,采取高展弦比以降低阻力是唯一的方法,展弦比高的机翼一般翼弦都比较窄,雷诺数小,所以要仔细选择翼型,避免过早失速,另外高展弦比代表滚转的转动惯量大,所以也不要指望做出滚转的特技了。
7、翼面翼平面即是主翼平面投影的形状,当我们已假定飞机重量、翼面负载后,主翼面积即可算出,展弦比亦已大致决定,这时就要确定主翼平面形状,考虑的因素有1失速的特性、2应力分布、3制作难易度、4美观,模型飞机的速度离音速还差一大截,不须考虑空气压缩性,也没有前后座视野的问题,所以后掠翼不需考虑,当然为美观或像真机除外,常见的平面形状及特性如下:1矩形翼:﹝如图4-1﹞从左至右翼弦都一样宽,练习机常用的形状,因为制作简单,失速的特性是从中间开始失速,失速后容易补救。
2和缓的锥形翼:﹝如图4-2﹞从翼根往翼端渐缩,制作难易度中等,合理的翼面应力分布,缓和的翼端失速,特技机最常见的意形式。
3尖锐的锥形翼:﹝如图4-3﹞同样从翼往翼端渐缩,但翼端极窄,恶劣的的翼端失速。
4椭圆翼:﹝如图4-4﹞制作难度高,最有效率的翼面应力分布,翼端至翼根同时失速,这也是天上最优美的翼面形式。
机翼先失速的位置跟局部升力系数与平均升力系数的比值有关,比值大的地方先失速,另因升力分布于所有翼面,机翼的剪应力及弯矩应力会从翼端往翼根处累积,所以飞机结构失败在空中折翼都在靠机身处,矩形翼结构应力分不就很不经济,靠翼端处结构过强,增加无谓的重量,锥形翼、椭圆翼就比较经济,此外从图面也可看出矩形翼的诱导阻力比较大,即使翼端的面积大效率也不好。
尖锐的锥形翼翼端极窄,雷诺数小,且因为翼弦短,同样精度下制作时攻角误差大,翼端很容易失速,翼端失速后就从先失速的一端先往下掉,而且不见得救得回来,所以做Ju87像真机那类飞机要特别注意。
主翼平面形状不需要一成不变的为锥形翼或椭圆翼,可以依需求、制作难易度及美观采取各种组合。
2)遥控系统随着我们身边的电子产品的不断更新我们身边的电子讯号干扰日趋严重对航模业来影响越来越严重之前的遥控器和遥控模型之间是采用100MHz以下的频度来通讯的现在的电子讯号对低频段的干扰是很严重的而且100MHz的通讯距离有限。
数字无线通讯技术的不断发展越来越多的航模厂商的把目光投向ISM频段尤其是全球免费频段的数字无线传输模块上。
而传统的模拟低频无线航模远控系统日益受到信号干扰严重、通讯间隔有限、同场信道少等缺点的制约。
飞机的无线电遥控,是指利用无线电波传送操作者对动作的指令根据指令做出各种飞行姿态。
用无线电技术对进行飞行控制的史,可以追溯到第二次世界大战以前。
不过,由于当时民间。
用无线电制航模面临十分复杂的法律手续,而且当时的遥控设备既笨重又极不可,因此,遥控航模未能推广开来到了本世纪 60年代初期,随着电子技术发展,各种应用于航模控制的无线电设备也开始普及,时至今日,无线遥控设备已广泛地用于各种航空、航海和陆上。
以四通道比例遥控设备系统为例,它由发射机、接收机、舵机、电源等部分组成。
图l所示的,是4通道比例遥控设备发射机的外型和各部分名称。
在发射机的面板上,有两根分别控制l、2通道和3、4通道动作指令的操纵秆,以及与操纵杆动作相对应的4个微调装置。
在发射机底部,设置有4个舵机换向开关,分别用于变换舵机摇臂的偏转方向。
图2所示的,是接收机和舵机以及接收机电源装置,其中接收机用来接收从发射机传来的指令信号,经处理后,指挥舵机作出与发射机指令相对应的动作。
电池组给接收机和舵机提供工作能源,它由4节普通5号干电池串联而成。
如果是电动航模则将其中一个舵机换为电子调速器(俗称电调)。
电子调速器连接电源和电机,而且接收机也直接由电子调速器连接的电源供电。
所谓比例控制,简单说来,就是当我们把发射机上的操纵杆由中立位置向某一方向偏移一角度时,与该动作相对应的舵机摇臂也同时偏移相应的角度,舵机摇臂偏转角度与发射机操纵杆偏移角度成比例.图3显示了发射机执行舵机与飞机舵面的动作关系。
当发射机操纵杆(或对应的微调杆)往左、右偏转或回复中立时,执行舵机的摇臂也随之相应地往左、右偏转或回复中立,带动的舵面往左,右偏转或回复中立,操纵杆(或微调杆)、舵机摇臂、舵面偏转的角度大小成比例。