山东大学《高等数学》期末复习参考题 (2)
- 格式:pdf
- 大小:118.71 KB
- 文档页数:4
05-06学年第二学期高等数学考试试题一、 选择题(每小题2分,共20分)1 二元函数⎪⎩⎪⎨⎧=+≠++=00),(222222y x y x yx xy y x f 在点(0,0)处( )。
A. 不连续、偏导数存在B. 连续、偏导数存在C. 连续、偏导数不存在D. 不连续、偏导数不存在 2 设yzx z x z y ∂∂∂∂=,,则依次为( )。
A. 1,ln -y y yx x x B. x x yx y y ln ,1- C. x x yx y y ln ,1- D. 1,ln -y y yx x x 3 点)3,3,3(a a a 是函数xyz u =在条件az y x 1111=++(x>0,y>0,z>0,a>0)下的( )。
A. 非驻点B. 仅是驻点,不取得极值C. 极小值点D. 极大值点 4 若21D D ⊇,则必有( ). A.⎰⎰⎰⎰≥12),(),(D D dxdy y x f dxdy y x f B.⎰⎰⎰⎰≥12),(),(D D dxdy y x f dxdy y x fC.⎰⎰⎰⎰≥12),(),(D D dxdy y x f dxdyy x f D. 以上结论都不对5 两个底圆半径都等于R 的直交圆柱体公共部分的表面积等于()。
A. ⎰⎰--Rx R dy xR R dx 0022224 B. ⎰⎰--Rx R dy xR R dx 022228C. ⎰⎰----R x R xR dy xR R dx 02222224 D. ⎰⎰----Rx R x R dy xR R dx 022222286 设L 为连接点(1,0)及(0,1)的直线段,则曲线积分:⎰=+Lds y x )()(A. 1B. 2C. 2-D. –17设L 是平面上不经过原点的简单封闭曲线正向,则曲线积分:=+-⎰L y x ydxxdy 22( )A. 0B. π2C. 0或π2D. 以上结论都不对 8 级数∑∞=+-12)1(n nnkn (k>0是常数)( ) A. 发散 B. 绝对收敛 C. 条件收敛 D. 收敛性与K 的取值有关 9 若∑∞=-1)1(n n n x a 在1-=x 处收敛,则此级数在x=2处( )。
数学高数期末试题及答案第一部分:选择题1. 设函数 $f(x) = e^x + \ln x$,则 $f'(1) =$ ( )A. $e$B. $e+1$C. $1$D. $0$2. 设二元函数 $z=f(x,y)$ 在点 $(1,2)$ 处可微,则 $\frac{\partialz}{\partial x}$ 在该点的值为 ( )A. $f_x(1,2)$B. $f_y(1,2)$C. $0$D. $f(1,2)$3. 设平面$2x+y+z=2$,直线$L$ 过点$(1,1,1)$,且与该平面平行,则直线 $L$ 的方程为 ( )A. $x=y=z$B. $2x+y+z=4$C. $x=y=z=1$D. $x+y+z=3$第二部分: 简答题1. 解释什么是极限?极限是一个函数在某一点或者无穷远处的值或趋近于的值。
对于一个给定的函数,当自变量趋近某一特定值时,函数的值也会趋近于某个特定的值。
2. 什么是导数?导数是函数在某一点的切线斜率。
在数学中,导数表示函数在给定点的变化率。
第三部分: 解答题1. 计算函数 $f(x) = \sin(x) - \cos(x)$ 在区间 $[0, \frac{\pi}{4}]$ 上的最大值和最小值。
首先,我们求解导数 $f'(x)$,然后令其等于零,解得$x=\frac{\pi}{4}$。
此时,我们可以计算得到 $f(\frac{\pi}{4}) =\sqrt{2}-1$。
另外,我们可以计算 $f(0) = 1$ 和 $f(\frac{\pi}{4}) = \sqrt{2}-1$。
所以,函数 $f(x)$ 在区间 $[0, \frac{\pi}{4}]$ 上的最大值为 $1$,最小值为 $\sqrt{2}-1$。
2. 计算二重积分 $\iint_D x^2 y \,dA$,其中 $D$ 是由直线 $x=0$,$y=0$ 和 $x+y=1$ 所围成的区域。
高等数学期末试题(含答案) 高等数学检测试题一。
选择题(每题4分,共20分)1.计算 $\int_{-1}^1 xdx$,答案为(B)2.2.已知 $2x^2y=2$,求$\lim\limits_{(x,y)\to(0,0)}\frac{x^4+y^2}{x^2y}$,答案为(D)不存在。
3.计算 $\int \frac{1}{1-x}dx$,答案为(D)$-2(x+\ln|1-x|)+C$。
4.设 $f(x)$ 的导数在 $x=a$ 处连续,且 $\lim\limits_{x\to a}\frac{f'(x)}{x-a}=2$,则 $x=a$ 是 $f(x)$ 的(A)极小值点。
5.已知 $F(x)$ 的一阶导数 $F'(x)$ 在 $\mathbb{R}$ 上连续,且 $F(0)=0$,则 $\frac{d}{dx}\int_0^x F'(t)dt$ 的值为(D)$-F(x)-xF'(x)$。
二。
填空:(每题4分,共20分)1.$\iint\limits_D dxdy=1$,若 $D$ 是平面区域 $\{(x,y)|-1\leq x\leq 1,1\leq y\leq e\}$,则 $\iint\limits_D y^2x^2dxdy$ 的值为(未完成)。
2.$\lim\limits_{x\to\infty}\frac{\left(\cos\frac{\pi}{n}\right)^2+\left(\cos\frac{2\pi}{n}\right)^2+\cdots+\left(\cos\frac{(n-1)\pi}{n}\right)^2}{n\pi}$ 的值为(未完成)。
3.设由方程 $xyz=e$ 确定的隐函数为 $z=z(x,y)$,则$\frac{\partial z}{\partial x}\bigg|_{(1,1)}$ 的值为(未完成)。
4.设 $D=\{(x,y)|x^2+y^2\leq a^2\}$,若$\iint\limits_D\sqrt{a^2-x^2-y^2}dxdy=\pi$,则 $D$ 的面积为(未完成)。
大一高数c期末考试题及答案一、选择题(每题3分,共30分)1. 极限的定义中,当自变量趋近于某一点时,函数值趋近于该点的极限值,下列哪个选项是正确的?A. 函数值可以无限接近但不等于极限值B. 函数值必须等于极限值C. 函数值可以等于也可以不等于极限值D. 函数值必须等于极限值,且只能等于一个值答案:A2. 以下哪个函数是奇函数?A. f(x) = x^2B. f(x) = x^3C. f(x) = x^4D. f(x) = x^5答案:B3. 以下哪个选项是正确的不定积分?A. ∫x dx = x^2 + CB. ∫x^2 dx = x^3 + CC. ∫x^3 dx = x^4 + CD. ∫x^4 dx = x^5 + C答案:B4. 以下哪个级数是收敛的?A. 1 + 1/2 + 1/4 + 1/8 + ...B. 1 - 1/2 + 1/4 - 1/8 + ...C. 1 + 1/2^2 + 1/3^2 + 1/4^2 + ...D. 1 + 2 + 3 + 4 + ...答案:B5. 以下哪个选项是正确的二阶导数?A. f''(x) = 2xB. f''(x) = 2x + 3C. f''(x) = 2D. f''(x) = 3x^2答案:C6. 以下哪个选项是正确的洛必达法则的应用?A. ∫0/0 形式的极限可以通过洛必达法则求解B. ∫∞/∞ 形式的极限可以通过洛必达法则求解C. ∫0×∞ 形式的极限可以通过洛必达法则求解D. ∫∞-∞ 形式的极限可以通过洛必达法则求解答案:B7. 以下哪个选项是正确的泰勒级数展开?A. e^x = 1 + x + x^2/2! + x^3/3! + ...B. sin(x) = x - x^3/3! + x^5/5! - ...C. cos(x) = 1 - x^2/2! + x^4/4! - ...D. ln(1+x) = x - x^2/2 + x^3/3 - ...答案:A8. 以下哪个选项是正确的定积分计算?A. ∫[0,1] x^2 dx = 1/3B. ∫[0,1] x^3 dx = 1/4C. ∫[0,1] x^4 dx = 1/5D. ∫[0,1] x^5 dx = 1/6答案:A9. 以下哪个选项是正确的多元函数偏导数?A. ∂f/∂x = 2x + 3yB. ∂f/∂y = 3x + 2yC. ∂f/∂z = 4x + 5yD. ∂f/∂w = 6x + 7y答案:A10. 以下哪个选项是正确的曲线积分?A. ∫C x ds = ∫C x dsB. ∫C y ds = ∫C y dsC. ∫C z ds = ∫C z dsD. ∫C xy ds = ∫C xy ds答案:D二、填空题(每题4分,共20分)1. 函数f(x) = x^2 + 3x + 2的导数是________。
大学高数期末试题及答案一、选择题(每题5分,共20分)1. 下列函数中,哪一个是奇函数?A. f(x) = x^2B. f(x) = x^3C. f(x) = xD. f(x) = sin(x)答案:C2. 函数f(x) = 2x + 1在x=2处的导数是:A. 3B. 4C. 5D. 6答案:B3. 曲线y = x^2 + 1在点(1, 2)处的切线斜率是:A. 0B. 1C. 2D. 3答案:C4. 定积分∫(0到1) x dx的值是:A. 0.5B. 1C. 2D. 3答案:A二、填空题(每题5分,共20分)1. 极限lim(x→0) (sin(x)/x)的值是______。
答案:12. 函数y = ln(x)的不定积分是______。
答案:xln(x) - x + C3. 微分方程dy/dx + y = e^(-x)的通解是______。
答案:y = -e^(-x) + Ce^(-x)4. 函数f(x) = x^3 - 6x^2 + 11x - 6的极值点是______。
答案:x = 1, x = 2三、解答题(每题15分,共30分)1. 求函数f(x) = x^2 - 4x + 3的极值。
答案:函数f(x)的导数为f'(x) = 2x - 4。
令f'(x) = 0,解得x = 2。
将x = 2代入原函数,得到f(2) = 3,这是函数的极小值。
2. 计算定积分∫(0到π) sin(x) dx。
答案:根据定积分的性质,∫(0到π) sin(x) dx = [-cos(x)](0到π) = -cos(π) + cos(0) = 2。
四、证明题(每题15分,共15分)1. 证明函数f(x) = x^3在R上是连续的。
答案:对于任意实数x,有f(x) = x^3。
因为多项式函数在其定义域内处处连续,所以f(x) = x^3在R上是连续的。
《高等数学》模拟题(1)年级_____________ 姓名_______________ 学号________________ 成绩__________第一题 名词解释1.区间:2. 邻域;3. 函数的单调性:4. 导数:5. 最大值与最小值定理:第二题 选择题1.函数21arccos1++-=x x y 的定义域是( )(A)1≤x ; (B)13≤≤-x ;(C))1,3(-; (D){}{}131≤≤-⋂<x x x x .2、函数)(x f 在点0x 的导数)(0x f '定义为( )(A )xx f x x f ∆-∆+)()(00;(B )xx f x x f x x ∆-∆+→)()(lim 000;(C )xx f x f x x ∆-→)()(lim 00;(D )0)()(lim 0x x x f x f x x --→; 3、 一元函数微分学的三个中值定理的结论都有一个共同点,即( ) (A ) 它们都给出了ξ点的求法 .(B ) 它们都肯定了ξ点一定存在,且给出了求ξ的方法。
(C ) 它们都先肯定了ξ点一定存在,而且如果满足定理条件,就都可以用定理给出的公式计算ξ的值 .(D ) 它们只肯定了ξ的存在,却没有说出ξ的值是什么,也没有给出求ξ的方法 . 4、设)(,)(21x F x F是区间I 内连续函数)(x f 的两个不同的原函数,且0)(≠x f ,则在区间I 内必有( )(A) C x F x F =+)()(21; (B ) C x F x F =⋅)()(21;(C) )()(21x CF x F =; (D) C x F x F =-)()(21.5、=⎪⎭⎫ ⎝⎛++++++∞→2222221lim n n n n n n nn Λ ( ) (A )0; (B )21;(C )4π; (D )2π .6、曲线xyln =与直线ex 1=,e x=及0=y 所围成 的区域的面积=S ( ); (A ))11(2e-; (B )e e 1-;(C )e e 1+; (D )11+e.7、 若→a ,→b 为共线的单位向量,则它们的数量积 =⋅→→b a ( ).(A ) 1; (B )-1; (C ) 0; (D )),cos(→→b a . 8、二元函数22221arcsin 4ln y x y x z +++=的定义域是( ).(A )4122≤+≤y x ; (B )4122≤+<y x ;(C )4122<+≤y x ; (D )4122<+<y x .9、⎰⎰-xdy y x f dx 1010),(=(D )(A)⎰⎰-110),(dx y x f dy x ; (B)⎰⎰-xdx y x f dy 101),(;(C)⎰⎰11),(dx y x f dy ; (D)⎰⎰-ydx y x f dy 101),(.10、设L 为230,0≤≤=y x x ,则⎰Lds 4的值为( B).(A)04x , (B),6 (C)06x .第三题.)16(log 2)1(的定义域求函数x y x -=-第四题).0(),100()2)(1()(f x x x x x f '---=求设Λ第五题.)1(51lim 520x x x x +-+→求极限第六题.4932⎰-dx xx xx 求第七题.2sin 120⎰-πdx x 求《高等数学》模拟试卷 (1) 参考答案第四题).0(),100()2)(1()(f x x x x x f '---=求设Λ第五题解)0()(lim)0(0--='→x f x f f x )100()2)(1(lim 0---=→x x x x Λ!100=.)1(51lim 520x x x x +-+→求极限第六题.4932⎰-dx xx xx 求第七题解.2的次数为分子关于x Θ515)51(51x x +=+∴)()5()151(51!21)5(51122x o x x +⋅-⋅++=)(2122x o x x +-+=)1()](21[lim2220x x o x x x x +-+-+=→原式.21-=⎰-=dxxx1)23()23(2原式解⎰-=1)23()23(23ln 12x xd ⎰-123ln 12t dt ⎰+--=dt t t )1111(23ln21Ct t ++--=11ln )2ln 3(ln 21.2323ln )2ln 3(ln 21C xx xx ++--=tx =)23(令解 ]5)1[ln(2'+++x x Θ,112x+=]5)1[ln(5)1ln(22+++⋅+++=⎰x x d x x 原式.]5)1[ln(32232C x x ++++=)1221(1122xx xx ++⋅++=1. .2sin 120⎰-πdx x 求解⎰-=20cos sin πdxx x 原式⎰⎰-+-=2440)cos (sin )sin (cos πππdxx x dx x x .222-=。
高等数学模拟卷1一 求下列极限1 1limsin n n n→∞ =0 2 求0lim x x x→ = 1 ,x →+0 -1 ,x →-03 求10lim xx e → =∞0sin 4lim sin5x x x x x →++ =1/3二 a 取什么值,0()0xe xf x a x x ⎧<=⎨+≥⎩连续解:)i 0x <,0x >时,()f x 均连续)ii 0x =时,(0)f a =(00)1f -=(00)f a +=所以1a =时(0)(0)1f f ±==,()f x 在0x =处连续综上所述,a=1时()f x 连续三 计算下列各题1 已知2sin ln y x x =⋅ 求,y解:y ’=2cosx.lnx+2sinx.(1/x)2 (),()x f x y f e e y =⋅已知,求解:y ’ =f ’(e x ).e x .e f(x)+f(e x ).e f(x).f(x)23x xe dx⎰求 解:原式=1/2∫e x2d(x 2)=1/2(e x2+C)四、若202tan()sec x y x x y tdt ---=⎰,求dy dx解:两边对x 求导,其中y 是x 的函数 2'2'2sec ()(1)sec ()(1)x y y x y y --⋅-=-⋅-2'2sec ()(1)2x y y -⋅-='21(1)sec ()y x y -=- 所以'221cos ()sin ()y x y x y =--=-五 求y x =,2y x =和2y x =所围平面图形的面积解:12201223(2)(2)121101231814123376A x x dx x x dx x x x =-+-⎛⎫=+- ⎪⎝⎭=+--+=⎰⎰高等数学模拟卷 2一 求下列极限1 1lim cos n n n→∞=02 求22lim 2x x x →--=2222lim 22lim 22lim 2x x x x x x x x x→→→-⎧⎪-⎪-⎨--⎪⎪-⎩-+=1==-1 3 求10lim 2x x →=110100lim 2lim 2lim 20x x x x x x +-→→→⎧=∞⎪⎪=⎨⎪=⎪⎩ 02sin 4lim 3sin x x x x x →++求2sin 3lim 3sin 4x x x x x →++解= sin 0()00x x f x xx ⎧≠⎪=⎨⎪=⎩二讨论在 x=0 处的连续性 答:因为f(x)在0点的左右极限都为1,不等于其在0点的函数值,所以f(x)在0点不连续三 计算下列各题1 ,ln[ln(ln )]y x y =求 ,1111.[ln(ln )]..[ln(ln )][ln(ln )]ln y x x x x x'== 2 ,,yx x y y =求,ln ln .ln .ln 1.ln ln ..ln ln ln ln y xx y y x x yy y x y y x x yx y y x y y xyy x y x x y =='+=+⎛⎫'-=- ⎪⎝⎭-'∴=-解: 22220100220100490480cos lim sin cos lim 22cos lim 101cos lim 50x x x x x x x t dt xx t dt x x x x x x x →→→→--=-⋅=-=⎰⎰四求解原式34704sin 1lim 4010x x x x →== 五 求225y x =-和4y x =-所围平面图形的面积解:)8002(4)A x dx =+--⎰⎰28331242222126323218x x ⎫=+-+⎪⎭=+-+=六 22(1)24dy x xy x dx++= 解:此方程为一阶非齐次线性微分方程 22()1x P x x =+ 224()1x Q x x =+2222231122414()()113x x dx dx x x x y e e dx c c x x x -++⎰⎰=+=+++⎰ 所以原方程通解为3214()13y c x x =++ 高等数学模拟卷3一 求下列极限1 1lim n tgn n→∞ 解:不存在2 求lim x a x a x a →--=lim 1lim lim 1x a x a x a x a x a x a a x x a x a→→→-⎧⎪-⎪-⎨--⎪=-⎪-⎩+-== 3 求120lim x x e →=121021020lim lim lim 0x x x x x x e e e +-→→→⎧=∞⎪⎪=⎨⎪=⎪⎩ 00sin 4lim lim sin x x mx mx m nx nx n →→==20()0x x f x x x >⎧=⎨≤⎩二已知,讨论f (x )在0x =处的导数 ()()()()0020000lim lim 100lim lim 0()0x x x x f x f x x xf x f x x xf x x ∆→∆→∆→∆→+∆-∆==∆∆+∆-∆==∆∆∴=++--解:在不可导 三 计算下列各题1、3,tan (ln )y x y =已知求 ()2213tan (ln ).sec ln .y x x x'=解: 2、2,()y f x y =已知,求 2().2y f x x ''解: =四 232001()()2a a x f x dx xf x dx =⎰⎰证明,(0)a >,其中()f x 在讨论的区间连续。
高等数学上期末考试试题及参考答案一、选择题(每题5分,共25分)1. 函数 \( f(x) = \frac{1}{x^2 + 1} \) 的反函数\( f^{-1}(x) \) 的定义域为()A. \( (-\infty, 1) \cup (1, +\infty) \)B. \( [0, +\infty) \)C. \( (-\infty, 0) \cup (0, +\infty) \)D. \( (-1, 1) \)答案:C2. 设函数 \( f(x) = \ln(2x - 1) \),则 \( f'(x) \) 的值为()A. \( \frac{2}{2x - 1} \)B. \( \frac{1}{2x - 1} \)C. \( \frac{2}{x - \frac{1}{2}} \)D. \( \frac{1}{x - \frac{1}{2}} \)答案:A3. 设 \( f(x) = e^x + e^{-x} \),则 \( f''(x) \) 的值为()A. \( e^x - e^{-x} \)B. \( e^x + e^{-x} \)C. \( 2e^x + 2e^{-x} \)D. \( 2e^x - 2e^{-x} \)答案:D4. 下列函数中,哪一个函数在 \( x = 0 \) 处可导但不可微?()A. \( f(x) = |x| \)B. \( f(x) = \sqrt{x} \)C. \( f(x) = \sin x \)D. \( f(x) = \cos x \)答案:A5. 设 \( \lim_{x \to 0} \frac{f(x) - f(0)}{x} = 2 \),则 \( f'(0) \) 的值为()A. 1B. 2C. 0D. 无法确定答案:B二、填空题(每题5分,共25分)6. 函数 \( f(x) = \ln(x + \sqrt{x^2 + 1}) \) 的导数 \( f'(x) \) 为_________。
高数期末考试题及答案大全试题一:极限的概念与计算问题:计算极限 \(\lim_{x \to 0} \frac{\sin x}{x}\)。
答案:根据洛必达法则,当分子分母同时趋向于0时,可以对分子分母同时求导,得到:\[\lim_{x \to 0} \frac{\sin x}{x} = \lim_{x \to 0} \frac{\cosx}{1} = \cos(0) = 1.\]试题二:导数的应用问题:设函数 \(f(x) = x^3 - 3x^2 + 2x\),求其在 \(x=1\) 处的切线方程。
答案:首先求导数 \(f'(x) = 3x^2 - 6x + 2\)。
在 \(x=1\) 处,导数值为 \(f'(1) = -1\),函数值为 \(f(1) = 0\)。
切线方程为 \(y - 0 = -1(x - 1)\),即 \(y = -x + 1\)。
试题三:不定积分的计算问题:计算不定积分 \(\int \frac{1}{x^2 + 1} dx\)。
答案:这是一个基本的三角换元积分问题,令 \(x = \tan(\theta)\),\(dx = \sec^2(\theta) d\theta\)。
则 \(\int \frac{1}{x^2 + 1} dx = \int \frac{1}{\tan^2(\theta) + 1} \sec^2(\theta) d\theta = \int \cos^2(\theta) d\theta\)。
利用二倍角公式,\(\cos^2(\theta) = \frac{1 +\cos(2\theta)}{2}\)。
积分变为 \(\int \frac{1}{2} d\theta + \frac{1}{2} \int\cos(2\theta) d\theta = \frac{\theta}{2} +\frac{\sin(2\theta)}{4} + C\)。
《高等数学基础》期末试题及答案一、选择题(每题5分,共25分)1. 函数f(x) = x² - 2x + 1在x = 1处的导数是()A. 0B. 2C. -2D. 1答案:A2. 函数y = ln(e²x)的导数是()A. 2xB. 2C. e²xD. 1答案:A3. 下列极限中,正确的是()A. lim(x→0) sinx/x = 0B. lim(x→0) sinx/x = 1C. lim(x→0) sinx/x = ∞D. lim(x→0) sinx/x = -1答案:B4. 函数y = x²e²x的极值点为()A. x = 0B. x = 1C. x = -1D. x = 2答案:C5. 定积分∫(0→1) x²dx的值是()A. 1/3B. 1/2C. 1D. 2答案:A二、填空题(每题5分,共25分)6. 函数y = 2x³ - 3x² + 2x + 1的一阶导数是______。
答案:6x² - 6x + 27. 函数y = x²e²x的二阶导数是______。
答案:4x²e²x + 4xe²x8. 极限lim(x→∞) (1 + 1/x)²ⁿ = ______。
答案:e9. 定积分∫(0→π) sinx dx的值是______。
答案:210. 定积分∫(0→π/2) eˣdx的值是______。
答案:eπ/2 - 1三、解答题(每题25分,共75分)11. 设函数f(x) = x³ - 3x² + 4,求f'(x)和f''(x)。
解:f'(x) = 3x² - 6x,f''(x) = 6x - 6。
12. 求函数f(x) = x²e²x的极值点和极值。