只需证
g(1) g(1)
0,0即11
a a
2 2
0, 0
解得
:
1
a
1
例2.判断下列函数的单调性,并求出单调区间.
(1) f (x) x3 3x
(2) f (x) x2 2x 3
(3) f (x) sin x x x (0, ) (4) f (x) 2x3 3x2 24x 1
解 : (1) f (x) x3 3x f (x) 3x2 3 3(x2 1) 0 因此, f (x) x3 3x在R上单调递增.如图1所示.
x 在(, 0)上单调递减,在(0, )上单调递减.
而y
1 x2
,因为x
0, 所以y
0.
再观察函数y=x2-4x+3的图象:
y
0 ....2
.. .
该函数在区间(-∞,2) 上单减,切线斜率小于0, 即其导数为负;
在区间(2,+∞)上单 增,切线斜率大于0,即
x 其导数为正.
而当x=2时其切线斜率 为0,即导数为0. 函数在该点单调性发 生改变.
解: (3) f (x) sin x x x (0, ) f (x) cos x 1 0
因此,函数f (x) sin x x 在(0, )单调递减, 如图
解: (4) f (x) 2x3 3x2 24x 1
当f (x) 0,即
时,函数f (x) 2x3 3x2 24x 1
函数的单调性与导数的关系:
一般地,设函数y=f(x)在某个区间(a,b)内可导,
则函数在该区间 如果f´(x)>0, 则f(x)在这个区间为增函数; 如果f´(x)<0, 则f(x)在这个区间为减函数. 如果在某个区间内恒有f´(x)=0,则f(x)为常数函数.